1
|
Luo Y, Yang Q, Hu J, Qin X, Jiang S, Liu Y. Preliminary study on detection and diagnosis of focal liver lesions based on a deep learning model using multimodal PET/CT images. Eur J Radiol Open 2025; 14:100624. [PMID: 39803389 PMCID: PMC11720101 DOI: 10.1016/j.ejro.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Objectives To develop and validate a deep learning model using multimodal PET/CT imaging for detecting and classifying focal liver lesions (FLL). Methods This study included 185 patients who underwent 18F-FDG PET/CT imaging at our institution from March 2022 to February 2023. We analyzed serological data and imaging. Liver lesions were segmented on PET and CT, serving as the "reference standard". Deep learning models were trained using PET and CT images to generate predicted segmentations and classify lesion nature. Model performance was evaluated by comparing the predicted segmentations with the reference segmentations, using metrics such as Dice, Precision, Recall, F1-score, ROC, and AUC, and compared it with physician diagnoses. Results This study finally included 150 patients, comprising 46 patients with benign liver nodules, 51 patients with malignant liver nodules, and 53 patients with no FLLs. Significant differences were observed among groups for age, AST, ALP, GGT, AFP, CA19-9and CEA. On the validation set, the Dice coefficient of the model was 0.740. For the normal group, the recall was 0.918, precision was 0.904, F1-score was 0.909, and AUC was 0.976. For the benign group, the recall was 0.869, precision was 0.862, F1-score was 0.863, and AUC was 0.928. For the malignant group, the recall was 0.858, precision was 0.914, F1-score was 0.883, and AUC was 0.979. The model's overall diagnostic performance was between that of junior and senior physician. Conclusion This deep learning model demonstrated high sensitivity in detecting FLLs and effectively differentiated between benign and malignant lesions.
Collapse
Affiliation(s)
- Yingqi Luo
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingqi Yang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinglang Hu
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaowen Qin
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shengnan Jiang
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ying Liu
- Department of Nuclear medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Peng Y, Liu H, Miao M, Cheng X, Chen S, Yan K, Mu J, Cheng H, Liu G. Micro-Nano Convergence-Driven Radiotheranostic Revolution in Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29047-29081. [PMID: 40347149 DOI: 10.1021/acsami.5c05525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Radiotherapy, as an important means of treating hepatocellular carcinoma (HCC), has shown unique therapeutic advantages, especially in patients who are unable to undergo surgery or transplantation. It mainly includes external radiotherapy, transarterial radioembolization and intratumoral radioactive particle implantation. However, under the influence of factors such as the hypoxic characteristics of the liver tumor microenvironment and the radioresistance of tumor cells, the effect of radiotherapy may be unstable and may cause side effects, affecting the quality of life of patients. In recent years, with the development of nanotechnology, drug delivery systems based on micro-nanomaterials have provided new solutions for improving the effect of radiotherapy for HCC. Despite this, the application of micro-nano drug delivery systems in the treatment of HCC still faces some challenges, mainly including the in vivo safety and in vivo metabolism of micro-nano materials. This article reviews the latest progress of micro-nano materials in the treatment of HCC, especially their application in radiosensitization and their clinical translation potential. This article systematically analyzes the role of micro-nanomaterials in external or internal radiotherapy sensitization and radioimmunotherapy and explores the advantages of micro-nanomaterials in improving the treatment effect of HCC.
Collapse
Affiliation(s)
- Yisheng Peng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mengmeng Miao
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xu Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shangqing Chen
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kaifei Yan
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR 999078, China
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Zhong L, Shi L, Li W, Zhou L, Wang K, Gu L. An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2025. [PMID: 40396203 DOI: 10.1002/jcu.24058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 03/31/2025] [Indexed: 05/22/2025]
Abstract
RATIONALE AND OBJECTIVES Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III). MATERIALS AND METHODS Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed. RESULTS The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively. CONCLUSION The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).
Collapse
Affiliation(s)
- Lichang Zhong
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Lin Shi
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Weimei Li
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Liang Zhou
- Department of Information, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Kui Wang
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Liping Gu
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| |
Collapse
|
4
|
Luo J, Wan X, Du J, Liu L, Zhao L, Peng X, Wu M, Huang S, Nie X. Comprehensive multi-phase 3D contrast-enhanced CT imaging for primary liver cancer. Sci Data 2025; 12:768. [PMID: 40348741 PMCID: PMC12065907 DOI: 10.1038/s41597-025-05125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Primary liver cancer is a significant global health issue with high incidence and mortality rates worldwide. Accurate diagnosis and classification of its subtypes are crucial for choosing the right treatment options and improving patient outcomes. Contrast-enhanced computed tomography (CECT) is known for its high sensitivity and specificity in diagnosing liver cancer. However, publicly available datasets of liver cancer CECT scans are limited and often do not fully cover all subtypes or include complete CT scan phases. We hypothesize that using 3D CECT images with complete scan phases can help develop and validate diagnostic and segmentation models for primary liver cancer. Therefore, we created a CECT dataset with annotated liver and lesion areas. This dataset includes 278 cases of liver cancer, featuring hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and combined hepatocellular-cholangiocarcinoma, along with CECT images from 83 non-liver cancer subjects. It contains over 50,000 layers of liver cancer lesion images. We believe this dataset can offer valuable support for developing and validating models for classifying and segmenting primary liver cancer.
Collapse
Affiliation(s)
- Jiawei Luo
- West China Biomedical Big Data Center, West China Hospital; Med-X Center for Informatics, Sichuan University, Chengdu, 610044, China
| | - Xiaoyu Wan
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Jinchao Du
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Li Liu
- Department of Radiology, The People's Hospital of Yubei District of Chongqing city, Chongqing, 401120, China
| | - Ling Zhao
- Department of Radiology, The People's Hospital of Yubei District of Chongqing city, Chongqing, 401120, China
| | - Xin Peng
- Department of Radiology, The People's Hospital of Yubei District of Chongqing city, Chongqing, 401120, China
| | - Min Wu
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Shixin Huang
- Department of Scientific Research, The People's Hospital of Yubei District of Chongqing city, Chongqing, 401120, China.
| | - Xixi Nie
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| |
Collapse
|
5
|
Theocharopoulos C, Theocharopoulos A, Papadakos SP, Machairas N, Pawlik TM. Deep Learning to Enhance Diagnosis and Management of Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2025; 17:1604. [PMID: 40427103 PMCID: PMC12110721 DOI: 10.3390/cancers17101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is associated with a poor prognosis and necessitates a multimodal, multidisciplinary approach from diagnosis to treatment to achieve optimal outcomes. A noninvasive preoperative diagnosis using abdominal imaging techniques can represent a clinical challenge. Given the differential response of iCCA to localized and systemic therapies compared with hepatocellular carcinoma and secondary hepatic malignancies, an accurate diagnosis is crucial. Deep learning (DL) models for image analysis have emerged as a promising adjunct for the abdominal radiologist, potentially enhancing the accurate detection and diagnosis of iCCA. Over the last five years, several reports have proposed robust DL models, which demonstrate a diagnostic accuracy that is either comparable to or surpasses that of radiologists with varying levels of experience. Recent studies have expanded DL applications into other aspects of iCCA management, including histopathologic diagnosis, the prediction of histopathological features, the preoperative prediction of survival, and the pretreatment prediction of responses to systemic therapy. We herein critically evaluate the expanding body of research on DL applications in the diagnosis and management of iCCA, providing insights into the current progress and future research directions. We comprehensively synthesize the performance and limitations of DL models in iCCA research, identifying key challenges that serve as a translational reference for clinicians.
Collapse
Affiliation(s)
- Charalampos Theocharopoulos
- Second Department of Propaedeutic Surgery, Laiko General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Achilleas Theocharopoulos
- Department of Electrical and Computer Engineering, National Technical University of Athens, 10682 Athens, Greece
| | - Stavros P. Papadakos
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, Laiko General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Lou M, Ying H, Liu X, Zhou HY, Zhang Y, Yu Y. SDR-Former: A Siamese Dual-Resolution Transformer for liver lesion classification using 3D multi-phase imaging. Neural Netw 2025; 185:107228. [PMID: 39908910 DOI: 10.1016/j.neunet.2025.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 12/28/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Automated classification of liver lesions in multi-phase CT and MR scans is of clinical significance but challenging. This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework, specifically designed for liver lesion classification in 3D multi-phase CT and MR imaging with varying phase counts. The proposed SDR-Former utilizes a streamlined Siamese Neural Network (SNN) to process multi-phase imaging inputs, possessing robust feature representations while maintaining computational efficiency. The weight-sharing feature of the SNN is further enriched by a hybrid Dual-Resolution Transformer (DR-Former), comprising a 3D Convolutional Neural Network (CNN) and a tailored 3D Transformer for processing high- and low-resolution images, respectively. This hybrid sub-architecture excels in capturing detailed local features and understanding global contextual information, thereby, boosting the SNN's feature extraction capabilities. Additionally, a novel Adaptive Phase Selection Module (APSM) is introduced, promoting phase-specific intercommunication and dynamically adjusting each phase's influence on the diagnostic outcome. The proposed SDR-Former framework has been validated through comprehensive experiments on two clinically collected datasets: a 3-phase CT dataset and an 8-phase MR dataset. The experimental results affirm the efficacy of the proposed framework. To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public. This pioneering dataset, being the first publicly available multi-phase MR dataset in this field, also underpins the MICCAI LLD-MMRI Challenge. The dataset is publicly available at: https://github.com/LMMMEng/LLD-MMRI-Dataset.
Collapse
Affiliation(s)
- Meng Lou
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China; AI Lab, Deepwise Healthcare, Beijing, China.
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | | | - Hong-Yu Zhou
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China; Department of Biomedical Informatics, Harvard Medical School, Boston, USA.
| | - Yuqin Zhang
- Department of Radiology, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Yizhou Yu
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Fu X, Guo Y, Zhang K, Cheng Z, Liu C, Ren Y, Miao L, Liu W, Jiang S, Zhou C, Su Y, Yang L. Prognostic impact of extracellular volume fraction derived from equilibrium contrast-enhanced CT in HCC patients receiving immune checkpoint inhibitors. Sci Rep 2025; 15:13643. [PMID: 40254627 PMCID: PMC12009984 DOI: 10.1038/s41598-025-97677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025] Open
Abstract
This study aimed to investigate whether extracellular volume (ECV) fraction derived from equilibration contrast-enhanced computed tomography (CECT) affects prognosis in HCC patients receiving ICIs. This retrospective study ultimately included 211 HCC patients undergoing ICIs, of whom 60 were included in an internal validation to assess the reproducibility of the results. Baseline unenhanced and equilibrated CECT were used to measure CT values of the tumor, liver and aorta, which were combined with hematocrit to calculate the ECV fraction. Correlation analysis was used to investigate the association between tumor ECV and liver ECV fractions. The effects of clinical variables and ECV fraction on progression-free survival (PFS) and overall survival (OS) were evaluated using Cox proportional hazards models and Kaplan-Meier curves. Of these 151 patients, tumor ECV fraction positively correlated with liver ECV fraction. In the Lower tumor ECV group, PFS (5.6 vs. 7.6 months) and OS (10.5 vs. 15.5 months) were notably shorter than in the Higher tumor ECV group, while no significant differences were found between the Higher and Lower liver ECV groups. Furthermore, the multivariable Cox regression model demonstrated that higher tumor ECV fraction level was an independent protective factor for PFS and OS (all P < 0.001). Internal validation cohort preliminary demonstrated reproducibility of results. The tumor ECV fraction is expected to become a routine indicator before ICIs therapy for HCC patients in contrast to liver ECV fraction, contributing to their subsequent management.
Collapse
Affiliation(s)
- Xiaona Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Kailu Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zhixuan Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chanyuan Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yi Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lianwei Miao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Weiwei Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shanshan Jiang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Yangbo Su
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
8
|
Yang J, Xiao P, Luo Y, Zhu S, Tang Y, Chen H, Wang H, Lv F, Luo T, Cheng O, Luo J, Man Y, Xiao Z, Fang W. Use of deep learning-based high-resolution magnetic resonance to identify intracranial and extracranial symptom-related plaques. Neuroscience 2025; 571:130-138. [PMID: 40032038 DOI: 10.1016/j.neuroscience.2025.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
This study aims to develop a deep learning model using high-resolution vessel wall imaging (HR-VWI) to differentiate symptom-related intracranial and extracranial plaques, which is crucial for stroke treatment and prevention. We retrospectively analyzed HR-VWI data from 235 patients, dividing them into a training set (n = 156) and a testing set (n = 79). Using T1-weighted and contrast-enhanced T1WI images, we constructed five deep learning models and selected the best-performing DenseNet 201 model to extract features. Traditional and radiomics features were also obtained to build both single and combined models. The models were evaluated using receiver operating characteristic curves and the area under the curve (AUC). The deep learning model showed the highest diagnostic performance, while combined models, particularly T + D, performed well, though not better than the single deep learning model. The deep learning model based on HR-VWI is superior in discriminating symptom-related plaques and offers valuable guidance for plaque management.
Collapse
Affiliation(s)
- Jinlin Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Xiao
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yimiao Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songrui Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Man
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Xu J, Li J, Wang T, Luo X, Zhu Z, Wang Y, Wang Y, Zhang Z, Song R, Yang LZ, Wang H, Wong STC, Li H. Predicting treatment response and prognosis of immune checkpoint inhibitors-based combination therapy in advanced hepatocellular carcinoma using a longitudinal CT-based radiomics model: a multicenter study. BMC Cancer 2025; 25:602. [PMID: 40181337 PMCID: PMC11967134 DOI: 10.1186/s12885-025-13978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Identifying effective predictive strategies to assess the response of immune checkpoint inhibitors (ICIs)-based combination therapy in advanced hepatocellular carcinoma (HCC) is crucial. This study presents a new longitudinal CT-based radiomics model to predict treatment response and prognosis in advanced HCC patients undergoing ICIs-based combination therapy. METHODS Longitudinal CT images were collected before and during the treatment for HCC patients across three institutions from January 2019 to April 2022. A total of 1316 radiomic features were extracted from arterial and portal venous phase abdominal CT images for each patient. A model called Longitudinal Whole-liver CT-based Radiomics (LWCTR) was developed to categorize patients into responders or non-responders using radiomic features and clinical information through support vector machine (SVM) classifiers. The area under the curve (AUC) was used as the performance metric and subsequently applied for risk stratification and prognostic assessment. The Shapley Additive explanations (SHAP) method was used to calculate the Shapley value, which explains the contribution of each feature in the SVM model to the prediction. RESULTS This study included 395 eligible participants, with a median age of 57 years (IQR 51-66), comprising 344 males and 51 females. The LWCTR model performed well in predicting treatment response, achieving an AUC of 0.883 (95% confidence interval [CI] 0.881-0.888) in the training cohort, 0.876 (0.858-0.895) in the internal validation cohort, and 0.875 (0.860-0.887) in the external test cohort. The Rad-Nomo model, integrating the LWCTR model's prediction score (Rad-score) with the modified Response Evaluation Criteria in Solid Tumors (mRECIST), demonstrated strong prognostic performance. It achieved time-dependent AUC values of 0.902, 0.823, and 0.850 at 1, 2, and 3 years in the internal validation cohort and 0.893, 0.848, and 0.762 at the same intervals in the external test cohort. CONCLUSION The proposed LWCTR model performs well in predicting treatment response and prognosis in patients with HCC receiving ICIs-based combination therapy, potentially contributing to personalized and timely treatment decisions.
Collapse
Affiliation(s)
- Jun Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Intervention, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Junjun Li
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengfei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Xin Luo
- Yangtze Delta Region Institute (Huzhou) & School of Resources and Environment, University of Electronic Science and Technology of China, Huzhou, Chengdu, 313099, 611731, China
| | - Zhangxiang Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yimou Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yong Wang
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Zhenglin Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Ruipeng Song
- Department of Hepatobiliary Surgerydivision of Life Sciences and Medicineanhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, the University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
10
|
Zhou S, Xie Y, Feng X, Li Y, Shen L, Chen Y. Artificial intelligence in gastrointestinal cancer research: Image learning advances and applications. Cancer Lett 2025; 614:217555. [PMID: 39952597 DOI: 10.1016/j.canlet.2025.217555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the rapid advancement of artificial intelligence (AI) technologies, including deep learning, large language models, and neural networks, these methodologies are increasingly being developed and integrated into cancer research. Gastrointestinal tumors are characterized by complexity and heterogeneity, posing significant challenges for early detection, diagnostic accuracy, and the development of personalized treatment strategies. The application of AI in digestive oncology has demonstrated its transformative potential. AI not only alleviates the diagnostic burden on clinicians, but it improves tumor screening sensitivity, specificity, and accuracy. Additionally, AI aids the detection of biomarkers such as microsatellite instability and mismatch repair, supports intraoperative assessments of tumor invasion depth, predicts treatment responses, and facilitates the design of personalized treatment plans to potentially significantly enhance patient outcomes. Moreover, the integration of AI with multiomics analyses and imaging technologies has led to substantial advancements in foundational research on the tumor microenvironment. This review highlights the progress of AI in gastrointestinal oncology over the past 5 years with focus on early tumor screening, diagnosis, molecular marker identification, treatment planning, and prognosis predictions. We also explored the potential of AI to enhance medical imaging analyses to aid tumor detection and characterization as well as its role in automating and refining histopathological assessments.
Collapse
Affiliation(s)
- Shengyuan Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yi Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xujiao Feng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing, 102200, China.
| |
Collapse
|
11
|
Arribas Anta J, Moreno-Vedia J, García López J, Rios-Vives MA, Munuera J, Rodríguez-Comas J. Artificial intelligence for detection and characterization of focal hepatic lesions: a review. Abdom Radiol (NY) 2025; 50:1564-1583. [PMID: 39369107 DOI: 10.1007/s00261-024-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Focal liver lesions (FLL) are common incidental findings in abdominal imaging. While the majority of FLLs are benign and asymptomatic, some can be malignant or pre-malignant, and need accurate detection and classification. Current imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), play a crucial role in assessing these lesions. Artificial intelligence (AI), particularly deep learning (DL), offers potential solutions by analyzing large data to identify patterns and extract clinical features that aid in the early detection and classification of FLLs. This manuscript reviews the diagnostic capacity of AI-based algorithms in processing CT and MRIs to detect benign and malignant FLLs, with an emphasis in the characterization and classification of these lesions and focusing on differentiating benign from pre-malignant and potentially malignant lesions. A comprehensive literature search from January 2010 to April 2024 identified 45 relevant studies. The majority of AI systems employed convolutional neural networks (CNNs), with expert radiologists providing reference standards through manual lesion delineation, and histology as the gold standard. The studies reviewed indicate that AI-based algorithms demonstrate high accuracy, sensitivity, specificity, and AUCs in detecting and characterizing FLLs. These algorithms excel in differentiating between benign and malignant lesions, optimizing diagnostic protocols, and reducing the needs of invasive procedures. Future research should concentrate on the expansion of data sets, the improvement of model explainability, and the validation of AI tools across a range of clinical setting to ensure the applicability and reliability of such tools.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Department of Gastroenterology, University Hospital, 12 Octubre, Madrid, Spain
| | - Juan Moreno-Vedia
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Javier García López
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Miguel Angel Rios-Vives
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | | |
Collapse
|
12
|
Niu H, Li L, Wang X, Xu H. The value of predicting breast cancer with a DBT 2.5D deep learning model. Discov Oncol 2025; 16:420. [PMID: 40155449 PMCID: PMC11953484 DOI: 10.1007/s12672-025-02170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
OBJECTIVE To evaluate the accuracy and efficacy of a 2.5-dimensional deep learning (DL) model based on digital breast tomosynthesis (DBT) in predicting breast cancer. METHODS Through a retrospective analysis of data from 361 patients with breast tumor lesions treated at Shandong Provincial Hospital Affiliated to Shandong First Medical University between 2018 and 2020, this study utilized deep convolutional neural networks (DCNN) to automatically extract key features from DBT images. By applying dimensionality reduction and feature fusion selection, a variety of machine learning predictive models based on a 2.5-dimensional feature set were constructed. Additionally, a comprehensive predictive model was developed by combining univariate and multivariate logistic regression analyses with clinical data. The model's performance was assessed using receiver operating characteristic (ROC) curves, area under the curve (AUC) values, and accuracy rates. RESULTS In the test set, DBT 2.5D deep learning-based logistic regression, LightGBM, multilayer perceptron, and comprehensive models achieved accuracies of 72.2%, 75.0%, 79.2%, and 80.6%; AUCs of 0.826, 0.756, 0.859, and 0.871; sensitivities of 63.8%, 70.2%, 80.9%, and 87.2%; specificities of 88.0%, 84.0%, 76.0%, and 68.0%; PPVs of 90.9%, 89.2%, 86.4%, and 83.7%; NPVs of 56.4%, 60.0%, 67.9%, and 73.9%; and F1 scores of 75.0%, 78.6%, 83.5%, and 85.4%, respectively. These results underscore the high efficiency and potential of DBT 2.5D deep learning models in breast cancer diagnosis, particularly the comprehensive model's superior performance across key metrics. CONCLUSION The 2.5D deep learning model based on DBT shows good performance in preoperative breast cancer prediction, with its integration with clinical data further enhancing its effectiveness. The combination of deep learning and radiomics offers a viable approach for early breast cancer diagnosis, supporting the development of more accurate personalized diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Huandong Niu
- Department of Radiology, Yantai Zhifu Hospital, No. 51,Qingnian Road, Yantai, People's Republic of China
| | - Li Li
- Department of Clinical Laboratory, Yantai Zhifu Hospital, No. 51,Qingnian Road, Yantai, Shandong, People's Republic of China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324# Jingwu Road, Jinan, 251000, Shandong, People's Republic of China.
| | - Han Xu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324# Jingwu Road, Jinan, 251000, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Cheng M, Zhang H, Guo Y, Lyu P, Yan J, Liu Y, Liang P, Ren Z, Gao J. Comparison of MRI and CT based deep learning radiomics analyses and their combination for diagnosing intrahepatic cholangiocarcinoma. Sci Rep 2025; 15:9629. [PMID: 40113926 PMCID: PMC11926170 DOI: 10.1038/s41598-025-92263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) and other subtypes of primary liver cancer (PLC) have overlapping clinical manifestations and radiological characteristics. The objective of this study was to evaluate the efficacy of deep learning (DL) radiomics analysis, performed using computed tomography (CT) and magnetic resonance imaging (MRI), in diagnosing iCCA within PLC. 178 pathologically confirmed PLC patients (training cohort: test cohort = 124: 54) who underwent both CT and MRI examinations was enrolled. Univariate and multivariate analysis was used to identify the significant factors of radiological findings for diagnosing iCCA. DL radiomics analysis was applied to CT and MRI images, respectively. We constructed and evaluated six distinct models: CT DL radiomics (DLRSCT), CT radiological (RCT), CT DL radiomics-radiological (DLRRCT), MRI DL radiomics (DLRSMRI), MRI radiological (RMRI) and MRI DL radiomics-radiological (DLRRMRI). To further explore the diagnostic and predictive value of a cross-modal approach, we developed a fused model that combined DLRRCT and DLRRMRI. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were employed to compare the performance of different models. MRI-based models demonstrated a superior predictive performance than CT-based models in test cohort (AUCs of MRI vs. CT: DLRR, 0.923 vs. 0.880, P = 0.521; DLRS, 0.875 vs. 0.867, P = 0.922; R, 0.859 vs. 0.840, P = 0.808). The CT-MRI cross-modal model yielded the highest AUC of 0.994 and 0.937 in training and test cohorts, respectively. CT- and MRI-based DL radiomics analyses exhibited good performance in diagnosing iCCA, and the CT-MRI cross-modal model may have significant clinical implications on detection of liver malignancies.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Medical Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hanyue Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yimin Guo
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pan Liang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
14
|
Matsui Y, Ueda D, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Ito R, Yanagawa M, Yamada A, Kawamura M, Nakaura T, Fujima N, Nozaki T, Tatsugami F, Fujioka T, Hirata K, Naganawa S. Applications of artificial intelligence in interventional oncology: An up-to-date review of the literature. Jpn J Radiol 2025; 43:164-176. [PMID: 39356439 PMCID: PMC11790735 DOI: 10.1007/s11604-024-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Interventional oncology provides image-guided therapies, including transarterial tumor embolization and percutaneous tumor ablation, for malignant tumors in a minimally invasive manner. As in other medical fields, the application of artificial intelligence (AI) in interventional oncology has garnered significant attention. This narrative review describes the current state of AI applications in interventional oncology based on recent literature. A literature search revealed a rapid increase in the number of studies relevant to this topic recently. Investigators have attempted to use AI for various tasks, including automatic segmentation of organs, tumors, and treatment areas; treatment simulation; improvement of intraprocedural image quality; prediction of treatment outcomes; and detection of post-treatment recurrence. Among these, the AI-based prediction of treatment outcomes has been the most studied. Various deep and conventional machine learning algorithms have been proposed for these tasks. Radiomics has often been incorporated into prediction and detection models. Current literature suggests that AI is potentially useful in various aspects of interventional oncology, from treatment planning to post-treatment follow-up. However, most AI-based methods discussed in this review are still at the research stage, and few have been implemented in clinical practice. To achieve widespread adoption of AI technologies in interventional oncology procedures, further research on their reliability and clinical utility is necessary. Nevertheless, considering the rapid research progress in this field, various AI technologies will be integrated into interventional oncology practices in the near future.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-Ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita-Ku, Sapporo, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-Ku, Tokyo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| |
Collapse
|
15
|
Wu Q, Zhang T, Xu F, Cao L, Gu W, Zhu W, Fan Y, Wang X, Hu C, Yu Y. MRI-based deep learning radiomics to differentiate dual-phenotype hepatocellular carcinoma from HCC and intrahepatic cholangiocarcinoma: a multicenter study. Insights Imaging 2025; 16:27. [PMID: 39881111 PMCID: PMC11780023 DOI: 10.1186/s13244-025-01904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVES To develop and validate radiomics and deep learning models based on contrast-enhanced MRI (CE-MRI) for differentiating dual-phenotype hepatocellular carcinoma (DPHCC) from HCC and intrahepatic cholangiocarcinoma (ICC). METHODS Our study consisted of 381 patients from four centers with 138 HCCs, 122 DPHCCs, and 121 ICCs (244 for training and 62 for internal tests, centers 1 and 2; 75 for external tests, centers 3 and 4). Radiomics, deep transfer learning (DTL), and fusion models based on CE-MRI were established for differential diagnosis, respectively, and their diagnostic performances were compared using the confusion matrix and area under the receiver operating characteristic (ROC) curve (AUC). RESULTS The radiomics model demonstrated competent diagnostic performance, with a macro-AUC exceeding 0.9, and both accuracy and F1-score above 0.75 in the internal and external validation sets. Notably, the vgg19-combined model outperformed the radiomics and other DTL models. The fusion model based on vgg19 further improved diagnostic performance, achieving a macro-AUC of 0.990 (95% CI: 0.965-1.000), an accuracy of 0.935, and an F1-score of 0.937 in the internal test set. In the external test set, it similarly performed well, with a macro-AUC of 0.988 (95% CI: 0.964-1.000), accuracy of 0.875, and an F1-score of 0.885. CONCLUSIONS Both the radiomics and the DTL models were able to differentiate DPHCC from HCC and ICC before surgery. The fusion models showed better diagnostic accuracy, which has important value in clinical application. CRITICAL RELEVANCE STATEMENT MRI-based deep learning radiomics were able to differentiate DPHCC from HCC and ICC preoperatively, aiding clinicians in the identification and targeted treatment of these malignant hepatic tumors. KEY POINTS Fusion models may yield an incremental value over radiomics models in differential diagnosis. Radiomics and deep learning effectively differentiate the three types of malignant hepatic tumors. The fusion models may enhance clinical decision-making for malignant hepatic tumors.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Fan Xu
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lixiu Cao
- Department of Nuclear Medical Imaging, Tangshan People's Hospital, Tangshan, China
| | - Wenhao Gu
- The First People's Hospital of Taicang, Taicang, China
| | - Wenjing Zhu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yanfen Fan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Yang T, Yang Y, Hu S, Xie Y, Shen Z, Zhang Y. 18F-FAPI-42 PET/CT for preoperatively identifying intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Quant Imaging Med Surg 2025; 15:741-751. [PMID: 39838999 PMCID: PMC11744148 DOI: 10.21037/qims-24-1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/08/2024] [Indexed: 01/23/2025]
Abstract
Background Accurately differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC) is essential for therapeutic decision-making. This study aimed to explore the value of Fluor 18 (18F)-conjugated fibroblast-activation protein inhibitor (FAPI-42) positron emission tomography-computed tomography (PET/CT) in distinguishing HCC from ICC preoperatively. Methods Patients with suspected intrahepatic lesions who underwent 18F-FAPI-42 PET/CT were retrospectively assessed and placed into an HCC group and an ICC group based on postoperative pathology. Clinical indicators and PET/CT metabolic parameters were documented. Univariate and multivariate logistic regression analyses identified the independent predictive factors. The receiver operating characteristic curve and the area under the receiver operating curve (AUC) were used to determine the diagnostic efficacy. Results A total of 48 patients (age 55.4±10.8 years; 35 males and 13 females), including 28 in the HCC and 20 in the ICC group, were included. Univariate analysis revealed significant differences in clinical indicators such as gender, platelet count, and hepatitis B surface antigen, carbohydrate antigen 19-9 (CA19-9), and alpha fetoprotein (AFP) levels between the groups (P<0.05). Metabolic parameters including the maximum standardized uptake value (SUVmax), the total lesion-FAPI (TL-FAPI), and the target-to-background ratio (TBR) were statistically different between groups (P<0.01), and patients with ICC had higher values than those with HCC, while the FAPI tumor volume (FAPI-TV) was not statistically different (P>0.05). Multivariate binary logistic regression analysis identified the SUVmax (P=0.003) as an independent predictor for ICC, and the AUC of the regression-based diagnostic model for predicting ICC was 0.914 at an optimal cutoff value of 12.13, with a sensitivity of 85.0% and a specificity of 89.3%. Conclusions SUVmax is an independent predictor for ICC. With the optimal cutoff value of 12.13, 18F-FAPI-42 PET/CT indicates good diagnostic efficacy in distinguishing between HCC and ICC.
Collapse
Affiliation(s)
- Ting Yang
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Yang
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siqi Hu
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujie Xie
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zijie Shen
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Zhang
- Department of Nuclear Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Yu PLH, Chiu KWH, Lu J, Lui GC, Zhou J, Cheng HM, Mao X, Wu J, Shen XP, Kwok KM, Kan WK, Ho Y, Chan HT, Xiao P, Mak LY, Tsui VW, Hui C, Lam PM, Deng Z, Guo J, Ni L, Huang J, Yu S, Peng C, Li WK, Yuen MF, Seto WK. Application of a deep learning algorithm for the diagnosis of HCC. JHEP Rep 2025; 7:101219. [PMID: 39687602 PMCID: PMC11648772 DOI: 10.1016/j.jhepr.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 12/18/2024] Open
Abstract
Background & Aims Hepatocellular carcinoma (HCC) is characterized by a high mortality rate. The Liver Imaging Reporting and Data System (LI-RADS) results in a considerable number of indeterminate observations, rendering an accurate diagnosis difficult. Methods We developed four deep learning models for diagnosing HCC on computed tomography (CT) via a training-validation-testing approach. Thin-slice triphasic CT liver images and relevant clinical information were collected and processed for deep learning. HCC was diagnosed and verified via a 12-month clinical composite reference standard. CT observations among at-risk patients were annotated using LI-RADS. Diagnostic performance was assessed by internal validation and independent external testing. We conducted sensitivity analyses of different subgroups, deep learning explainability evaluation, and misclassification analysis. Results From 2,832 patients and 4,305 CT observations, the best-performing model was Spatio-Temporal 3D Convolution Network (ST3DCN), achieving area under receiver-operating-characteristic curves (AUCs) of 0.919 (95% CI, 0.903-0.935) and 0.901 (95% CI, 0.879-0.924) at the observation (n = 1,077) and patient (n = 685) levels, respectively during internal validation, compared with 0.839 (95% CI, 0.814-0.864) and 0.822 (95% CI, 0.790-0.853), respectively for standard of care radiological interpretation. The negative predictive values of ST3DCN were 0.966 (95% CI, 0.954-0.979) and 0.951 (95% CI, 0.931-0.971), respectively. The observation-level AUCs among at-risk patients, 2-5-cm observations, and singular portovenous phase analysis of ST3DCN were 0.899 (95% CI, 0.874-0.924), 0.872 (95% CI, 0.838-0.909) and 0.912 (95% CI, 0.895-0.929), respectively. In external testing (551/717 patients/observations), the AUC of ST3DCN was 0.901 (95% CI, 0.877-0.924), which was non-inferior to radiological interpretation (AUC 0.900; 95% CI, 0.877--923). Conclusions ST3DCN achieved strong, robust performance for accurate HCC diagnosis on CT. Thus, deep learning can expedite and improve the process of diagnosing HCC. Impact and implications The clinical applicability of deep learning in HCC diagnosis is potentially huge, especially considering the expected increase in the incidence and mortality of HCC worldwide. Early diagnosis through deep learning can lead to earlier definitive management, particularly for at-risk patients. The model can be broadly deployed for patients undergoing a triphasic contrast CT scan of the liver to reduce the currently high mortality rate of HCC.
Collapse
Affiliation(s)
- Philip Leung Ho Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Keith Wan-Hang Chiu
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong, China
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianliang Lu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilbert C.S. Lui
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Jian Zhou
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ho-Ming Cheng
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xianhua Mao
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Juan Wu
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Ping Shen
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - King Ming Kwok
- Department of Diagnostic and Interventional Radiology, Kwong Wah Hospital, Hong Kong, China
| | - Wai Kuen Kan
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Y.C. Ho
- Department of Radiology, Queen Mary Hospital, Hong Kong, China
| | - Hung Tat Chan
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Peng Xiao
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Vivien W.M. Tsui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Cynthia Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pui Mei Lam
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Zijie Deng
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiaqi Guo
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Li Ni
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinhua Huang
- Department of Minimal Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sarah Yu
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Chengzhi Peng
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Li
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Şahin E, Tatar OC, Ulutaş ME, Güler SA, Şimşek T, Utkan NZ, Cantürk NZ. Diagnostic Performance of Deep Learning Applications in Hepatocellular Carcinoma Detection Using Computed Tomography Imaging. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 36:124-130. [PMID: 39760649 PMCID: PMC11851832 DOI: 10.5152/tjg.2024.24538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent cancer that significantly contributes to mortality globally, primarily due to its late diagnosis. Early detection is crucial yet challenging. This study leverages the potential of deep learning (DL) technologies, employing the You Only Look Once (YOLO) architecture, to enhance the detection of HCC in computed tomography (CT) images, aiming to improve early diagnosis and thereby patient outcomes. We used a dataset of 1290 CT images from 122 patients, segmented according to a standard 70:20:10 split for training, validation, and testing phases. The YOLO-based DL model was trained on these images, with subsequent phases for validation and testing to assess the model's diagnostic capabilities comprehensively. The model exhibited exceptional diagnostic accuracy, with a precision of 0.97216, recall of 0.919, and an overall accuracy of 95.35%, significantly surpassing traditional diagnostic approaches. It achieved a specificity of 95.83% and a sensitivity of 94.74%, evidencing its effectiveness in clinical settings and its potential to reduce the rate of missed diagnoses and unnecessary interventions. The implementation of the YOLO architecture for detecting HCC in CT scans has shown substantial promise, indicating that DL models could soon become a standard tool in oncological diagnostics. As artificial intelligence technology continues to evolve, its integration into healthcare systems is expected to advance the accuracy and efficiency of diagnostics in oncology, enhancing early detection and treatment strategies and potentially improving patient survival rates.
Collapse
Affiliation(s)
- Enes Şahin
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Ozan Can Tatar
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
- Department of Information Systems Engineering, Kocaeli University Faculty of Technology, Kocaeli, Türkiye
| | - Mehmet Eşref Ulutaş
- University of Health Science, Gaziantep City Hospital, General Surgery, Gaziantep, Türkiye
| | - Sertaç Ata Güler
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Turgay Şimşek
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Nihat Zafer Utkan
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Nuh Zafer Cantürk
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| |
Collapse
|
19
|
Nishida N. Advancements in Artificial Intelligence-Enhanced Imaging Diagnostics for the Management of Liver Disease-Applications and Challenges in Personalized Care. Bioengineering (Basel) 2024; 11:1243. [PMID: 39768061 PMCID: PMC11673237 DOI: 10.3390/bioengineering11121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Liver disease can significantly impact life expectancy, making early diagnosis and therapeutic intervention critical challenges in medical care. Imaging diagnostics play a crucial role in diagnosing and managing liver diseases. Recently, the application of artificial intelligence (AI) in medical imaging analysis has become indispensable in healthcare. AI, trained on vast datasets of medical images, has sometimes demonstrated diagnostic accuracy that surpasses that of human experts. AI-assisted imaging diagnostics are expected to contribute significantly to the standardization of diagnostic quality. Furthermore, AI has the potential to identify image features that are imperceptible to humans, thereby playing an essential role in clinical decision-making. This capability enables physicians to make more accurate diagnoses and develop effective treatment strategies, ultimately improving patient outcomes. Additionally, AI is anticipated to become a powerful tool in personalized medicine. By integrating individual patient imaging data with clinical information, AI can propose optimal plans for treatment, making it an essential component in the provision of the most appropriate care for each patient. Current reports highlight the advantages of AI in managing liver diseases. As AI technology continues to evolve, it is expected to advance personalized diagnostics and treatments and contribute to overall improvements in healthcare quality.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama 589-8511, Japan
| |
Collapse
|
20
|
Wang S, Zhao Y, Li J, Yi Z, Li J, Zuo C, Yao Y, Liu A. Self-supervised multi-modal feature fusion for predicting early recurrence of hepatocellular carcinoma. Comput Med Imaging Graph 2024; 118:102457. [PMID: 39571452 DOI: 10.1016/j.compmedimag.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
Surgical resection stands as the primary treatment option for early-stage hepatocellular carcinoma (HCC) patients. Postoperative early recurrence (ER) is a significant factor contributing to the mortality of HCC patients. Therefore, accurately predicting the risk of ER after curative resection is crucial for clinical decision-making and improving patient prognosis. This study leverages a self-supervised multi-modal feature fusion approach, combining multi-phase MRI and clinical features, to predict ER of HCC. Specifically, we utilized attention mechanisms to suppress redundant features, enabling efficient extraction and fusion of multi-phase features. Through self-supervised learning (SSL), we pretrained an encoder on our dataset to extract more generalizable feature representations. Finally, we achieved effective multi-modal information fusion via attention modules. To enhance explainability, we employed Score-CAM to visualize the key regions influencing the model's predictions. We evaluated the effectiveness of the proposed method on our dataset and found that predictions based on multi-phase feature fusion outperformed those based on single-phase features. Additionally, predictions based on multi-modal feature fusion were superior to those based on single-modal features.
Collapse
Affiliation(s)
- Sen Wang
- Chengdu Computer Application Institute Chinese Academy of Sciences, China; University of the Chinese Academy of Sciences, China.
| | - Ying Zhao
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China.
| | - Jiayi Li
- College of Medical Imaging, Dalian Medical University, China.
| | - Zongmin Yi
- Johns Hopkins Whiting School of Engineering, China.
| | - Jun Li
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China.
| | - Can Zuo
- College of Medical Imaging, Dalian Medical University, China.
| | - Yu Yao
- Chengdu Computer Application Institute Chinese Academy of Sciences, China; University of the Chinese Academy of Sciences, China.
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, China; Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, China.
| |
Collapse
|
21
|
Yang H, Yang M, Chen J, Yao G, Zou Q, Jia L. Multimodal deep learning approaches for precision oncology: a comprehensive review. Brief Bioinform 2024; 26:bbae699. [PMID: 39757116 DOI: 10.1093/bib/bbae699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
The burgeoning accumulation of large-scale biomedical data in oncology, alongside significant strides in deep learning (DL) technologies, has established multimodal DL (MDL) as a cornerstone of precision oncology. This review provides an overview of MDL applications in this field, based on an extensive literature survey. In total, 651 articles published before September 2024 are included. We first outline publicly available multimodal datasets that support cancer research. Then, we discuss key DL training methods, data representation techniques, and fusion strategies for integrating multimodal data. The review also examines MDL applications in tumor segmentation, detection, diagnosis, prognosis, treatment selection, and therapy response monitoring. Finally, we critically assess the limitations of current approaches and propose directions for future research. By synthesizing current progress and identifying challenges, this review aims to guide future efforts in leveraging MDL to advance precision oncology.
Collapse
Affiliation(s)
- Huan Yang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Chengdian Road, Kecheng District, Quzhou 324000, Zhejiang, China
| | - Minglei Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Dong Road, Erqi District, Zhengzhou 450052, Henan, China
| | - Jiani Chen
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Chengdian Road, Kecheng District, Quzhou 324000, Zhejiang, China
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Ligong Road, Jimei District, Xiamen 361024, Fujian, China
| | - Guocong Yao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Chengdian Road, Kecheng District, Quzhou 324000, Zhejiang, China
- School of Computer and Information Engineering, Henan University, Jinming Avenue, Longting District, Kaifeng 475001, Henan, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Chengdian Road, Kecheng District, Quzhou 324000, Zhejiang, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Section2, North Jianshe Road, Chenghua District, Chengdu 610054, Sichuan, China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
22
|
Loper MR, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography 2024; 10:1814-1831. [PMID: 39590942 PMCID: PMC11598375 DOI: 10.3390/tomography10110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Advancements in artificial intelligence (AI) have significantly transformed the field of abdominal radiology, leading to an improvement in diagnostic and disease management capabilities. This narrative review seeks to evaluate the current standing of AI in abdominal imaging, with a focus on recent literature contributions. This work explores the diagnosis and characterization of hepatobiliary, pancreatic, gastric, colonic, and other pathologies. In addition, the role of AI has been observed to help differentiate renal, adrenal, and splenic disorders. Furthermore, workflow optimization strategies and quantitative imaging techniques used for the measurement and characterization of tissue properties, including radiomics and deep learning, are highlighted. An assessment of how these advancements enable more precise diagnosis, tumor description, and body composition evaluation is presented, which ultimately advances the clinical effectiveness and productivity of radiology. Despite the advancements of AI in abdominal imaging, technical, ethical, and legal challenges persist, and these challenges, as well as opportunities for future development, are highlighted.
Collapse
Affiliation(s)
| | - Mina S. Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
23
|
Xie X, Xiao YF, Yang H, Peng X, Li JJ, Zhou YY, Fan CQ, Meng RP, Huang BB, Liao XP, Chen YY, Zhong TT, Lin H, Koulaouzidis A, Yang SM. A new artificial intelligence system for both stomach and small-bowel capsule endoscopy. Gastrointest Endosc 2024; 100:878.e1-878.e14. [PMID: 38851456 DOI: 10.1016/j.gie.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIMS Despite the benefits of artificial intelligence in small-bowel (SB) capsule endoscopy (CE) image reading, information on its application in the stomach and SB CE is lacking. METHODS In this multicenter, retrospective diagnostic study, gastric imaging data were added to the deep learning-based SmartScan (SS), which has been described previously. A total of 1069 magnetically controlled GI CE examinations (comprising 2,672,542 gastric images) were used in the training phase for recognizing gastric pathologies, producing a new artificial intelligence algorithm named SS Plus. A total of 342 fully automated, magnetically controlled CE examinations were included in the validation phase. The performance of both senior and junior endoscopists with both the SS Plus-assisted reading (SSP-AR) and conventional reading (CR) modes was assessed. RESULTS SS Plus was designed to recognize 5 types of gastric lesions and 17 types of SB lesions. SS Plus reduced the number of CE images required for review to 873.90 (median, 1000; interquartile range [IQR], 814.50-1000) versus 44,322.73 (median, 42,393; IQR, 31,722.75-54,971.25) for CR. Furthermore, with SSP-AR, endoscopists took 9.54 minutes (median, 8.51; IQR, 6.05-13.13) to complete the CE video reading. In the 342 CE videos, SS Plus identified 411 gastric and 422 SB lesions, whereas 400 gastric and 368 intestinal lesions were detected with CR. Moreover, junior endoscopists remarkably improved their CE image reading ability with SSP-AR. CONCLUSIONS Our study shows that the newly upgraded deep learning-based algorithm SS Plus can detect GI lesions and help improve the diagnostic performance of junior endoscopists in interpreting CE videos.
Collapse
Affiliation(s)
- Xia Xie
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yu-Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xue Peng
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jian-Jun Li
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yuan-Yuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Chao-Qiang Fan
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Rui-Ping Meng
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Bao-Bao Huang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xi-Ping Liao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yu-Yang Chen
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Ting-Ting Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Hui Lin
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China; Department of Epidemiology, the Third Military Medical University, Chongqing, China.
| | - Anastasios Koulaouzidis
- Department of Clinical Research University of Southern Denmark, Odense, Denmark; Centre for Clinical Implementation of Capsule Endoscopy, Store Adenomer Tidlige Cancere Centre, Svendborg, Denmark.
| | - Shi-Ming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
24
|
Qiao S, Xue M, Zuo Y, Zheng J, Jiang H, Zeng X, Peng D. Four-phase CT lesion recognition based on multi-phase information fusion framework and spatiotemporal prediction module. Biomed Eng Online 2024; 23:103. [PMID: 39434126 PMCID: PMC11492744 DOI: 10.1186/s12938-024-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Multiphase information fusion and spatiotemporal feature modeling play a crucial role in the task of four-phase CT lesion recognition. In this paper, we propose a four-phase CT lesion recognition algorithm based on multiphase information fusion framework and spatiotemporal prediction module. Specifically, the multiphase information fusion framework uses the interactive perception mechanism to realize the channel-spatial information interactive weighting between multiphase features. In the spatiotemporal prediction module, we design a 1D deep residual network to integrate multiphase feature vectors, and use the GRU architecture to model the temporal enhancement information between CT slices. In addition, we employ CT image pseudo-color processing for data augmentation and train the whole network based on a multi-task learning framework. We verify the proposed network on a four-phase CT dataset. The experimental results show that the proposed network can effectively fuse the multi-phase information and model the temporal enhancement information between CT slices, showing excellent performance in lesion recognition.
Collapse
Affiliation(s)
- Shaohua Qiao
- HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Mengfan Xue
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Yan Zuo
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Jiannan Zheng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Haodong Jiang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Xiangai Zeng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Dongliang Peng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
25
|
Yang Y, Xu Z, Cai Z, Zhao H, Zhu C, Hong J, Lu R, Lai X, Guo L, Hu Q, Xu Z. Novel deep learning radiomics nomogram-based multiparametric MRI for predicting the lymph node metastasis in rectal cancer: A dual-center study. J Cancer Res Clin Oncol 2024; 150:450. [PMID: 39379733 PMCID: PMC11461781 DOI: 10.1007/s00432-024-05986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE To develop and evaluate a nomogram that integrates clinical parameters with deep learning radiomics (DLR) extracted from Magnetic Resonance Imaging (MRI) data to enhance the predictive accuracy for preoperative lymph node (LN) metastasis in rectal cancer. METHODS A retrospective analysis was conducted on 356 patients diagnosed with rectal cancer. Of these, 286 patients were allocated to the training set, and 70 patients comprised the external validation cohort. Preprocessed T2-weighted and diffusion-weighted imaging performed preoperatively facilitated the extraction of DLR features. Five machine learning algorithms-k-nearest neighbor, light gradient boosting machine, logistic regression, random forest, and support vector machine-were utilized to develop DLR models. The most effective algorithm was identified and used to establish a clinical DLR (CDLR) nomogram specifically designed to predict LN metastasis in rectal cancer. The performance of the nomogram was evaluated using receiver operating characteristic curve analysis. RESULTS The logistic regression classifier demonstrated significant predictive accuracy using the DLR signature, achieving an Area Under the Curve (AUC) of 0.919 in the training cohort and 0.778 in the external validation cohort. The integrated CDLR nomogram exhibited robust predictive performance across both datasets, with AUC values of 0.921 in the training cohort and 0.818 in the external validation cohort. Notably, it outperformed both the clinical model, which had AUC values of 0.770 and 0.723 in the training and external validation cohorts, respectively, and the stand-alone DLR model. CONCLUSION The nomogram derived from multiparametric MRI data, referred to as the CDLR model, demonstrates strong predictive efficacy in forecasting LN metastasis in rectal cancer.
Collapse
Affiliation(s)
- Yunjun Yang
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China
| | - Zhenyu Xu
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China
| | - Zhiping Cai
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Hai Zhao
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China
| | - Cuiling Zhu
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, China
| | - Julu Hong
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China
| | - Ruiliang Lu
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China
| | - Xiaoyu Lai
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China
| | - Li Guo
- Department of Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Qiugen Hu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Zhifeng Xu
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, 528010, China.
| |
Collapse
|
26
|
Huang S, Nie X, Pu K, Wan X, Luo J. A flexible deep learning framework for liver tumor diagnosis using variable multi-phase contrast-enhanced CT scans. J Cancer Res Clin Oncol 2024; 150:443. [PMID: 39361193 PMCID: PMC11450020 DOI: 10.1007/s00432-024-05977-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Liver cancer is a significant cause of cancer-related mortality worldwide and requires tailored treatment strategies for different types. However, preoperative accurate diagnosis of the type presents a challenge. This study aims to develop an automatic diagnostic model based on multi-phase contrast-enhanced CT (CECT) images to distinguish between hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and normal individuals. METHODS We designed a Hierarchical Long Short-Term Memory (H-LSTM) model, whose core components consist of a shared image feature extractor across phases, an internal LSTM for each phase, and an external LSTM across phases. The internal LSTM aggregates features from different layers of 2D CECT images, while the external LSTM aggregates features across different phases. H-LSTM can handle incomplete phases and varying numbers of CECT image layers, making it suitable for real-world decision support scenarios. Additionally, we applied phase augmentation techniques to process multi-phase CECT images, improving the model's robustness. RESULTS The H-LSTM model achieved an overall average AUROC of 0.93 (0.90, 1.00) on the test dataset, with AUROC for HCC classification reaching 0.97 (0.93, 1.00) and for ICC classification reaching 0.90 (0.78, 1.00). Comprehensive validation in scenarios with incomplete phases was performed, with the H-LSTM model consistently achieving AUROC values over 0.9. CONCLUSION The proposed H-LSTM model can be employed for classification tasks involving incomplete phases of CECT images in real-world scenarios, demonstrating high performance. This highlights the potential of AI-assisted systems in achieving accurate diagnosis and treatment of liver cancer. H-LSTM offers an effective solution for processing multi-phase data and provides practical value for clinical diagnostics.
Collapse
Affiliation(s)
- Shixin Huang
- Department of Scientific Research, The People's Hospital of Yubei District of Chongqing city, Chongqing, 401120, China
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Xixi Nie
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kexue Pu
- School of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Wan
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Jiawei Luo
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, 610044, China.
| |
Collapse
|
27
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
28
|
Al-Obeidat F, Hafez W, Gador M, Ahmed N, Abdeljawad MM, Yadav A, Rashed A. Diagnostic performance of AI-based models versus physicians among patients with hepatocellular carcinoma: a systematic review and meta-analysis. Front Artif Intell 2024; 7:1398205. [PMID: 39224209 PMCID: PMC11368160 DOI: 10.3389/frai.2024.1398205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common primary liver cancer that requires early diagnosis due to its poor prognosis. Recent advances in artificial intelligence (AI) have facilitated hepatocellular carcinoma detection using multiple AI models; however, their performance is still uncertain. Aim This meta-analysis aimed to compare the diagnostic performance of different AI models with that of clinicians in the detection of hepatocellular carcinoma. Methods We searched the PubMed, Scopus, Cochrane Library, and Web of Science databases for eligible studies. The R package was used to synthesize the results. The outcomes of various studies were aggregated using fixed-effect and random-effects models. Statistical heterogeneity was evaluated using I-squared (I2) and chi-square statistics. Results We included seven studies in our meta-analysis;. Both physicians and AI-based models scored an average sensitivity of 93%. Great variation in sensitivity, accuracy, and specificity was observed depending on the model and diagnostic technique used. The region-based convolutional neural network (RCNN) model showed high sensitivity (96%). Physicians had the highest specificity in diagnosing hepatocellular carcinoma(100%); furthermore, models-based convolutional neural networks achieved high sensitivity. Models based on AI-assisted Contrast-enhanced ultrasound (CEUS) showed poor accuracy (69.9%) compared to physicians and other models. The leave-one-out sensitivity revealed high heterogeneity among studies, which represented true differences among the studies. Conclusion Models based on Faster R-CNN excel in image classification and data extraction, while both CNN-based models and models combining contrast-enhanced ultrasound (CEUS) with artificial intelligence (AI) had good sensitivity. Although AI models outperform physicians in diagnosing HCC, they should be utilized as supportive tools to help make more accurate and timely decisions.
Collapse
Affiliation(s)
- Feras Al-Obeidat
- College of Technological Innovation, Zayed University, Abu Dubai, United Arab Emirates
| | - Wael Hafez
- NMC Royal Hospital, Khalifa City, United Arab Emirates
- Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt
| | - Muneir Gador
- Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt
| | | | | | - Antesh Yadav
- NMC Royal Hospital, Khalifa City, United Arab Emirates
| | - Asrar Rashed
- NMC Royal Hospital, Khalifa City, United Arab Emirates
- Department of Computer Science, Edinburgh Napier University, Merchiston Campus, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Wei Y, Yang M, Zhang M, Gao F, Zhang N, Hu F, Zhang X, Zhang S, Huang Z, Xu L, Zhang F, Liu M, Deng J, Cheng X, Xie T, Wang X, Liu N, Gong H, Zhu S, Song B, Liu M. Focal liver lesion diagnosis with deep learning and multistage CT imaging. Nat Commun 2024; 15:7040. [PMID: 39147767 PMCID: PMC11327344 DOI: 10.1038/s41467-024-51260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Diagnosing liver lesions is crucial for treatment choices and patient outcomes. This study develops an automatic diagnosis system for liver lesions using multiphase enhanced computed tomography (CT). A total of 4039 patients from six data centers are enrolled to develop Liver Lesion Network (LiLNet). LiLNet identifies focal liver lesions, including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), metastatic tumors (MET), focal nodular hyperplasia (FNH), hemangioma (HEM), and cysts (CYST). Validated in four external centers and clinically verified in two hospitals, LiLNet achieves an accuracy (ACC) of 94.7% and an area under the curve (AUC) of 97.2% for benign and malignant tumors. For HCC, ICC, and MET, the ACC is 88.7% with an AUC of 95.6%. For FNH, HEM, and CYST, the ACC is 88.6% with an AUC of 95.9%. LiLNet can aid in clinical diagnosis, especially in regions with a shortage of radiologists.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meiyi Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Meng Zhang
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Zhang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Fubi Hu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiao Zhang
- Department of Radiology, Leshan People's Hospital, Leshan, Sichuan, China
| | - Shasha Zhang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lifeng Xu
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Feng Zhang
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Minghui Liu
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Jiali Deng
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Xuan Cheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tianshu Xie
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaomin Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Nianbo Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haigang Gong
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shaocheng Zhu
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| | - Ming Liu
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China.
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| |
Collapse
|
30
|
Yu T, Yu R, Liu M, Wang X, Zhang J, Zheng Y, Lv F. Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists. Eur J Radiol 2024; 177:111556. [PMID: 38875748 DOI: 10.1016/j.ejrad.2024.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
PURPOSE To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. MATERIALS AND METHODS This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. RESULTS The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. CONCLUSION The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.
Collapse
Affiliation(s)
- Tao Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingyu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jichuan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; Medical Data Science Academy, Chongqing Medical University, Chongqing 400016, China.
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; Medical Data Science Academy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Hua Y, Sun Z, Xiao Y, Li H, Ma X, Luo X, Tan W, Xie Z, Zhang Z, Tang C, Zhuang H, Xu W, Zhu H, Chen Y, Shang C. Pretreatment CT-based machine learning radiomics model predicts response in unresectable hepatocellular carcinoma treated with lenvatinib plus PD-1 inhibitors and interventional therapy. J Immunother Cancer 2024; 12:e008953. [PMID: 39029924 PMCID: PMC11261678 DOI: 10.1136/jitc-2024-008953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Lenvatinib plus PD-1 inhibitors and interventional (LPI) therapy have demonstrated promising treatment effects in unresectable hepatocellular carcinoma (HCC). However, biomarkers for predicting the response to LPI therapy remain to be further explored. We aimed to develop a radiomics model to noninvasively predict the efficacy of LPI therapy. METHODS Clinical data of patients with HCC receiving LPI therapy were collected in our institution. The clinical model was built with clinical information. Nine machine learning classifiers were tested and the multilayer perceptron classifier with optimal performance was used as the radiomics model. The clinical-radiomics model was constructed by integrating clinical and radiomics scores through logistic regression analysis. RESULTS 151 patients were enrolled in this study (2:1 randomization, 101 and 50 in the training and validation cohorts), of which three achieved complete response, 69 showed partial response, 46 showed stable disease, and 33 showed progressive disease. The objective response rate, disease control rate, and conversion resection rates were 47.7, 78.1 and 23.2%. 14 features were selected from the initially extracted 1223 for radiomics model construction. The area under the curves of the radiomics model (0.900 for training and 0.893 for validation) were comparable to that of the clinical-radiomics model (0.912 for training and 0.892 for validation), and both were superior to the clinical model (0.669 for training and 0.585 for validation). Meanwhile, the radiomics model can categorize participants into high-risk and low-risk groups for progression-free survival (PFS) and overall survival (OS) in the training (HR 1.913, 95% CI 1.121 to 3.265, p=0.016 for PFS; HR 4.252, 95% CI 2.051 to 8.816, p=0.001 for OS) and validation sets (HR 2.347, 95% CI 1.095 to 5.031, p=0.012 for PFS; HR 2.592, 95% CI 1.050 to 6.394, p=0.019 for OS). CONCLUSION The promising machine learning radiomics model was developed and validated to predict the efficacy of LPI therapy for patients with HCC and perform risk stratification, with comparable performance to clinical-radiomics model.
Collapse
Affiliation(s)
- Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhixian Sun
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huilong Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuan Luo
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenliang Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Central South University Xiangya School of Medicine, Zhuzhou, Hunan, China
| | - Zhiqin Xie
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Central South University Xiangya School of Medicine, Zhuzhou, Hunan, China
| | - Ziyu Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weikai Xu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haihong Zhu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Li Y, Fan N, He X, Zhu J, Zhang J, Lu L. Research Progress in Predicting Hepatocellular Carcinoma with Portal Vein Tumour Thrombus in the Era of Artificial Intelligence. J Hepatocell Carcinoma 2024; 11:1429-1438. [PMID: 39050809 PMCID: PMC11268770 DOI: 10.2147/jhc.s474922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) is a condition associated with significant morbidity and mortality. The presence of Portal Vein Tumour Thrombus (PVTT) typically signifies advanced disease stages and poor prognosis. Artificial intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has emerged as a promising tool for extracting quantitative data from medical images. AI is increasingly integrated into the imaging omics workflow and has become integral to various medical disciplines. This paper provides a comprehensive review of the mechanisms underlying the formation and progression of PVTT, as well as its impact on clinical management and prognosis. Additionally, it outlines the advancements in AI for predicting the diagnosis of HCC and the development of PVTT. The limitations of existing studies are critically evaluated, and potential future research directions in the realm of imaging for the diagnostic prediction of HCC and PVTT are discussed, with the ultimate goal of enhancing survival outcomes for PVTT patients.
Collapse
Affiliation(s)
- Yaduo Li
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ningning Fan
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Xu He
- Department of Interventional Medicine, Guangzhou First People’s Hospital, Guangzhou, People’s Republic of China
| | - Jianjun Zhu
- R&D Department, Hanglok-Tech Co., Ltd., Hengqin, People’s Republic of China; Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China
| | - Jie Zhang
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ligong Lu
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
- Department of Interventional Medicine, Guangzhou First People’s Hospital, Guangzhou, People’s Republic of China
| |
Collapse
|
33
|
Yang C, Yang HC, Luo YG, Li FT, Cong TH, Li YJ, Ye F, Li X. Predicting Survival Using Whole-Liver MRI Radiomics in Patients with Hepatocellular Carcinoma After TACE Refractoriness. Cardiovasc Intervent Radiol 2024; 47:964-977. [PMID: 38750156 DOI: 10.1007/s00270-024-03730-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/07/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE To develop a model based on whole-liver radiomics features of pre-treatment enhanced MRI for predicting the prognosis of hepatocellular carcinoma (HCC) patients undergoing continued transarterial chemoembolization (TACE) after TACE-resistance. MATERIALS AND METHODS Data from 111 TACE-resistant HCC patients between January 2014 and March 2018 were retrospectively collected. At a ratio of 7:3, patients were randomly assigned to developing and validation cohorts. The whole-liver were manually segmented, and the radiomics signature was extracted. The tumor and liver radiomics score (TLrad-score) was calculated. Models were trained by machine learning algorithms and their predictive efficacies were compared. RESULTS Tumor stage, tumor burden, body mass index, alpha-fetoprotein, and vascular invasion were revealed as independent risk factors for survival. The model trained by Random Forest algorithms based on tumor burden, whole-liver radiomics signature, and clinical features had the highest predictive efficacy, with c-index values of 0.85 and 0.80 and areas under the ROC curve of 0.96 and 0.83 in the developing cohort and validation cohort, respectively. In the high-rad-score group (TLrad-score > - 0.34), the median overall survival (mOS) was significantly shorter than in the low-rad-score group (17 m vs. 37 m, p < 0.001). A shorter mOS was observed in patients with high tumor burden compared to those with low tumor burden (14 m vs. 29 m, p = 0.007). CONCLUSION The combined radiomics model from whole-liver signatures may effectively predict survival for HCC patients continuing TACE after TACE refractoriness. The TLrad-score and tumor burden are potential prognostic markers for TACE therapy following TACE-resistance.
Collapse
Affiliation(s)
- Chao Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hong-Cai Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yin-Gen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fu-Tian Li
- Huiying Medical Technology (Beijing) Co., Ltd, Beijing, 100192, China
| | - Tian-Hao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu-Jie Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Feng Ye
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
34
|
Pan X, Jiao K, Li X, Feng L, Tian Y, Wu L, Zhang P, Wang K, Chen S, Yang B, Chen W. Artificial intelligence-based tools with automated segmentation and measurement on CT images to assist accurate and fast diagnosis in acute pancreatitis. Br J Radiol 2024; 97:1268-1277. [PMID: 38730541 PMCID: PMC11186564 DOI: 10.1093/bjr/tqae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES To develop an artificial intelligence (AI) tool with automated pancreas segmentation and measurement of pancreatic morphological information on CT images to assist improved and faster diagnosis in acute pancreatitis. METHODS This study retrospectively contained 1124 patients suspected for AP and received non-contrast and enhanced abdominal CT examination between September 2013 and September 2022. Patients were divided into training (N = 688), validation (N = 145), testing dataset [N = 291; N = 104 for normal pancreas, N = 98 for AP, N = 89 for AP complicated with PDAC (AP&PDAC)]. A model based on convolutional neural network (MSAnet) was developed. The pancreas segmentation and measurement were performed via eight open-source models and MSAnet based tools, and the efficacy was evaluated using dice similarity coefficient (DSC) and intersection over union (IoU). The DSC and IoU for patients with different ages were also compared. The outline of tumour and oedema in the AP and were segmented by clustering. The diagnostic efficacy for radiologists with or without the assistance of MSAnet tool in AP and AP&PDAC was evaluated using receiver operation curve and confusion matrix. RESULTS Among all models, MSAnet based tool showed best performance on the training and validation dataset, and had high efficacy on testing dataset. The performance was age-affected. With assistance of the AI tool, the diagnosis time was significantly shortened by 26.8% and 32.7% for junior and senior radiologists, respectively. The area under curve (AUC) in diagnosis of AP was improved from 0.91 to 0.96 for junior radiologist and 0.98 to 0.99 for senior radiologist. In AP&PDAC diagnosis, AUC was increased from 0.85 to 0.92 for junior and 0.97 to 0.99 for senior. CONCLUSION MSAnet based tools showed good pancreas segmentation and measurement performance, which help radiologists improve diagnosis efficacy and workflow in both AP and AP with PDAC conditions. ADVANCES IN KNOWLEDGE This study developed an AI tool with automated pancreas segmentation and measurement and provided evidence for AI tool assistance in improving the workflow and accuracy of AP diagnosis.
Collapse
Affiliation(s)
- Xuhang Pan
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Kaijian Jiao
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Xinyu Li
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Linshuang Feng
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Yige Tian
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Lei Wu
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Peng Zhang
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Kejun Wang
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Suping Chen
- Advanced Application Team, GE Healthcare, Shanghai 200135, China
| | - Bo Yang
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Chen
- Institute of Medical Imaging, Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
35
|
Weng L, Xu Y, Chen Y, Chen C, Qian Q, Pan J, Su H. Using Vision Transformer for high robustness and generalization in predicting EGFR mutation status in lung adenocarcinoma. Clin Transl Oncol 2024; 26:1438-1445. [PMID: 38194018 DOI: 10.1007/s12094-023-03366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Lung adenocarcinoma is a common cause of cancer-related deaths worldwide, and accurate EGFR genotyping is crucial for optimal treatment outcomes. Conventional methods for identifying the EGFR genotype have several limitations. Therefore, we proposed a deep learning model using non-invasive CT images to predict EGFR mutation status with robustness and generalizability. METHODS A total of 525 patients were enrolled at the local hospital to serve as the internal data set for model training and validation. In addition, a cohort of 30 patients from the publicly available Cancer Imaging Archive Data Set was selected for external testing. All patients underwent plain chest CT, and their EGFR mutation status labels were categorized as either mutant or wild type. The CT images were analyzed using a self-attention-based ViT-B/16 model to predict the EGFR mutation status, and the model's performance was evaluated. To produce an attention map indicating the suspicious locations of EGFR mutations, Grad-CAM was utilized. RESULTS The ViT deep learning model achieved impressive results, with an accuracy of 0.848, an AUC of 0.868, a sensitivity of 0.924, and a specificity of 0.718 on the validation cohort. Furthermore, in the external test cohort, the model achieved comparable performances, with an accuracy of 0.833, an AUC of 0.885, a sensitivity of 0.900, and a specificity of 0.800. CONCLUSIONS The ViT model demonstrates a high level of accuracy in predicting the EGFR mutation status of lung adenocarcinoma patients. Moreover, with the aid of attention maps, the model can assist clinicians in making informed clinical decisions.
Collapse
Affiliation(s)
- Luoqi Weng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yilun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qinqing Qian
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, China
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang, China
| | - Huang Su
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, China.
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
36
|
Rao F, Lyu T, Feng Z, Wu Y, Ni Y, Zhu W. A landmark-supervised registration framework for multi-phase CT images with cross-distillation. Phys Med Biol 2024; 69:115059. [PMID: 38768601 DOI: 10.1088/1361-6560/ad4e01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Objective.Multi-phase computed tomography (CT) has become a leading modality for identifying hepatic tumors. Nevertheless, the presence of misalignment in the images of different phases poses a challenge in accurately identifying and analyzing the patient's anatomy. Conventional registration methods typically concentrate on either intensity-based features or landmark-based features in isolation, so imposing limitations on the accuracy of the registration process.Method.We establish a nonrigid cycle-registration network that leverages semi-supervised learning techniques, wherein a point distance term based on Euclidean distance between registered landmark points is introduced into the loss function. Additionally, a cross-distillation strategy is proposed in network training to further improve registration performance which incorporates response-based knowledge concerning the distances between feature points.Results.We conducted experiments using multi-centered liver CT datasets to evaluate the performance of the proposed method. The results demonstrate that our method outperforms baseline methods in terms of target registration error. Additionally, Dice scores of the warped tumor masks were calculated. Our method consistently achieved the highest scores among all the comparing methods. Specifically, it achieved scores of 82.9% and 82.5% in the hepatocellular carcinoma and the intrahepatic cholangiocarcinoma dataset, respectively.Significance.The superior registration performance indicates its potential to serve as an important tool in hepatic tumor identification and analysis.
Collapse
Affiliation(s)
- Fan Rao
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Tianling Lyu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Zhan Feng
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 311100, People's Republic of China
| | - Yuanfeng Wu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Yangfan Ni
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| | - Wentao Zhu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 310000, People's Republic of China
| |
Collapse
|
37
|
He QH, Feng JJ, Wu LC, Wang Y, Zhang X, Jiang Q, Zeng QY, Yin SW, He WY, Lv FJ, Xiao MZ. Deep learning system for malignancy risk prediction in cystic renal lesions: a multicenter study. Insights Imaging 2024; 15:121. [PMID: 38763985 PMCID: PMC11102892 DOI: 10.1186/s13244-024-01700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES To develop an interactive, non-invasive artificial intelligence (AI) system for malignancy risk prediction in cystic renal lesions (CRLs). METHODS In this retrospective, multicenter diagnostic study, we evaluated 715 patients. An interactive geodesic-based 3D segmentation model was created for CRLs segmentation. A CRLs classification model was developed using spatial encoder temporal decoder (SETD) architecture. The classification model combines a 3D-ResNet50 network for extracting spatial features and a gated recurrent unit (GRU) network for decoding temporal features from multi-phase CT images. We assessed the segmentation model using sensitivity (SEN), specificity (SPE), intersection over union (IOU), and dice similarity (Dice) metrics. The classification model's performance was evaluated using the area under the receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA). RESULTS From 2012 to 2023, we included 477 CRLs (median age, 57 [IQR: 48-65]; 173 men) in the training cohort, 226 CRLs (median age, 60 [IQR: 52-69]; 77 men) in the validation cohort, and 239 CRLs (median age, 59 [IQR: 53-69]; 95 men) in the testing cohort (external validation cohort 1, cohort 2, and cohort 3). The segmentation model and SETD classifier exhibited excellent performance in both validation (AUC = 0.973, ACC = 0.916, Dice = 0.847, IOU = 0.743, SEN = 0.840, SPE = 1.000) and testing datasets (AUC = 0.998, ACC = 0.988, Dice = 0.861, IOU = 0.762, SEN = 0.876, SPE = 1.000). CONCLUSION The AI system demonstrated excellent benign-malignant discriminatory ability across both validation and testing datasets and illustrated improved clinical decision-making utility. CRITICAL RELEVANCE STATEMENT In this era when incidental CRLs are prevalent, this interactive, non-invasive AI system will facilitate accurate diagnosis of CRLs, reducing excessive follow-up and overtreatment. KEY POINTS The rising prevalence of CRLs necessitates better malignancy prediction strategies. The AI system demonstrated excellent diagnostic performance in identifying malignant CRL. The AI system illustrated improved clinical decision-making utility.
Collapse
Affiliation(s)
- Quan-Hao He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jia-Jun Feng
- Department of Medical Imaging, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ling-Cheng Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xuan Zhang
- Department of Urology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi-Yuan Zeng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Si-Wen Yin
- Department of Urology, Chongqing University Fuling Hospital, Chongqing, People's Republic of China
| | - Wei-Yang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Fa-Jin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Ming-Zhao Xiao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
38
|
Zhang P, Gao C, Huang Y, Chen X, Pan Z, Wang L, Dong D, Li S, Qi X. Artificial intelligence in liver imaging: methods and applications. Hepatol Int 2024; 18:422-434. [PMID: 38376649 DOI: 10.1007/s12072-023-10630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/18/2023] [Indexed: 02/21/2024]
Abstract
Liver disease is regarded as one of the major health threats to humans. Radiographic assessments hold promise in terms of addressing the current demands for precisely diagnosing and treating liver diseases, and artificial intelligence (AI), which excels at automatically making quantitative assessments of complex medical image characteristics, has made great strides regarding the qualitative interpretation of medical imaging by clinicians. Here, we review the current state of medical-imaging-based AI methodologies and their applications concerning the management of liver diseases. We summarize the representative AI methodologies in liver imaging with focusing on deep learning, and illustrate their promising clinical applications across the spectrum of precise liver disease detection, diagnosis and treatment. We also address the current challenges and future perspectives of AI in liver imaging, with an emphasis on feature interpretability, multimodal data integration and multicenter study. Taken together, it is revealed that AI methodologies, together with the large volume of available medical image data, might impact the future of liver disease care.
Collapse
Affiliation(s)
- Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Chaofei Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Yifei Huang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangyi Chen
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Zhuoshi Pan
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Lan Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China.
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Southeast University, Nanjing, China.
| |
Collapse
|
39
|
Lu F, Meng Y, Song X, Li X, Liu Z, Gu C, Zheng X, Jing Y, Cai W, Pinyopornpanish K, Mancuso A, Romeiro FG, Méndez-Sánchez N, Qi X. Artificial Intelligence in Liver Diseases: Recent Advances. Adv Ther 2024; 41:967-990. [PMID: 38286960 DOI: 10.1007/s12325-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Liver diseases cause a significant burden on public health worldwide. In spite of great advances during recent years, there are still many challenges in the diagnosis and treatment of liver diseases. During recent years, artificial intelligence (AI) has been widely used for the diagnosis, risk stratification, and prognostic prediction of various diseases based on clinical datasets and medical images. Accumulative studies have shown its performance for diagnosing patients with nonalcoholic fatty liver disease and liver fibrosis and assessing their severity, and for predicting treatment response and recurrence of hepatocellular carcinoma, outcomes of liver transplantation recipients, and risk of drug-induced liver injury. Herein, we aim to comprehensively summarize the current evidence regarding diagnostic, prognostic, and/or therapeutic role of AI in these common liver diseases.
Collapse
Affiliation(s)
- Feifei Lu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Yao Meng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaoting Song
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaotong Li
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Zhuang Liu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Chunru Gu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Xiaojie Zheng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Yi Jing
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Wei Cai
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Andrea Mancuso
- Medicina Interna 1, Azienda di Rilievo Nazionale Ad Alta Specializzazione Civico-Di Cristina-Benfratelli, Palermo, Italy.
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Xingshun Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Postgraduate College, China Medical University, Shenyang, China.
| |
Collapse
|
40
|
Tang L, Zhang Z, Yang J, Feng Y, Sun S, Liu B, Ma J, Liu J, Shao H. A New Automated Prognostic Prediction Method Based on Multi-Sequence Magnetic Resonance Imaging for Hepatic Resection of Colorectal Cancer Liver Metastases. IEEE J Biomed Health Inform 2024; 28:1528-1539. [PMID: 38446655 DOI: 10.1109/jbhi.2024.3350247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Colorectal cancer is a prevalent and life-threatening disease, where colorectal cancer liver metastasis (CRLM) exhibits the highest mortality rate. Currently, surgery stands as the most effective curative option for eligible patients. However, due to the insufficient performance of traditional methods and the lack of multi-modality MRI feature complementarity in existing deep learning methods, the prognosis of CRLM surgical resection has not been fully explored. This paper proposes a new method, multi-modal guided complementary network (MGCNet), which employs multi-sequence MRI to predict 1-year recurrence and recurrence-free survival in patients after CRLM resection. In light of the complexity and redundancy of features in the liver region, we designed the multi-modal guided local feature fusion module to utilize the tumor features to guide the dynamic fusion of prognostically relevant local features within the liver. On the other hand, to solve the loss of spatial information during multi-sequence MRI fusion, the cross-modal complementary external attention module designed an external mask branch to establish inter-layer correlation. The results show that the model has accuracy (ACC) of 0.79, the area under the curve (AUC) of 0.84, C-Index of 0.73, and hazard ratio (HR) of 4.0, which is a significant improvement over state-of-the-art methods. Additionally, MGCNet exhibits good interpretability.
Collapse
|
41
|
Xia T, Zhao B, Li B, Lei Y, Song Y, Wang Y, Tang T, Ju S. MRI-Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges. J Magn Reson Imaging 2024; 59:767-783. [PMID: 37647155 DOI: 10.1002/jmri.28982] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. HCC exhibits strong inter-tumor heterogeneity, with different biological characteristics closely associated with prognosis. In addition, patients with HCC often distribute at different stages and require diverse treatment options at each stage. Due to the variability in tumor sensitivity to different therapies, determining the optimal treatment approach can be challenging for clinicians prior to treatment. Artificial intelligence (AI) technology, including radiomics and deep learning approaches, has emerged as a unique opportunity to improve the spectrum of HCC clinical care by predicting biological characteristics and prognosis in the medical imaging field. The radiomics approach utilizes handcrafted features derived from specific mathematical formulas to construct various machine-learning models for medical applications. In terms of the deep learning approach, convolutional neural network models are developed to achieve high classification performance based on automatic feature extraction from images. Magnetic resonance imaging offers the advantage of superior tissue resolution and functional information. This comprehensive evaluation plays a vital role in the accurate assessment and effective treatment planning for HCC patients. Recent studies have applied radiomics and deep learning approaches to develop AI-enabled models to improve accuracy in predicting biological characteristics and prognosis, such as microvascular invasion and tumor recurrence. Although AI-enabled models have demonstrated promising potential in HCC with biological characteristics and prognosis prediction with high performance, one of the biggest challenges, interpretability, has hindered their implementation in clinical practice. In the future, continued research is needed to improve the interpretability of AI-enabled models, including aspects such as domain knowledge, novel algorithms, and multi-dimension data sources. Overcoming these challenges would allow AI-enabled models to significantly impact the care provided to HCC patients, ultimately leading to their deployment for clinical use. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Tianyi Xia
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ben Zhao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Binrong Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Lei
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Yuancheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
42
|
Xin H, Zhang Y, Lai Q, Liao N, Zhang J, Liu Y, Chen Z, He P, He J, Liu J, Zhou Y, Yang W, Zhou Y. Automatic origin prediction of liver metastases via hierarchical artificial-intelligence system trained on multiphasic CT data: a retrospective, multicentre study. EClinicalMedicine 2024; 69:102464. [PMID: 38333364 PMCID: PMC10847157 DOI: 10.1016/j.eclinm.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background Currently, the diagnostic testing for the primary origin of liver metastases (LMs) can be laborious, complicating clinical decision-making. Directly classifying the primary origin of LMs at computed tomography (CT) images has proven to be challenging, despite its potential to streamline the entire diagnostic workflow. Methods We developed ALMSS, an artificial intelligence (AI)-based LMs screening system, to provide automated liver contrast-enhanced CT analysis for distinguishing LMs from hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), as well as subtyping primary origin of LMs as six organ systems. We processed a CECT dataset between January 1, 2013 and June 30, 2022 (n = 3105: 840 HCC, 354 ICC, and 1911 LMs) for training and internally testing ALMSS, and two additional cohorts (n = 622) for external validation of its diagnostic performance. The performance of radiologists with and without the assistance of ALMSS in diagnosing and subtyping LMs was assessed. Findings ALMSS achieved average area under the curve (AUC) of 0.917 (95% confidence interval [CI]: 0.899-0.931) and 0.923 (95% [CI]: 0.905-0.937) for differentiating LMs, HCC and ICC on both the internal testing set and external testing set, outperformed that of two radiologists. Moreover, ALMSS yielded average AUC of 0.815 (95% [CI]: 0.794-0.836) and 0.818 (95% [CI]: 0.790-0.842) for predicting six primary origins on both two testing sets. Interestingly, ALMSS assigned origin diagnoses for LMs with pathological phenotypes beyond the training categories with average AUC of 0.761 (95% [CI]: 0.657-0.842), which verify the model's diagnostic expandability. Interpretation Our study established an AI-based diagnostic system that effectively identifies and characterizes LMs directly from multiphasic CT images. Funding National Natural Science Foundation of China, Guangdong Provincial Key Laboratory of Medical Image Processing.
Collapse
Affiliation(s)
- Hongjie Xin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qianwei Lai
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Naying Liao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanping Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zhihua Chen
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Pengyuan He
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian He
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Liu
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen Zhou
- Department of General Surgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yuanping Zhou
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Huang J, Xie S, Huang J, Zheng Z, Lin Z, Lin J, Tang K, Meng M, Zhao Y, Liao W, Liu C, Gu Y, Li S, Chen H, Chen R. Imaging features and deep learning for prediction of pulmonary epithelioid hemangioendothelioma in CT images. J Thorac Dis 2024; 16:935-947. [PMID: 38505025 PMCID: PMC10944745 DOI: 10.21037/jtd-23-455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/08/2023] [Indexed: 03/21/2024]
Abstract
BACKGROUND Pulmonary epithelioid hemangioendothelioma (PEH) is a rare vascular tumour, and its early diagnosis remains challenging. This study aims to comprehensively analyse the imaging features of PEH and develop a model for predicting PEH. METHODS Retrospective and pooled analyses of imaging findings were performed in PEH patients at our center (n=25) and in published cases (n=71), respectively. Relevant computed tomography (CT) images were extracted and used to build a deep learning model for PEH identification and differentiation from other diseases. RESULTS In this study, bilateral multiple nodules/masses (n=19) appeared to be more common with most nodules less than 2 cm. In addition to the common types and features, the pattern of mixed type (n=4) and isolated nodules (n=4), punctate calcifications (5/25) and lymph node enlargement were also observed (10/25). The presence of pleural effusion is associated with a poor prognosis in PEH. The deep learning model, with an area under the receiver operating characteristic curve (AUC) of 0.71 [95% confidence interval (CI): 0.69-0.72], has a differentiation accuracy of 100% and 74% for the training and test sets respectively. CONCLUSIONS This study confirmed the heterogeneity of the imaging findings in PEH and showed several previously undescribed types and features. The current deep learning model based on CT has potential for clinical application and needs to be further explored in the future.
Collapse
Affiliation(s)
- Junfeng Huang
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuojia Xie
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, China
| | - Junjie Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Medical Imaging, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Ziwen Zheng
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zikai Lin
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Lin
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kailun Tang
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Clinical Medical College of Henan University, Kaifeng, China
| | - Mingqiang Meng
- The School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, China
| | - Yulin Zhao
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wanzhe Liao
- Nanshan School of Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chunping Liu
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingying Gu
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huai Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Ling Y, Wang Y, Dai W, Yu J, Liang P, Kong D. MTANet: Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:674-685. [PMID: 37725719 DOI: 10.1109/tmi.2023.3317088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Medical image segmentation and classification are two of the most key steps in computer-aided clinical diagnosis. The region of interest were usually segmented in a proper manner to extract useful features for further disease classification. However, these methods are computationally complex and time-consuming. In this paper, we proposed a one-stage multi-task attention network (MTANet) which efficiently classifies objects in an image while generating a high-quality segmentation mask for each medical object. A reverse addition attention module was designed in the segmentation task to fusion areas in global map and boundary cues in high-resolution features, and an attention bottleneck module was used in the classification task for image feature and clinical feature fusion. We evaluated the performance of MTANet with CNN-based and transformer-based architectures across three imaging modalities for different tasks: CVC-ClinicDB dataset for polyp segmentation, ISIC-2018 dataset for skin lesion segmentation, and our private ultrasound dataset for liver tumor segmentation and classification. Our proposed model outperformed state-of-the-art models on all three datasets and was superior to all 25 radiologists for liver tumor diagnosis.
Collapse
|
45
|
Zhao H, Su Y, Lyu Z, Tian L, Xu P, Lin L, Han W, Fu P. Non-invasively Discriminating the Pathological Subtypes of Non-small Cell Lung Cancer with Pretreatment 18F-FDG PET/CT Using Deep Learning. Acad Radiol 2024; 31:35-45. [PMID: 37117141 DOI: 10.1016/j.acra.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
RATIONALE AND OBJECTIVES To develop an end-to-end deep learning (DL) model for non-invasively predicting non-small cell lung cancer (NSCLC) pathological subtypes based on 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) images, and to explore the potential value of DL technology. MATERIALS AND METHODS Preoperative 18F-FDG PET/CT images of 189 patients with NSCLC were retrospectively collected. The whole cohort was randomly divided into a training cohort, a validation cohort, and an internal/extended test cohort at the ratio of 6:2:2 after preprocessing the images. In the training and validation cohorts, seven DL models-Shufflenet, VGG16, Googlenet, Inception v3, Resnet50, Densenet201, and Mobilenet v2-were trained and optimized. The generalization ability and clinical utility of the optimal model were evaluated in the internal and extended test cohorts. Moreover, Spearman's correlation analysis was used to evaluate the correlation between DL features and traditional radiological features such as tumor size and maximum standardized uptake values (SUVmax). RESULTS Some DL features were significantly correlated with SUVmax and tumor size (P < 0.05). The Mobilenet v2 model achieved the best performance during the model development and validation phases. In the internal test group (area under the receiver operating characteristic curve [AUC]: 0.744, area under the precision-recall curve [AP]: 0.759) and extended test group (AUC: 0.767, AP: 0.768), the Mobilenet v2 model showed good generalization ability and reproducibility. Meanwhile, the decision curve analysis revealed that patients can benefit from the decisions made based on the Mobilenet v2 model. CONCLUSION DL models offer great potential for classifying NSCLC pathological subtypes. Specifically, the Mobilenet v2 model performs well at end-to-end non-invasive pathological subtype stratification of NSCLC.
Collapse
Affiliation(s)
- Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yexin Su
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhehao Lyu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Lin
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
46
|
Zhang W, Wang Q, Liang K, Lin H, Wu D, Han Y, Yu H, Du K, Zhang H, Hong J, Zhong X, Zhou L, Shi Y, Wu J, Pang T, Yu J, Cao L. Deep learning nomogram for preoperative distinction between Xanthogranulomatous cholecystitis and gallbladder carcinoma: A novel approach for surgical decision. Comput Biol Med 2024; 168:107786. [PMID: 38048662 DOI: 10.1016/j.compbiomed.2023.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The distinction between Xanthogranulomatous Cholecystitis (XGC) and Gallbladder Carcinoma (GBC) is challenging due to their similar imaging features. This study aimed to differentiate between XGC and GBC using a deep learning nomogram model built from contrast enhanced computed tomography (CT) scans. 297 patients were included with confirmed XGC (94) and GBC (203) as the training and internal validation cohort from 2017 to 2021. The deep learning model Resnet-18 with Fourier transformation named FCovResnet18, shows most impressive potential in distinguishing XGC from GBC using 3-phase merged images. The accuracy, precision and area under the curve (AUC) of the model were then calculated. An additional cohort of 74 patients consisting of 22 XGC and 52 GBC patients was enrolled from two subsidiary hospitals as the external validation cohort. The accuracy, precision and AUC achieve 0.98, 0.99, 1.00 in the internal validation cohort and 0.89, 0.92, 0.92 in external validation cohort. A nomogram model combining clinical characteristics and deep learning prediction score showed improved predicting value. Altogether, FCovResnet18 nomogram has demonstrated its ability to effectively differentiate XGC from GBC preoperatively, which significantly aid surgeons in making informed and accurate surgical decisions for XGC and GBC patients.
Collapse
Affiliation(s)
- Weichen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Wang
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Kewei Liang
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China.
| | - Haihao Lin
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Dongyan Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhe Han
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Hanxi Yu
- International Institutes of Medicine, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Keyi Du
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Haitao Zhang
- Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Jiawei Hong
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zhong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingfeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhong Shi
- Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxiao Pang
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Yu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linping Cao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Wei Q, Tan N, Xiong S, Luo W, Xia H, Luo B. Deep Learning Methods in Medical Image-Based Hepatocellular Carcinoma Diagnosis: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:5701. [PMID: 38067404 PMCID: PMC10705136 DOI: 10.3390/cancers15235701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 06/24/2024] Open
Abstract
(1) Background: The aim of our research was to systematically review papers specifically focused on the hepatocellular carcinoma (HCC) diagnostic performance of DL methods based on medical images. (2) Materials: To identify related studies, a comprehensive search was conducted in prominent databases, including Embase, IEEE, PubMed, Web of Science, and the Cochrane Library. The search was limited to studies published before 3 July 2023. The inclusion criteria consisted of studies that either developed or utilized DL methods to diagnose HCC using medical images. To extract data, binary information on diagnostic accuracy was collected to determine the outcomes of interest, namely, the sensitivity, specificity, and area under the curve (AUC). (3) Results: Among the forty-eight initially identified eligible studies, thirty studies were included in the meta-analysis. The pooled sensitivity was 89% (95% CI: 87-91), the specificity was 90% (95% CI: 87-92), and the AUC was 0.95 (95% CI: 0.93-0.97). Analyses of subgroups based on medical image methods (contrast-enhanced and non-contrast-enhanced images), imaging modalities (ultrasound, magnetic resonance imaging, and computed tomography), and comparisons between DL methods and clinicians consistently showed the acceptable diagnostic performance of DL models. The publication bias and high heterogeneity observed between studies and subgroups can potentially result in an overestimation of the diagnostic accuracy of DL methods in medical imaging. (4) Conclusions: To improve future studies, it would be advantageous to establish more rigorous reporting standards that specifically address the challenges associated with DL research in this particular field.
Collapse
Affiliation(s)
- Qiuxia Wei
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Nengren Tan
- School of Electronic and Information Engineering, Guangxi Normal University, 15 Qixing District, Guilin 541004, China;
| | - Shiyu Xiong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Wanrong Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| | - Haiying Xia
- School of Electronic and Information Engineering, Guangxi Normal University, 15 Qixing District, Guilin 541004, China;
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China; (Q.W.); (S.X.); (W.L.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou 510120, China
| |
Collapse
|
48
|
Jin L, Sun T, Liu X, Cao Z, Liu Y, Chen H, Ma Y, Zhang J, Zou Y, Liu Y, Shi F, Shen D, Wu J. A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images. iScience 2023; 26:108041. [PMID: 37876818 PMCID: PMC10590813 DOI: 10.1016/j.isci.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Accurate pathological classification and grading of gliomas is crucial in clinical diagnosis and treatment. The application of deep learning techniques holds promise for automated histological pathology diagnosis. In this study, we collected 733 whole slide images from four medical centers, of which 456 were used for model training, 150 for internal validation, and 127 for multi-center testing. The study includes 5 types of common gliomas. A subtask-guided multi-instance learning image-to-label training pipeline was employed. The pipeline leveraged "patch prompting" for the model to converge with reasonable computational cost. Experiments showed that an overall accuracy of 0.79 in the internal validation dataset. The performance on the multi-center testing dataset showed an overall accuracy to 0.73. The findings suggest a minor yet acceptable performance decrease in multi-center data, demonstrating the model's strong generalizability and establishing a robust foundation for future clinical applications.
Collapse
Affiliation(s)
- Lei Jin
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Tianyang Sun
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200030, China
| | - Xi Liu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Zehong Cao
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200030, China
| | - Yan Liu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Hong Chen
- National Center for Neurological Disorders, Huashan Hospital Fudan University, Shanghai 200040, China
- Department of Pathology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Yixin Ma
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Wuhan Zhongji Biotechnology Co., Ltd, Wuhan 430206, China
| | - Yaping Zou
- Wuhan Zhongji Biotechnology Co., Ltd, Wuhan 430206, China
| | - Yingchao Liu
- Department of Neurosurgery, The Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200030, China
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200030, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital Fudan University, Shanghai 200040, China
| |
Collapse
|
49
|
Liu N, Wu Y, Tao Y, Zheng J, Huang X, Yang L, Zhang X. Differentiation of Hepatocellular Carcinoma from Intrahepatic Cholangiocarcinoma through MRI Radiomics. Cancers (Basel) 2023; 15:5373. [PMID: 38001633 PMCID: PMC10670473 DOI: 10.3390/cancers15225373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of magnetic resonance imaging (MRI) radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). The clinical and MRI data of 129 pathologically confirmed HCC patients and 48 ICC patients treated at the Affiliated Hospital of North Sichuan Medical College between April 2016 and December 2021 were retrospectively analyzed. The patients were randomly divided at a ratio of 7:3 into a training group of 124 patients (90 with HCC and 34 with ICC) and a validation group of 53 patients (39 with HCC and 14 with ICC). Radiomic features were extracted from axial fat suppression T2-weighted imaging (FS-T2WI) and axial arterial-phase (AP) and portal-venous-phase (PVP) dynamic-contrast-enhanced MRI (DCE-MRI) sequences, and the corresponding datasets were generated. The least absolute shrinkage and selection operator (LASSO) method was used to select the best radiomic features. Logistic regression was used to establish radiomic models for each sequence (FS-T2WI, AP and PVP models), a clinical model for optimal clinical variables (C model) and a joint radiomics model (JR model) integrating the radiomics features of all the sequences as well as a radiomics-clinical model combining optimal radiomic features and clinical risk factors (RC model). The performance of each model was evaluated using the area under the receiver operating characteristic curve (AUC). The AUCs of the FS-T2WI, AP, PVP, JR, C and RC models for distinguishing HCC from ICC were 0.693, 0.863, 0.818, 0.914, 0.936 and 0.977 in the training group and 0.690, 0.784, 0.727, 0.802, 0.860 and 0.877 in the validation group, respectively. The results of this study suggest that MRI-based radiomics may help noninvasively differentiate HCC from ICC. The model integrating the radiomics features and clinical risk factors showed a further improvement in performance.
Collapse
Affiliation(s)
- Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu 610041, China
| | - Yaokun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Yunyun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaohua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| |
Collapse
|
50
|
Siam A, Alsaify AR, Mohammad B, Biswas MR, Ali H, Shah Z. Multimodal deep learning for liver cancer applications: a scoping review. Front Artif Intell 2023; 6:1247195. [PMID: 37965284 PMCID: PMC10641843 DOI: 10.3389/frai.2023.1247195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Background Hepatocellular carcinoma is a malignant neoplasm of the liver and a leading cause of cancer-related deaths worldwide. The multimodal data combines several modalities, such as medical images, clinical parameters, and electronic health record (EHR) reports, from diverse sources to accomplish the diagnosis of liver cancer. The introduction of deep learning models with multimodal data can enhance the diagnosis and improve physicians' decision-making for cancer patients. Objective This scoping review explores the use of multimodal deep learning techniques (i.e., combining medical images and EHR data) in diagnosing and prognosis of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Methodology A comprehensive literature search was conducted in six databases along with forward and backward references list checking of the included studies. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) extension for scoping review guidelines were followed for the study selection process. The data was extracted and synthesized from the included studies through thematic analysis. Results Ten studies were included in this review. These studies utilized multimodal deep learning to predict and diagnose hepatocellular carcinoma (HCC), but no studies examined cholangiocarcinoma (CCA). Four imaging modalities (CT, MRI, WSI, and DSA) and 51 unique EHR records (clinical parameters and biomarkers) were used in these studies. The most frequently used medical imaging modalities were CT scans followed by MRI, whereas the most common EHR parameters used were age, gender, alpha-fetoprotein AFP, albumin, coagulation factors, and bilirubin. Ten unique deep-learning techniques were applied to both EHR modalities and imaging modalities for two main purposes, prediction and diagnosis. Conclusion The use of multimodal data and deep learning techniques can help in the diagnosis and prediction of HCC. However, there is a limited number of works and available datasets for liver cancer, thus limiting the overall advancements of AI for liver cancer applications. Hence, more research should be undertaken to explore further the potential of multimodal deep learning in liver cancer applications.
Collapse
Affiliation(s)
| | | | | | - Md. Rafiul Biswas
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Zubair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|