1
|
Qin JJ, Xue F, Shen ZL, Chen XZ. Low-coverage and cost-effective whole-genome sequencing assay for glioma risk stratification. J Cancer Res Clin Oncol 2023; 149:8359-8367. [PMID: 37079053 DOI: 10.1007/s00432-023-04716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE To investigate chromosomal instability (CIN) as a biomarker for glioma risk stratifications, with cost-effective, low-coverage whole-genome sequencing assay (WGS). METHODS Thirty-five formalin-fixed paraffin-embedded glioma samples were collected from Huashan Hospital. DNA was sent for WGS by Illumina X10 at low (median) genome coverage of 1.86x (range: 1.03-3.17×), followed by copy number analyses, using a customized bioinformatics workflow-Ultrasensitive Copy number Aberration Detector. RESULTS Among the 35 glioma patients, 12 were grade IV, 10 grade III, 11 grade II, and 2 Grade I cases, with high chromosomal instability (CIN +) in 24 (68.6%) of the glioma patients. The other 11 (31.4%) had lower chromosomal instability (CIN-). CIN significantly correlates with overall survival (P = 0.00029). Patients with CIN + /7p11.2 + (12 grade IV and 3 grade III) had the worst survival ratio (hazard ratio:16.2, 95% CI:6.3-41.6) with a median overall survival of 24 months. Ten (66.7%) patients died during the first two follow-up years. In the CIN + patients without 7p11.2 + (6 grade III, 3 grade II), 3 (33.3%) patients died during follow-up, and the estimated overall survival was around 65 months. No deaths were reported in the 11 CIN- patients (2 grade I, 8 grade II, 1 grade III) during the 80-month follow-up period. In this study, chromosomal instability served as a prognosis factor for gliomas independent of tumor grades. CONCLUSION It is feasible to use cost-effective, low-coverage WGS for risk stratification of glioma. Elevated chromosomal instability is associated with poor prognosis.
Collapse
Affiliation(s)
- Jia-Jun Qin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China
- Department of Neurosurgery, Chongming Branch of Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 202157, China
| | - Fei Xue
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Zhao-Li Shen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China.
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|
2
|
Wang L, Zhou K, Wu Q, Zhu L, Hu Y, Yang X, Li D. Microanatomy of the metabolic associated fatty liver disease (MAFLD) by single-cell transcriptomics. J Drug Target 2023; 31:421-432. [PMID: 36847649 DOI: 10.1080/1061186x.2023.2185626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a major cause of liver disease worldwide and comprises non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). Due to the high prevalence and poor prognosis of NASH, it is critical to identify and treat patients at risk. However, the aetiology and mechanisms remain largely unknown, warranting further analysis. METHODS We first identified differential genes in NASH by single-cell analysis of the GSE129516 dataset and conducted expression profiling data analysis of the GSE184019 dataset from the Gene Expression Omnibus (GEO) database. Then single-cell trajectory reconstruction and analysis, immune gene score, cellular communication, key gene screening, functional enrichment analysis, and immune microenvironment analysis were carried out. Finally, cell experiments were performed to verify the role of key genes in NASH. RESULTS We conducted transcriptome profiling of 30,038 single cells, including hepatocytes and non-hepatocytes from normal and steatosis adult mouse livers. Comparative analysis of hepatocytes and non-hepatocytes revealed pronounced heterogeneity as non-hepatocytes acted as major cell-communication hubs. The results showed that Hspa1b, Tfrc, Hmox1 and Map4k4 could effectively distinguish NASH tissues from normal samples. The results of scRNA-seq and qPCR indicated that the expression levels of hub genes in NASH were significantly higher than in normal cells or tissues. Further immune infiltration analysis showed significant differences in M2 macrophage distribution between healthy and metabolic-associated fatty liver samples. CONCLUSIONS Our results suggest that Hspa1b, Tfrc, Hmox1 and Map4k4 have huge prospects as diagnostic and prognostic biomarkers for NASH and may be potential therapeutic targets for NASH.
Collapse
Affiliation(s)
- Lijun Wang
- The Nanhua Affiliated Hospital, Department of Stomatology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kebing Zhou
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Wu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lingping Zhu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Hu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuefeng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Duo Li
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Huang M, Li P, Chen F, Cai Z, Yang S, Zheng X, Li W. Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields. Cancer Med 2022; 12:2187-2198. [PMID: 35929424 PMCID: PMC9939155 DOI: 10.1002/cam4.5112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Gliomas refer to a group of complicated human brain tumors with a low 5-year survival rate and limited therapeutic options. Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) is a specific magnetic field featuring almost no side effects. However, the application of ELF-PEMF in the treatment of gliomas is rare. This review summarizes five significant underlying mechanisms including calcium ions, autophagy, apoptosis, angiogenesis, and reactive oxygen species, and applications of ELF-PEMF in glioma treatment from a clinical practice perspective. In addition, the prospects of ELF-PEMF in combination with conventional therapy for the treatment of gliomas are reviewed. This review benefits any specialists, especially oncologists, interested in this new therapy because it can help treat patients with gliomas properly.
Collapse
Affiliation(s)
- Mengqian Huang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Chen
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zehao Cai
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shoubo Yang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaohong Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Integrated Analysis of Transcriptome and Differential Methylation of Neurofibromatosis Type 2 Vestibular Schwannomas. World Neurosurg 2021; 157:e66-e76. [PMID: 34587518 DOI: 10.1016/j.wneu.2021.09.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Vestibular schwannoma is the third most common benign intracranial tumor that can occur sporadically or be associated with neurofibromatosis type 2 (neurofibromatosis type 2 vestibular schwannoma [NF2-VS]). The aim of this study is to provide a comprehensive bioinformatic analysis of methylated-differentially expressed genes (MDEGs) in NF2-VS. METHODS Transcriptional sequencing datasets (GSE141801 and GSE108524) and gene methylation microarrays (GSE56598) from the Gene Expression Omnibus database were used to identify and analyze MDEGs in NF2-VS. A protein-protein interaction (PPI) network was built, and the hub genes and modules were identified. Finally, potential pharmacotherapy targeting MDEGs were extracted for NF2-VS. RESULTS A total of 57 hypermethylation-low expression genes and 88 hypomethylation-high expression genes were identified. Pathways associated with aberrantly MDEGs included P13K-AKT, MAPK, and Ras, which were also involved in NF2-VS. Six hub genes (EGFR, CCND1, CD53, CSF1R, PLAU, and FGFR1) were identified from the PPI network. Modification of the aforementioned genes altered cell-to-cell communication, response to stimulus, cellular regulation, and membrane and protein bindings. Thirty drugs targeting these pathways were selected based on the hub genes. CONCLUSIONS Analysis of MDEGs may enrich the understanding of the molecular mechanisms of NF2-VS pathogenesis and lay the groundwork for potential biomarkers and therapeutic targets for NF2-VS.
Collapse
|
5
|
Lin T, Wang D, Chen J, Zhang Z, Zhao Y, Wu Z, Wang Y. IL-24 inhibits the malignancy of human glioblastoma cells via destabilization of Zeb1. Biol Chem 2021; 402:839-848. [PMID: 33894112 DOI: 10.1515/hsz-2020-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the most common and fatal type of primary malignant tumours in the central nervous system. Cytokines such as interleukins (ILs) play an important role in GBM progression. Our present study found that IL-24 is down-regulated in GBM cells. Recombinant IL-24 (rIL-24) can suppress the in vitro migration and invasion of GBM cells while increase its chemo-sensitivity to temozolomide (TMZ) treatment. rIL-24 negatively regulates the expression of Zeb1, one well known transcription factors of epithelial to mesenchymal transition (EMT) of cancer cells. Over expression of Zeb1 can attenuate IL-24-suppressed malignancy of GBM cells. Mechanistically, IL-24 decreases the protein stability of Zeb1 while has no effect on its mRNA stability. It is due to that IL-24 can increase the expression of FBXO45, which can destabilize Zeb1 in cancer cells. Collectively, we reveal that IL-24 can suppress the malignancy of GBM cells via decreasing the expression of Zeb1. It suggests that targeted activation of IL-24 signals might be a potential therapy approach for GBM treatment.
Collapse
Affiliation(s)
- Tie Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Dongpeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Jun Chen
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin150030, People's Republic of China
| | - Zhan Zhang
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin150030, People's Republic of China
| | - Yuming Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Zhong Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Yuehua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| |
Collapse
|
6
|
Xu Q, Wang Y, Huang W. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int Immunopharmacol 2021; 92:107333. [PMID: 33486322 DOI: 10.1016/j.intimp.2020.107333] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An increasing body of evidence has supported that long non-coding RNAs (lncRNAs) can play as essential roles of various physiological process and pathological diseases. We aimed to construct a robust immune-associated lncRNA signature associated with the prognosis for HCC survival prediction. METHODS 7 immune-associated lncRNAs presenting significant correlation with survival were screened through stepwise univariate Cox regression and LASSO algorithm, and multivariate Cox regression. Kaplan-Meier analysis, proportional hazards model, and ROC analyses further conducted. Gene set enrichment analysis (GSEA) was applied for functional annotation. We conducted quantitative real-time polymerase chain reaction to determine NRAV expression and preliminarily explored the latent role of NRAV in prognosis of HCC patients. RESULTS Finally, 7 immune-related lncRNA signature composed of AC007405.3, AC023157.3, NRAV, CASC19, MSC-AS1, GASAL1, and LINC00942 were validated. This lncRNAs signature can serve as an independent predictive biomolecular factor. This signature was further confirmed in the validation group and the entire cohort. We demonstrated that NRAV was significantly upregulated in HCC cell lines and it may serve as a key regulator in HCC. Our signature was associated to apoptosis and immunologic characteristics. This signature mediated immune cell infiltration (i.e., Dendritic, etc.,) and immune checkpoint blockade (ICB) immunotherapy-related molecules (i.e., CD274, etc.,). CONCLUSION This immune-related lncRNA signature possesses promising prognostic value in HCC and may have the potentiality to predict clinical outcome of ICB immunotherapy.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuxin Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Xue J, Gao HX, Sang W, Cui WL, Liu M, Zhao Y, Wang MB, Wang Q, Zhang W. Identification of core differentially methylated genes in glioma. Oncol Lett 2019; 18:6033-6045. [PMID: 31788078 PMCID: PMC6864971 DOI: 10.3892/ol.2019.10955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Differentially methylated genes (DMGs) serve a crucial role in the pathogenesis of glioma via the regulation of the cell cycle, proliferation, apoptosis, migration, infiltration, DNA repair and signaling pathways. This study aimed to identify aberrant DMGs and pathways by comprehensive bioinformatics analysis. The gene expression profile of GSE28094 was downloaded from the Gene Expression Omnibus (GEO) database, and the GEO2R online tool was used to find DMGs. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DMGs were performed by using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed with Search Tool for the Retrieval of Interacting Genes. Analysis of modules in the PPI networks was performed by Molecular Complex Detection in Cytoscape software, and four modules were performed. The hub genes with a high degree of connectivity were verified by The Cancer Genome Atlas database. A total of 349 DMGs, including 167 hypermethylation genes, were enriched in biological processes of negative and positive regulation of cell proliferation and positive regulation of transcription from RNA polymerase II promoter. Pathway analysis enrichment revealed that cancer regulated the pluripotency of stem cells and the PI3K-AKT signaling pathway, whereas 182 hypomethylated genes were enriched in biological processes of immune response, cellular response to lipopolysaccharide and peptidyl-tyrosine phosphorylation. Pathway enrichment analysis revealed cytokine-cytokine receptor interaction, type I diabetes mellitus and TNF signaling pathway. A total of 20 hub genes were identified, of which eight genes were associated with survival, including notch receptor 1 (NOTCH1), SRC proto-oncogene (also known as non-receptor tyrosine kinase, SRC), interleukin 6 (IL6), matrix metallopeptidase 9 (MMP9), interleukin 10 (IL10), caspase 3 (CASP3), erb-b2 receptor tyrosine kinase 2 (ERBB2) and epidermal growth factor (EGF). Therefore, bioinformatics analysis identified a series of core DMGs and pathways in glioma. The results of the present study may facilitate the assessment of the tumorigenicity and progression of glioma. Furthermore, the significant DMGs may provide potential methylation-based biomarkers for the precise diagnosis and targeted treatment of glioma.
Collapse
Affiliation(s)
- Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Pathology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wen-Li Cui
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ming Liu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Meng-Bo Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Qian Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
8
|
Hepatitis B Virus X Protein-Induced ROR γ Expression to Promote the Migration and Proliferation of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5407126. [PMID: 31781621 PMCID: PMC6874968 DOI: 10.1155/2019/5407126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Aberrant expression of RORγ is implicated in cancer development. A previous study identified that RORγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its expression and significance in HCC remain unclear. The central finding of this work is that RORγ was overexpressed in HCC due to its dysfunction of promoter methylation, and hepatitis B virus X protein (HBx) can remarkably induce the expression of RORγ in hepatocellular carcinoma through enhancing the transcriptional function. Also, the HBx-induced RORγ could promote the migration and proliferation of hepatoma cells. Hence, these results suggest that RORγ was an important regulator in HCC, and our finding provides new insights into the significance of RORγ in HCC.
Collapse
|
9
|
Wang ZL, Zhang CB, Liu YQ, Wang Z, Jiang T. Peripheral blood test provides a practical method for glioma evaluation and prognosis prediction. CNS Neurosci Ther 2019; 25:876-883. [PMID: 30912613 PMCID: PMC6630006 DOI: 10.1111/cns.13120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the relationship between tumor characteristics and the preoperative counts of immune cells in peripheral blood test in glioma patients. METHODS We included 260 WHO grades II-IV patients who had preoperative peripheral blood test result from Sanbo hospital as training set. The 66 patients from Tiantan hospital was obtained for validation. RNA sequencing data from CGGA and TCGA datasets were used to evaluate the features of neutrophil subtype and lymphocyte subtype in glioma. RESULTS We revealed that the count of preoperative lymphocytes, eosinophils and neutrophils were associated with glioma grades. Neutrophil-to-lymphocyte ratio (NLR) <3.2 was associated with better prognosis, whereas increased NLR was strongly corresponding with a poor prognosis. Lymphocyte type glioma patients demonstrated a positive correlation with isocitrate dehydrogenase (IDH) mutation and lower grade. IDH mutant glioma contained a higher proportion of tumor-infiltrating lymphocytes than IDH wild-type glioma. The immune subtype (neutrophil subtype and lymphocyte subtype) was an independent prognostic factor in glioma. CONCLUSION Our data demonstrated that NLR was an important prognostic factor in glioma. We classified that the immune subtype of glioma may contribute to a better understanding of disease pathogenesis and lead to the identification of new therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Zhi-Liang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuan-Bao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Qing Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
10
|
Yang CA, Huang HY, Lin CL, Chang JG. G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity. J Neurooncol 2018; 139:661-670. [DOI: 10.1007/s11060-018-2911-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
|
11
|
Chen W, Yu Q, Chen B, Lu X, Li Q. The prognostic value of a seven-microRNA classifier as a novel biomarker for the prediction and detection of recurrence in glioma patients. Oncotarget 2018; 7:53392-53413. [PMID: 27438144 PMCID: PMC5288195 DOI: 10.18632/oncotarget.10534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022] Open
Abstract
Glioma is often diagnosed at a later stage, and the high risk of recurrence remains a major challenge. We hypothesized that the microRNA expression profile may serve as a biomarker for the prognosis and prediction of glioblastoma recurrence. We defined microRNAs that were associated with good and poor prognosis in 300 specimens of glioblastoma from the Cancer Genome Atlas. By analyzing microarray gene expression data and clinical information from three random groups, we identified 7 microRNAs that have prognostic and prognostic accuracy: microRNA-124a, microRNA-129, microRNA-139, microRNA-15b, microRNA-21, microRNA-218 and microRNA-7. The differential expression of these miRNAs was verified using an independent set of glioma samples from the Affiliated People's Hospital of Jiangsu University. We used the log-rank test and the Kaplan-Meier method to estimate correlations between the miRNA signature and disease-free survival/overall survival. Using the LASSO model, we observed a uniform significant difference in disease-free survival and overall survival between patients with high-risk and low-risk miRNA signature scores. Furthermore, the prognostic capability of the seven-miRNA signature was demonstrated by receiver operator characteristic curve analysis. A Circos plot was generated to examine the network of genes and pathways predicted to be targeted by the seven-miRNA signature. The seven-miRNA-based classifier should be useful in the stratification and individualized management of patients with glioma.
Collapse
Affiliation(s)
- Wanghao Chen
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiang Yu
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Bo Chen
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xingyu Lu
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiaoyu Li
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
12
|
Wang W, Zhao Z, Yang F, Wang H, Wu F, Liang T, Yan X, Li J, Lan Q, Wang J, Zhao J. An immune-related lncRNA signature for patients with anaplastic gliomas. J Neurooncol 2017; 136:263-271. [PMID: 29170907 DOI: 10.1007/s11060-017-2667-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022]
Abstract
We investigated immune-related long non-coding RNAs (lncRNAs) that may be exploited as potential therapeutic targets in anaplastic gliomas. We obtained 572 lncRNAs and 317 immune genes from the Chinese Glioma Genome Atlas microarray and constructed immune-related lncRNAs co-expression networks to identify immune-related lncRNAs. Two additional datasets (GSE16011, REMBRANDT) were used for validation. Gene set enrichment analysis and principal component analysis were used for functional annotation. Immune-lncRNAs co-expression networks were constructed. Nine immune-related lncRNAs (SNHG8, PGM5-AS1, ST20-AS1, LINC00937, AGAP2-AS1, MIR155HG, TUG1, MAPKAPK5-AS1, and HCG18) signature was identified in patients with anaplastic gliomas. Patients in the low-risk group showed longer overall survival (OS) and progression-free survival than those in the high-risk group (P < 0.0001; P < 0.0001). Additionally, patients in the high-risk group displayed no-deletion of chromosomal arms 1p and/or 19q, isocitrate dehydrogenase wild-type, classical and mesenchymal TCGA subtype, G3 CGGA subtype, and lower Karnofsky performance score (KPS). Moreover, the signature was an independent factor and was significantly associated with the OS (P = 0.000, hazard ratio (HR) = 1.434). These findings were further validated in two additional datasets (GSE16011, REMBRANDT). Low-risk and high-risk groups displayed different immune status based on principal components analysis. Our results showed that the nine immune-related lncRNAs signature has prognostic value for anaplastic gliomas.
Collapse
Affiliation(s)
- Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Haoyuan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Xiaoyan Yan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Jiye Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China. .,Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
13
|
Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma. DISEASE MARKERS 2017; 2017:9253495. [PMID: 29200599 PMCID: PMC5671711 DOI: 10.1155/2017/9253495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4%) and sFRP3 (52.3%). Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P = 6.33 × 10−5). No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.
Collapse
|
14
|
Cordone I, Masi S, Carosi M, Vidiri A, Marchesi F, Marino M, Telera S, Pasquale A, Mengarelli A, Conti L, Pescarmona E, Pace A, Carapella CM. Brain stereotactic biopsy flow cytometry for central nervous system lymphoma characterization: advantages and pitfalls. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:128. [PMID: 27567676 PMCID: PMC5002320 DOI: 10.1186/s13046-016-0404-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Brain stereotactic biopsy (SB) followed by conventional histopathology and immunohistochemistry (IHC) is the gold standard approach for primary central nervous system lymphoma (PCNSL) diagnosis. Flow cytometry (FCM) characterization of fine-needle aspiration cytology and core needle biopsies are increasingly utilized to diagnose lymphomas however, no biological data have been published on FCM characterization of fresh single cell suspension from PCNSL SB. The aim of this study was to establish the feasibility and utility of FCM for the diagnosis and characterization of brain lymphomas from a tissue samples obtained by a single SB disaggregation. METHODS Twenty-nine patients with a magnetic resonance suggestive for PCNSL entered the study. A median of 6 SB were performed for each patient. A cell suspension generated from manual tissue disaggregation of a single, unfixed, brain SB, was characterized by FCM. The FCM versus standard approach was prospectively compared. RESULTS FCM and IHC showed an high degree of agreement (89 %) in brain lymphoma identification. By FCM, 16 out of 18 PCNSL were identified within 2 h from biopsy. All were of B cell type, with a heterogeneous CD20 mean fluorescence intensity (MFI), CD10 positive in 3 cases (19 %) with surface Ig light chain restriction documented in 11 cases (69 %). No false positive lymphomas cases were observed. Up to 38 % of the brain leukocyte population consisted of CD8 reactive T cells, in contrast with the CD4 positive lymphocytes of the peripheral blood samples (P < 0.001). By histopathology, 18 B-PCNSL, only one CD10 positive (5 %), 1 primitive neuroectodermal tumor (PNET) and 10 gliomas were diagnosed. A median of 6 days was required for IHC diagnosis. CONCLUSION Complementary to histopathology FCM can contribute to a better characterization of PCNSL, although necrosis and previous steroid treatment can represent a pitfall of this approach. A single brain SB is a valid source for accurate FCM characterization of both lymphoma and reactive lymphocyte population, routinely applicable for antigen intensity quantification and consistently documenting an active mechanism of reactive CD8 T-lymphocytes migration in brain lymphomas. Moreover, FCM confirmed to be more sensitive than IHC for the identification of selected markers.
Collapse
Affiliation(s)
- Iole Cordone
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Masi
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Francesco Marchesi
- Hematology and Stem Cell Transplant, Regina Elena National Cancer Institute, Rome, Italy
| | - Mirella Marino
- Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Telera
- Neurosurgery, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Pasquale
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplant, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Andrea Pace
- Neuroncology, Regina Elena National Cancer Institute, Rome, Italy
| | | |
Collapse
|
15
|
A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:124. [PMID: 27476114 PMCID: PMC4967504 DOI: 10.1186/s13046-016-0393-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
Background Malignant gliomas are the most common primary brain tumors in adults and challenging cancers for diagnosis and treatment. They remain a disease for which non-invasive, diagnostic and/or prognostic novel biomarkers are highly desirable. Altered microRNA (miRNA) profiles have been observed in tumor tissues and biological fluids. To date only a small set of circulating/serum miRNA is found to be differentially expressed in brain tumors compared to normal controls. Here a restricted signature of circulating/serum miRNA including miR-15b*,-23a, −99a, −125b, −133a, −150*, −197, −340, −497, −548b-5p and let-7c were investigated as potential non-invasive biomarkers in the diagnosis of glioma patients. Methods Serum and tissues miRNAs expression in patients with brain cancers (n = 30) and healthy controls (n = 15) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Relative expression was calculated using the comparative Ct method. Statistical significance (p ≤ 0,05) was determined using the Mann–Whitney rank sum and Fisher’s exact test. Diagnostic accuracy of miRNAs in distinguishing glioblastoma multiforme (GBM) from lower grade cancer was assessed by the Receiver Operating Characteristic (ROC) curve analysis. To validate the role of the identified miRNAs in cancer a comprehensive literature search was conducted using PubMed, Web of Science (Core Collection) and Scopus databases. Results We observed a decrease of miR-497 and miR-125b serum levels depending on tumor stages with reduced level in GBM than lower grade tumors. The ROC curve analysis distinguishing GBM from lower grade cases yielded an area under the curve (AUC) of 0.87 (95 % confidence interval (CI) = 0.712–1) and of 0.75 (95 % CI = 0.533–0.967) for miR-497 and -125b, respectively. GBM patients are more likely to show a miR-497 and -125b down-regulation than the lower grade group (p = 0.002 and p = 0.024, respectively). These results were subsequently compared with evidence from 19 studies included in the final systematic review. Conclusions Although multiple biomarkers are currently leveraged in the clinic to detect specific cancer types, no such standard blood biomolecules are used as yet in gliomas. Our data suggest that serum miR-497 and -125b could be a novel diagnostic markers with good perspectives for future clinical applications in patients with glioma.
Collapse
|
16
|
Zhao HF, Wang J, Jiang HR, Chen ZP, To SST. PI3K p110β isoform synergizes with JNK in the regulation of glioblastoma cell proliferation and migration through Akt and FAK inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:78. [PMID: 27176481 PMCID: PMC4866398 DOI: 10.1186/s13046-016-0356-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glioblastoma multiforme is the most aggressive malignant primary brain tumor, characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Both PI3K/Akt and JNK pathways are essential to glioblastoma cell survival, migration and invasion. Due to their hyperactivation in glioblastoma cells, PI3K and JNK are promising targets for glioblastoma treatment. METHODS To investigate the combination effects of class IA PI3K catalytic isoforms (p110α, p110β and p110δ) and JNK inhibition on tumor cell growth and motility, glioblastoma cells and xenografts in nude mice were treated with isoform-selective PI3K inhibitors in combination with JNK inhibitor. RESULTS We showed that combined inhibition of these PI3K isoforms and JNK exerted divergent effects on the proliferation, migration and invasion of glioblastoma cells in vitro. Pharmacological inhibition of p110β or p110δ, but not p110α, displayed synergistic inhibitory effect with JNK inhibition on glioblastoma cell proliferation and migration through decreasing phosphorylation of Akt, FAK and zyxin, leading to blockade of lamellipodia and membrane ruffles formation. No synergistic effect on invasion was observed in all the combination treatment. In vivo, combination of p110β and JNK inhibitors significantly reduced xenograft tumor growth compared with single inhibitor alone. CONCLUSION Concurrent inhibition of p110β and JNK exhibited synergistic effects on suppressing glioblastoma cell proliferation and migration in vitro and xenograft tumor growth in vivo. Our data suggest that combined inhibition of PI3K p110β isoform and JNK may serve as a potent and promising therapeutic approach for glioblastoma multiforme.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Neurosurgery and Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Jing Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hao-Ran Jiang
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, 516003, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Shing-Shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|