1
|
Liu F, Yang H, Liu X, Ning Y, Wu Y, Yan X, Zheng H, Liu C. LncRNA CCAT1 knockdown suppresses tongue squamous cell carcinoma progression by inhibiting the ubiquitination of PHLPP2. Mol Cell Biochem 2025; 480:1063-1075. [PMID: 38763996 DOI: 10.1007/s11010-024-05004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
Tongue squamous cell carcinoma (TSCC) is prevailing malignancy in the oral and maxillofacial region, characterized by its high frequency. LncRNA CCAT1 can promote tumorigenesis and progression in many cancers. Here, we investigated the regulatory mechanism by which CCAT1 influences growth and metastasis of TSCC. Levels of CCAT1, WTAP, TRIM46, PHLPP2, AKT, p-AKT, and Ki67 in TSCC tissues and cells were assessed utilizing qRT-PCR, Western blot and IHC. Cell proliferation, migration, and invasion were evaluated utilizing CCK8, colony formation, wound healing and transwell assays. Subcellular localization of CCAT1 was detected utilizing FISH assay. m6A level of CCAT1 was assessed using MeRIP. RNA immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP) and RNA pull down elucidated binding relationship between molecules. Nude mouse tumorigenesis experiments were used to verify the TSCC regulatory function of CCAT1 in vivo. Metastatic pulmonary nodules were observed utilizing hematoxylin and eosin (HE) staining. CCAT1 silencing repressed TSCC cell proliferation, migration and invasion. Expression of CCAT1 was enhanced through N6-methyladenosine (m6A) modification of its RNA, facilitated by WTAP. Moreover, IGF2BP1 up-regulated CCAT1 expression by stabilizing its RNA transcript. CCAT1 bond to PHLPP2, inducing its ubiquitination and activating AKT signaling. CCAT1 mediated the ubiquitination and degradation of PHLPP2 by TRIM46, thereby promoting TSCC growth and metastasis. CCAT1/TRIM46/PHLPP2 axis regulated proliferation and invasion of TSCC cells, implying that CCAT1 would be a novel therapeutic target for TSCC patients.
Collapse
Affiliation(s)
- Feng Liu
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
- Department of Stomatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
| | - Hanlin Yang
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Xiongwei Liu
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Yangbo Ning
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Yiwei Wu
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Xinglan Yan
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Huixi Zheng
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Chang Liu
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| |
Collapse
|
2
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Hussein NA, Ebid SA, Ahmad MA, Khedr GE, Saad DM. The possible correlation between miR-762, Hippo signaling pathway, TWIST1, and SMAD3 in lung cancer and chronic inflammatory diseases. Sci Rep 2024; 14:8246. [PMID: 38589525 PMCID: PMC11001855 DOI: 10.1038/s41598-024-58704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.
Collapse
Affiliation(s)
- Neveen A Hussein
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Samia A Ebid
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammad A Ahmad
- Clinical Pathology Department, Military Medical Academy, Cairo, Egypt
| | - Gamal E Khedr
- Clinical Pathology Department, Tanta Cancer Center, Tanta, Egypt
| | - Dina M Saad
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Yang Q, Meng D, Zhang Q, Wang J. Advances in research on the anti-tumor mechanism of Astragalus polysaccharides. Front Oncol 2024; 14:1334915. [PMID: 38515577 PMCID: PMC10955345 DOI: 10.3389/fonc.2024.1334915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The dry root of the soybean plant Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao or A. membranaceus (Fisch) Bge, Astragali Radix (AR) has a long medicinal history. Astragalus polysaccharide (APS), the natural macromolecule that exhibits immune regulatory, anti-inflammatory, anti-tumor, and other pharmacological activities, is an important active ingredient extracted from AR. Recently, APS has been increasingly used in cancer therapy owing to its anti-tumor ability as it prevents the progression of prostate, liver, cervical, ovarian, and non-small-cell lung cancer by suppressing tumor cell growth and invasion and enhancing apoptosis. In addition, APS enhances the sensitivity of tumors to antineoplastic agents and improves the body's immunity. This macromolecule has prospects for broad application in tumor therapy through various pathways. In this article, we present the latest progress in the research on the anti-tumor effects of APS and its underlying mechanisms, aiming to provide novel theoretical support and reference for its use in cancer therapy.
Collapse
Affiliation(s)
| | | | - Qinyuan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Chen R, Chen J, Chen M, Zhou S, Jiang P. Metformin suppresses proliferation and glycolysis of gastric cancer by modulating ADAMTS12. Genes Environ 2024; 46:1. [PMID: 38167385 PMCID: PMC10763268 DOI: 10.1186/s41021-023-00296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy with its morbidity increasing worldwide. Hence, it is imperative to develop effective treatments. Studies have shown that metformin has potential antitumor effects. The objective of this study was to probe the antitumor mechanism of metformin in GC. METHODS The expression of ADAMTS12 in GC tissues and its enrichment pathways were analyzed by bioinformatics methods. ADAMTS12 expression in GC cells was assessed by qRT-PCR. Cell viability and proliferation were analyzed by CCK-8 and colony formation assays, respectively. Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of GC cells in different treatment groups were analyzed by Seahorse XP 96, and glycolysis metabolites were detected by corresponding kits. Western blot was employed to analyze the level of glycolysis pathway related protein HK-2, and cell functional assays were conducted to verify the functions of metformin on GC cells. A xenograft model was constructed to validate the inhibitory role of metformin in GC. RESULTS ADAMTS12 expression was elevated in GC tissues/cells and concentrated in glycolysis pathway. Cell functional assays found that ADAMTS12 promoted the proliferation and glycolysis of GC cells. Rescue experiments showed that metformin could reduce the promoting effect of ADAMTS12 overexpression on the proliferation and glycolysis of GC cells. In vivo studies confirmed that metformin suppressed the proliferation and glycolysis process via ADAMTS12 in GC cells. CONCLUSION Metformin can repress the proliferation and glycolysis of GC cells via ADAMTS12. The results suggest the potential of ADAMTS12 being a target for the metformin therapy of GC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Jianhui Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Miaoliang Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Shenkang Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, Zhejiang, PR China
| | - Pinlu Jiang
- Department of Emergency, Taizhou Hospital of Zhejiang Province, 150# Ximen Street, 317000, Taizhou, Zhejiang, PR China.
| |
Collapse
|
7
|
Li P, Huang D, Gu X. Exploring the dual role of circRNA and PI3K/AKT pathway in tumors of the digestive system. Biomed Pharmacother 2023; 168:115694. [PMID: 37832407 DOI: 10.1016/j.biopha.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The interactions among circRNAs, the PI3K/AKT pathway, and their downstream effectors are intricately linked to their functional roles in tumorigenesis. Furthermore, the circRNAs/PI3K/AKT axis has been significantly implicated in the context of digestive system tumors. This axis is frequently abnormally activated in digestive cancers, including gastric cancer, colorectal cancer, pancreatic cancer, and others. Moreover, the overactivation of the circRNAs/PI3K/AKT axis promotes tumor cell proliferation, suppresses apoptosis, enhances invasive and metastatic capabilities, and contributes to drug resistance. In this regard, gaining crucial insights into the complex interaction between circRNAs and the PI3K/AKT pathway holds great potential for elucidating disease mechanisms, identifying diagnostic biomarkers, and designing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Penghui Li
- Department of General Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
8
|
Che F, Ye X, Wang Y, Wang X, Ma S, Tan Y, Mao Y, Luo Z. METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and pri-microRNA-27 maturation in m 6A-dependent manner. Cell Biol Toxicol 2023; 39:2033-2050. [PMID: 35038059 DOI: 10.1007/s10565-021-09690-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
Multiple myeloma (MM) is a pernicious plasma cell disorder and has a poor prognosis. N6-methyladenosine (m6A) is an abundant epigenetic RNA modification and is important in cancer progression. Nevertheless, the function of m6A and its regulator METTL3 in MM are rarely reported. Here, we identified the m6A "writers", METTL3, was enhanced in MM and found that Yin Yang 1 (YY1) and primary-miR-27a-3p were the potential target for METTL3. METTL3 promoted primary-miR-27a-3p maturation and YY1 mRNA stability in an m6A manner. YY1 also was found to facilitate miR-27a-3p transcription. METTL3 affected the growth, apoptosis, and stemness of MM cells through accelerating the stability of YY1 mRNA and the maturation of primary-miR-27a-3p in vitro and in vivo. Our results reveal the key function of the METTL3/YY1/miR-27a-3p axis in MM and may provide fresh insights into MM therapy.
Collapse
Affiliation(s)
- Feifei Che
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No.32 West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Xuemei Ye
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Yu Wang
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Xuemei Wang
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Shuyue Ma
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Yawen Tan
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Yan Mao
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Ziyue Luo
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| |
Collapse
|
9
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, Lin Z, Zhang Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238:154030. [PMID: 36116329 DOI: 10.1016/j.prp.2022.154030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
Collapse
Affiliation(s)
- Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Yiwen Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Zixuan Lin
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Wang B, Chen Z, Liu W, Tan B. Prospects of circular RNAs: the regulators of drug resistance and metastasis in gastric cancer. Am J Transl Res 2022; 14:5760-5772. [PMID: 36105039 PMCID: PMC9452336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. Although there are multiple therapeutic methods, the 5-year survival rate for GC remains low primarily due to metastasis and resistance to chemotherapy. GC treatments, which include chemotherapy drugs, targeted drugs, and immunologic drugs, improve the prognosis of advanced GC patients. Nevertheless, resistance to these drugs may result in treatment failure. Tumor metastasis also plays a key role in tumor progression and limits the clinical efficacy of treatments. Recently, it has been reported that circular RNAs (circRNAs), non-coding RNAs, regulate GC drug resistance and metastasis to improve prognosis. In this review, we summarized systematically the underlying mechanisms of circRNA regulation of gastric neoplasm drug resistance and tumor metastasis. Thus we shed light on the potential of circRNAs to function as potential GC biomarkers and therapeutics.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University Shijiazhuang 050017, Hebei, China
| | - Zihao Chen
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University Shijiazhuang 050017, Hebei, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University Shijiazhuang 050017, Hebei, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University Shijiazhuang 050017, Hebei, China
| |
Collapse
|
11
|
The Single-Nucleotide Polymorphism of miR-27a rs895819 and the Expression of miR-27a in Helicobacter pylori-Related Diseases and the Correlation with the Traditional Chinese Medicine Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3086205. [PMID: 35341140 PMCID: PMC8941553 DOI: 10.1155/2022/3086205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/11/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Aims The study aims to explore the effects of the single-nucleotide polymorphism of miR-27a and its expression in Helicobacter pylori (H. pylori)-related diseases and the relationship between gastric pathology and traditional Chinese medicine (TCM). Methods Subjects were classified into six histopathological groups and five TCM syndrome groups. All specimens underwent H. pylori detection through rapid urease test and methylene blue staining. Histopathological characteristics were observed by hematoxylin-eosin. The expression of miR-27a and its genotype were, respectively, detected by Quantitative Real-Time PCR and direct sequencing. Results H. pylori promoted the malignant evolution of gastric mucosa and were involved in the formation of TCM syndrome. In H. pylori-positive patients, the frequency of miR-27a CT genotype at the rs895819 locus and its expression in the gastric cancer group were higher than those in other pathological groups. TCM syndrome had a close relationship with histopathological changes, and patients with spleen-qi deficiency syndrome had a higher risk of gastric cancer than other syndromes, regardless of H. pylori infection. Conclusion The C allele at miR-27a rs895819 locus may be an oncogene in gastric cancer. High levels of miR-27a could play an important role in gastric malignant evolution, especially cancerization. There is a certain connection between TCM syndrome and pathological changes of the gastric mucosa to some extent, where patients with SQD syndrome had a higher risk of GC.
Collapse
|
12
|
Chen D, Ping S, Xu Y, Wang M, Jiang X, Xiong L, Zhang L, Yu H, Xiong Z. Non-Coding RNAs in Gastric Cancer: From Malignant Hallmarks to Clinical Applications. Front Cell Dev Biol 2021; 9:732036. [PMID: 34805143 PMCID: PMC8595133 DOI: 10.3389/fcell.2021.732036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. However, the molecular mechanisms underlying gastric carcinogenesis remain largely unknown. Over the past decades, advances in RNA-sequencing techniques have greatly facilitated the identification of various non-coding RNAs (ncRNAs) in cancer cells, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Accumulating evidence has revealed that ncRNAs are essential regulators in GC occurrence and development. However, ncRNAs represent an emerging field of cancer research, and their complex functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets in GC, further studies should focus on elucidating the intricate relationships between ncRNAs and GC, which can be translated into clinical practice. In this review, we summarize recent research progress on how ncRNAs modulate the malignant hallmarks of GC, especially in tumor immune escape, drug resistance, and stemness. We also discuss the promising applications of ncRNAs as diagnostic biomarkers and therapeutic targets in GC, aiming to validate their practical value for clinical treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuang Xu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglu Yu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Liu C, Zhao Z, Guo S, Zhang L, Fan X, Zheng J. Exosomal miR-27a-3p derived from tumor-associated macrophage suppresses propranolol sensitivity in infantile hemangioma. Cell Immunol 2021; 370:104442. [PMID: 34634611 DOI: 10.1016/j.cellimm.2021.104442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Propranolol is the first-line drug for infantile hemangioma (IH) therapy, whereas propranolol resistance is clinically observed. Tumor-associated macrophages (TAMs)-derived exosomes may deliver biological molecules to promote tumor progression. Here, we aimed to investigate the relationship between TAMs-derived exosomal miR-27a-3p and propranolol sensitivity in IH. Human peripheral blood monocytes (PBMCs) were cultured with macrophage colony-stimulating factor (M-CSF) for 7 days to get unactivated macrophages (Un-Mac), which were further treated with IL-4 and IL-13 to induce M2 polarized macrophages. Exosomes were isolated from the conditioned medium of M2 macrophage, followed by identification. Cell co-culture and/or transfection were performed to explore whether M2 polarized macrophage-derived exosomes (M2-exos) could mediate the crosstalk between TAMs-derived miR-27a-3p and hemangioma stem cells (HemSCs). In addition, nude mice were subcutaneously transplanted with HemSCs pretreated with or without M2-Exos to examine the effects of M2-Exos on IH in vivo. M2 polarized macrophages inhibited propranolol sensitivity of HemSCs, as shown by the increased cell viability and decreased apoptosis. miR-27a-3p was upregulated in M2 polarized macrophages and M2-Exos. Moreover, M2-exos delivered miR-27a-3p from macrophages to HemSCs and subsequently reduced propranolol sensitivity. Luciferase reporter and biotin-RNA pulldown assay proved that dickkopf-related protein 2 (DKK2) was the direct target of miR-27a-3p. These results demonstrate that M2-exos could deliver miR-27a-3p from macrophages to HemSCs to reduce the sensitivity of HemSCs to propranolol by down-regulating DKK2 expression, and exosomal miR-27a-3p and DKK2 in HemSCs could be considered as treatment targets.
Collapse
Affiliation(s)
- Chao Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zeliang Zhao
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shikai Guo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Ling Zhang
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xindong Fan
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
14
|
Zhang J, Zha W, Qian C, Ding A, Mao Z. Circular RNA circ_0001017 Sensitizes Cisplatin-Resistant Gastric Cancer Cells to Chemotherapy by the miR-543/PHLPP2 Axis. Biochem Genet 2021; 60:558-575. [PMID: 34313883 DOI: 10.1007/s10528-021-10110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Resistance to cisplatin (CDDP) remains a major challenge for the treatment of gastric cancer (GC). Circular RNAs (circRNAs) have been implicated in the development of CDDP resistance of GC. However, the precise actions of circ_0001017 in CDDP resistance of GC remain to be elucidated. The levels of circ_0001017, microRNA (miR)-543 and PH-domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) mRNA were gauged by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was used to analyze the protein levels of Vimentin, N-cadherin, E-cadherin, and PHLPP2. Ribonuclease R (RNase R) assay was applied to evaluate the stability of circ_0001017. Cell viability and proliferation, colony formation ability, cell cycle distribution and apoptosis, and migration and invasion were detected by the Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, and transwell assays, respectively. Direct relationship between miR-543 and circ_0001017 or PHLPP2 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft model assay was used to assess the function of circ_0001017 in vivo. Low expression of circ_0001017 was associated with CDDP resistance of GC. Enforced expression of circ_0001017 impeded growth, metastasis, and enhanced apoptosis of HGC-27/R and AGS/R cells and sensitized them to CDDP in vitro. Circ_0001017 targeted miR-543, and circ_0001017 regulated CDDP-resistant cell behaviors and CDDP sensitivity by suppressing miR-543. PHLPP2 was a direct target of miR-543, and circ_0001017 controlled PHLPP2 expression through miR-543. Moreover, miR-543 knockdown-mediated promotion of PHLPP2 impacted CDDP-resistant cell behaviors and CDDP sensitivity in vitro. Additionally, elevated expression of circ_0001017 hindered growth of HGC-27/R cells and sensitized them to CDDP in vivo. Our findings demonstrated that enforced expression of circ_0001017 suppressed malignant behaviors and enhanced CDDP sensitivity of CDDP-resistant GC cells at least partially by the miR-543/PHLPP2 axis.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of General Surgery, First Affiliated Hospital of Soochow University, No.899 Pinghai Road, Suzhou City, 215000, Jiangsu Province, China.,Departments of General Surgery, Yancheng City No.1 People's Hospital, Yancheng City, Jiangsu Province, China
| | - Wenzhang Zha
- Departments of General Surgery, Yancheng City No.1 People's Hospital, Yancheng City, Jiangsu Province, China
| | - Changchun Qian
- Departments of General Surgery, Yancheng City No.1 People's Hospital, Yancheng City, Jiangsu Province, China
| | - Aixing Ding
- Departments of General Surgery, Yancheng City No.1 People's Hospital, Yancheng City, Jiangsu Province, China
| | - Zhongqi Mao
- Department of General Surgery, First Affiliated Hospital of Soochow University, No.899 Pinghai Road, Suzhou City, 215000, Jiangsu Province, China.
| |
Collapse
|
15
|
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of how GC develops is vague, and therapies are inefficient. The function of microRNAs (miRNAs) in tumorigenesis has attracted the attention from many scientists. During the development of GC, miRNAs function in the regulation of different phenotypes, such as proliferation, apoptosis, invasion and metastasis, drug sensitivity and resistance, and stem-cell-like properties. MiRNAs were evaluated for use in diagnostic and prognostic predictions and exhibited considerable accuracy. Although many problems exist for the application of therapy, current studies showed the antitumor effects of miRNAs. This paper reviews recent advances in miRNA mechanisms in the development of GC and the potential use of miRNAs in the diagnosis and treatment of GC.
Collapse
|
16
|
Jin H, Ma J, Xu J, Li H, Chang Y, Zang N, Tian Z, Wang X, Zhao N, Liu L, Chen C, Xie Q, Lu Y, Fang Z, Huang X, Huang C, Huang H. Oncogenic role of MIR516A in human bladder cancer was mediated by its attenuating PHLPP2 expression and BECN1-dependent autophagy. Autophagy 2021; 17:840-854. [PMID: 32116109 PMCID: PMC8078721 DOI: 10.1080/15548627.2020.1733262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Although MIR516A has been reported to be downregulated and act as a tumor suppressor in multiple cancers, its expression and potential contribution to human bladder cancer (BC) remain unexplored. Unexpectedly, we showed here that MIR516A was markedly upregulated in human BC tissues and cell lines, while inhibition of MIR516A expression attenuated BC cell monolayer growth in vitro and xenograft tumor growth in vivo, accompanied with increased expression of PHLPP2. Further studies showed that MIR516A was able to directly bind to the 3'-untranslated region of PHLPP2 mRNA, which was essential for its attenuating PHLPP2 expression. The knockdown of PHLPP2 expression in MIR516A-inhibited cells could reverse BC cell growth, suggesting that PHLPP2 is a MIR516A downstream mediator responsible for MIR516A oncogenic effect. PHLPP2 was able to mediate BECN1/Beclin1 stabilization indirectly, therefore promoting BECN1-dependent macroautophagy/autophagy, and inhibiting BC tumor cell growth. In addition, our results indicated that the increased autophagy by attenuating MIR516A resulted in a dramatic inhibition of xenograft tumor formation in vivo. Collectively, our results reveal that MIR516A has a novel oncogenic function in BC growth by directing binding to PHLPP2 3'-UTR and inhibiting PHLPP2 expression, in turn at least partly promoting CUL4A-mediated BECN1 protein degradation, thereby attenuating autophagy and promoting BC growth, which is a distinct function of MIR516A identified in other cancers.Abbreviation: ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BAF: bafilomycin A1; BC: bladder cancer; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CUL3: cullin 3; CUL4A: cullin 4A; CUL4B: cullin 4B; IF: immunofluorescence: IHC-p: immunohistochemistry-paraffin; MIR516A: microRNA 516a (microRNA 516a1 and microRNA 516a2); MS: mass spectrometry; PHLPP2: PH domain and leucine rich repeat protein phosphatase.
Collapse
Affiliation(s)
- Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiugao Ma
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Jiheng Xu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Chang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Zang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Caiyi Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxi Fang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep 2021; 40:222329. [PMID: 32159214 PMCID: PMC7103584 DOI: 10.1042/bsr20193396] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Astragalus polysaccharide (APS), a natural antioxidant found in Astragalus membranaceus emerging as a novel anticancer agent, exerts antiproliferative and pro-apoptotic activity in various cancer cell types, but its effect on ovarian cancer (OC) remains unknown. In the present study, we tried to elucidate the role and mechanism of APS in OC cells. Our results showed that APS treatment suppressed the proliferation and induced apoptosis in OC cells. Afterward, the microRNA (miRNA) profiles in APS-treated cells were determined by a microarray assay, and whether APS affected OV-90 cells through regulation of miRNA was determined. Among these aberrant miRNAs, miR-27a was selected for further study as its oncogenic roles in various human cancers. Moreover, we found overexpression of miR-27a reversed the antiproliferation and pro-apoptotic effects of APS on OC cells. F-box and WD-40 domain protein 7 (FBXW7), a classical tumor suppressor, was found directly targeted by miR-27a and its translation was suppressed by miR-27a in OC cells. Finally, it was also observed that knockdown of FBXW7 by si-FBXW7 reversed the tumor suppressive activity of APS in OC cells, which is similar to the effects of miR-27a overexpression. Our findings demonstrate that APS can suppress OC cell growth in vitro via miR-27a/FBXW7 axis, and this observation reveals the therapeutic potential of APS for treatment of OC.
Collapse
|
18
|
Swellam M, Zahran RFK, Ghonem SA, Abdel-Malak C. Serum MiRNA-27a as potential diagnostic nucleic marker for breast cancer. Arch Physiol Biochem 2021; 127:90-96. [PMID: 31145011 DOI: 10.1080/13813455.2019.1616765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Accumulating evidence reveals that microRNA 27a (miR 27a) is implicated in the pathogenesis of cancer. However, its diagnostic role in breast cancer (BC) still needs investigation. MATERIALS AND METHODS MiR 27a expression was assessed in serum samples from patients with primary BC (n = 100), benign breast lesions (n = 30) and control group served as healthy volunteers (n = 20) using quantitative real-time PCR. RESULTS Both expression and mean rank of miR 27a and tumor markers among BC patients as compared to the other two groups. Clinicopathological characteristics showed significant relation with miRN 27a expression for clinical stage, histological grading, ER receptor and HER-2/neu. The diagnostic efficacy for miR 27a was superior to both tumor markers for early detection of BC especially high-risk BC groups. CONCLUSION Detection of miR 27a expression may serve as a potential sensitive minimally invasive molecular marker for early detection of primary BC.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha F K Zahran
- Biochemistry Division, Faculty of Science, Damietta University, Damietta, Egypt
| | - Samar Ayman Ghonem
- Biochemistry Division, Faculty of Science, Damietta University, Damietta, Egypt
| | - Camelia Abdel-Malak
- Biochemistry Division, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
19
|
Abstract
PURPOSE One of the most important serious malignancies is gastric cancer (GC) with a high mortality globally. In this way, beside the environmental factors, genetic parameter has a remarkable effective fluctuation in GC. Correspondingly, telomeres are nucleoprotein structures measuring the length of telomeres and they have special potential in diagnosis of various types of cancers. Defect protection of the telomeric length initiates the instability of the genome during cancer, including gastric cancer. The most common way of maintaining telomere length is the function of the telomerase enzyme that replicates the TTAGGG to the end of the 3' chromosome. METHODS In this review, we want to discuss the alterations of hTERT repression on the modification of TERRA gene expression in conjunction with the importance of telomere and telomerase in GC. RESULTS The telomerase enzyme contains two essential components called telomerase reverse transcriptase (hTERT) and RNA telomerase (hTR, hTERC). Deregulation of hTERT plays a key role in the multistage process of tumorigenicity and anticancer drug resistance. The direct relationship between telomerase activity and hTERT has led to hTERT to be considered a key target for cancer treatment. Recent results show that telomeres are transcribed into telomeric repeat-containing RNA (TERRA) in mammalian cells and are long noncoding RNAs (lncRNAs) identified in different tissues. In addition, most chemotherapy methods have a lot of side effects on normal cells. CONCLUSION Telomere and telomerase are useful therapeutic goal. According to the main roles of hTERT in tumorigenesis, growth, migration, and cancer invasion, hTERT and regulatory mechanisms that control the expression of hTERT are attractive therapeutic targets for cancer treatment.
Collapse
|
20
|
Ma Y, Zhou A, Song J. Upregulation of miR-1307-3p and its function in the clinical prognosis and progression of gastric cancer. Oncol Lett 2020; 21:91. [PMID: 33376524 PMCID: PMC7751337 DOI: 10.3892/ol.2020.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the major causes of cancer-associated mortality worldwide. miR-1307-3p has been demonstrated to serve multiple roles in the development of various types of cancer. The present study aimed to evaluate the expression and functional role of miR-1307-3p in the progression of gastric cancer. The expression of miR-1307-3p in gastric cancer tissues and cell lines was detected by reverse transcription quantitative PCR. Furthermore, the correlation between miR-1307-3p expression and the clinicopathological characteristics and prognosis of patients was evaluated. Cell Counting Kit-8 and Transwell assays were performed to analyze the effects of miR-1307-3p on the proliferation and the migratory and invasive abilities of gastric cancer cells, respectively. Dual-luciferase reporter assay was conducted to reveal the potential underlying mechanism of miR-1307-3p. In gastric cancer tissues and cells, miR-1307-3p expression was significantly upregulated compared with the normal tissues and cell lines. In addition, the expression of miR-1307-3p was associated with the Tumor-Node Metastasis stage of patients. The results from Cox regression analysis demonstrated that miR-1307-3p may serve as an independent predictor for the prognosis of patients with gastric cancer. Furthermore, the upregulation of miR-1307-3p in gastric cancer cell lines significantly promoted the cell proliferation and migratory and invasive abilities by targeting DAB2 interacting protein. In conclusion, the findings from the present study suggested that miR-1307-3p may serve as a tumor promoter of gastric cancer and that miR-1307-3p expression in tumor tissues may be used as a prognostic indicator for patients with gastric cancer.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Aifeng Zhou
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Juan Song
- Department of Laboratory, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
21
|
Azar MRMH, Akbari M, Mohammed HN, Asadi M, Shanehbandi D, Rezai M, Zafari V, Niknam S, Tamjidifar R, Tarzi S, Mahdavi F. Dysregulation of miR-27a and SMAD2 can be a reliable indicator in the prognosis and diagnosis of CRC as well as in response to chemotherapy drugs. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
23
|
Li Y, Tian Z, Tan Y, Lian G, Chen S, Chen S, Li J, Li X, Huang K, Chen Y. Bmi-1-induced miR-27a and miR-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Mol Cancer 2020; 19:109. [PMID: 32580736 PMCID: PMC7315508 DOI: 10.1186/s12943-020-01229-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously reported an inverse relationship between B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and Raf kinase inhibitory protein (RKIP), which is associated with the prognosis of gastric cancer (GC). In this study, we further explored the microRNA (miRNA) regulatory mechanism between Bmi-1 and RKIP. METHODS Microarray analysis was first carried out to identify miRNA profiles that were differentially expressed in cells overexpressing Bmi-1. Then, miRNAs that could regulate RKIP were identified. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to measure the expression of Bmi-1, miR-155, miR-27a and RKIP. RKIP was confirmed as a target of miR-27a and miR-155 through luciferase reporter assays, qRT-PCR and Western blotting. The effects of the Bmi-1/miR-27a/RKIP and Bmi-1/miR-155/RKIP axes on tumor growth, proliferation, migration, invasion, colony-formation ability, metastasis and chemoresistance were investigated both in vitro and in vivo. RESULTS The downregulation of RKIP by Bmi-1 occurred at the protein but not mRNA level. This indicates probable posttranscriptional regulation. miRNA expression profiles of cells with ectopic expression of Bmi-1 were analyzed and compared to those of control cells by microarray analysis. A total of 51 upregulated and 72 downregulated miRNAs were identified. Based on publicly available algorithms, miR-27a and miR-155 were predicted, selected and demonstrated to target RKIP. Bmi-1, miR-27a and miR-155 are elevated in human GC and associated with poor prognosis of GC, while RKIP is expressed at lower levels in GC and correlated with good prognosis. Then, in vitro tests shown that in addition to regulating RKIP expression via miR-27a and miR-155, Bmi-1 was also able to regulate the migration, invasion, proliferation, colony-formation ability and chemosensitivity of GC cells through the same pathway. Finally, the in vivo test showed similar results, whereby the knockdown of the Bmi-1 gene led to the inhibition of tumor growth, metastasis and chemoresistance through miR-27a and miR-155. CONCLUSIONS Bmi-1 was proven to induce the expression of miR-27a and miR-155 and thus promote tumor metastasis and chemoresistance by targeting RKIP in GC. Overall, miR-27a and miR-155 might be promising targets for the screening, diagnosis, prognosis, treatment and disease monitoring of GC.
Collapse
Affiliation(s)
- Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shangxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Xuanna Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China.
| |
Collapse
|
24
|
Du M, Zheng R, Ma G, Chu H, Lu J, Li S, Xin J, Tong N, Zhang G, Wang W, Qiang F, Gong W, Zhao Q, Tao G, Chen J, Jia Z, Jiang J, Jin G, Hu Z, Shen H, Wang M, Zhang Z. Remote modulation of lncRNA GCLET by risk variant at 16p13 underlying genetic susceptibility to gastric cancer. SCIENCE ADVANCES 2020; 6:eaay5525. [PMID: 32671202 PMCID: PMC7314563 DOI: 10.1126/sciadv.aay5525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
The biological effects of susceptibility loci are rarely reported in gastric tumorigenesis. We conducted a large-scale cross-ancestry genetic study in 18,852 individuals and identified the potential causal variant rs3850997 T>G at 16p13 significantly associated with a decreased risk of gastric cancer [odds ratio (OR) = 0.87, 95% confidence interval (CI) = 0.83 to 0.91, P = 2.13 × 10-9]. This risk effect was mediated through the mapped long noncoding RNA GCLET (Gastric Cancer Low-Expressed Transcript; ORindirect = 0.987, 95% CI = 0.975 to 0.999, P = 0.018). Mechanistically, rs3850997 exerted an allele-specific long-range regulatory effect on GCLET by affecting the binding affinity of CTCF. Furthermore, GCLET increased FOXP2 expression by competing with miR-27a-3p, and this regulation remarkably affected in vitro, in vivo, and clinical gastric cancer phenotypes. The findings highlight the genetic functions and implications for the etiology and pathology of cancers.
Collapse
Affiliation(s)
- Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiafei Lu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gang Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fulin Qiang
- Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, Yixing, China
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhifang Jia
- Division of Clinical Research, First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Fattahi S, Kosari-Monfared M, Golpour M, Emami Z, Ghasemiyan M, Nouri M, Akhavan-Niaki H. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J Cell Physiol 2020; 235:3189-3206. [PMID: 31595495 DOI: 10.1002/jcp.29260] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the third leading cause of cancer death with 5-year survival rate of about 30-35%. Since early detection is associated with decreased mortality, identification of novel biomarkers for early diagnosis and proper management of patients with the best response to therapy is urgently needed. Long noncoding RNAs (lncRNAs) due to their high specificity, easy accessibility in a noninvasive manner, as well as their aberrant expression under different pathological and physiological conditions, have received a great attention as potential diagnostic, prognostic, or predictive biomarkers. They may also serve as targets for treating gastric cancer. In this review, we highlighted the role of lncRNAs as tumor suppressors or oncogenes that make them potential biomarkers for the diagnosis and prognosis of gastric cancer. Relatively, lncRNAs such as H19, HOTAIR, UCA1, PVT1, tissue differentiation-inducing nonprotein coding, and LINC00152 could be potential diagnostic and prognostic markers in patients with gastric cancer. Also, the impact of lncRNAs such as ecCEBPA, MLK7-AS1, TUG1, HOXA11-AS, GAPLINC, LEIGC, multidrug resistance-related and upregulated lncRNA, PVT1 on gastric cancer epigenetic and drug resistance as well as their potential as therapeutic targets for personalized medicine was discussed.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Department of Genetics, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Genetics, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Biochemistry, North Research Center, Pasteur Institute, Amol, Iran
| | | | - Monireh Golpour
- Department of Immunology, Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakieh Emami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ghasemiyan
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Nouri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
26
|
Geng G, Liu X, Xu A, Lu Z, Chen K, He J, Qi D, Yuan X. Low abundance of TFPI-2 by both promoter methylation and miR-27a-3p regulation is linked with poor clinical outcome in gastric cancer. J Gene Med 2020; 22:e3166. [PMID: 31984574 DOI: 10.1002/jgm.3166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tumor suppressor role of tissue factor pathway inhibitor 2 (TFPI-2) has been reported in various tumors. The present study aimed to improve the understanding of the oncogenic properties of TFPI-2 in gastric cancer. METHODS Relative expression of TFPI-2 was determined by a real-time polymerase chain reaction (PCR) and western blotting, respectively. Cell viability was measured via a cell counting kit-8 assay and proliferation was evaluated by a colony formation assay. Cell apoptosis was assessed with a caspase-3 activity kit and invasion was evaluated by a transwell chamber assay. The methylation level of TFPI-2 promoter was assayed by methylation-specific PCR. The regulatory effect of miR-27a-3p on TFPI-2 was analyzed with a luciferase reporter assay. The direct association between miR-27a-3p and TFPI-2 was shown by biotin-labelling pulldown. RESULTS TFPI-2 was down-regulated in gastric cancer, which associated with an unfavorable prognosis clinically. Ectopic introduction of TFPI-2 greatly compromised cell viability, colony formation and invasive capacity, and also induced cell apoptosis simultaneously. The promoter region of TFPI-2 was extensively methylated in gastric cancer tissues compared to normal tissues, suggesting the epigenetic inhibition of TFPI-2 expression. We further identified that TFPI-2 functioned as sponge RNA against miR-27a-3p. Most importantly, miR-27a-3p-specific inhibitor significantly exerted a tumor suppressor function akin to TFPI-2 itself, and the anti-tumoral activities were completely abolished by TFPI-2 knockdown. CONCLUSIONS We found that the epigenetically suppressed TFPI-2 compromised sponging effects with respect to miR-27a-3p in gastric cancer, which consequently and mechanistically contributed to the tumor biology of gastric cancer.
Collapse
Affiliation(s)
- Guangyong Geng
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Liu
- PET-CT Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Lu
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kaiwei Chen
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juntong He
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongjiang Qi
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Yuan
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
27
|
Wu M, Duan Q, Liu X, Zhang P, Fu Y, Zhang Z, Liu L, Cheng J, Jiang H. MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomed Pharmacother 2020; 122:109696. [PMID: 31918270 DOI: 10.1016/j.biopha.2019.109696] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dysregulation of miRNAs is associated with aberrant migration and invasion by suppressing relevant target genes in multiple cancers, including oral squamous cell carcinoma (OSCC). Accumulating evidence suggests that microRNA-155-5p is involved in carcinogenesis and tumor progression. However, the exact function and molecular mechanism of miR-155-5p in OSCC remain unclear. This study aimed to investigate the function of miR-155-5p and the molecular mechanisms underlying the influencing progression of OSCC. METHODS The miR-155-5p expression level in the OSCC tissues and oral cancer cell lines were determined by the qRT-PCR. Gain-of-function and knockdown approach were used to examine the effect of miR-155-5p on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of OSCC. The luciferase reporter assay was applied to confirm the AT-rich interactive domain 2 (ARID2) as a potential target of miR-155-5p, and the rescue experiment was employed to verify the roles of the miRNA-155-5p-ARID2 axis in OSCC progression. Immunohistochemical staining was used to detect ARID2 expression in another cohort sample tissues from OSCC patients. RESULTS MiR-155-5p was significantly upregulated in OSCC tissues and cell lines. The miR-155-5p expression level was positively correlated with tumor size, TNM stage, histological grade and lymph node metastasis of OSCC patients. Functional assays demonstrated that miR-155-5p enhanced OSCC cell proliferation, migration and invasion. Mechanistically, ARID2 was identified as a direct target and functional effector of miR-155-5p in OSCC. Furthermore, ARID2 overexpression could rescue the aberrant biological function by overexpressed miR-155-5p in OSCC cells. Notably, we showed that ARID2 could be used as an independent prognosis factor in OSCC. CONCLUSIONS Our results suggest that miR-155-5p facilitates tumor progression of OSCC by targeting ARID2, and miR-155-5p-ARID2 axis may be a potential therapeutic target of OSCC.
Collapse
Affiliation(s)
- Meng Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China.
| | - Qingyun Duan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Xue Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Zhenxing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
28
|
Li K, Zhu X, Chen X, Wang X. MicroRNA‑27a‑3p promotes epithelial‑mesenchymal transition by targeting NOVA alternative splicing regulator 1 in gastric cancer. Mol Med Rep 2020; 21:1615-1622. [PMID: 32016460 DOI: 10.3892/mmr.2020.10949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2019] [Indexed: 11/05/2022] Open
Abstract
NOVA alternative splicing regulator 1 (NOVA1) dysregulation has been detected in the gastric cancer microenvironment. Decreased NOVA1 expression has been linked to the progression and poor prognosis of gastric cancer; however, the role of NOVA1 in regulating epithelial‑mesenchymal transition (EMT) remains unclear in this disease. Experimental evidence has shown that miR‑27a‑3p is a potential oncogene in gastric cancer. In the present study, we observed that miR‑27a‑3p expression was increased in gastric cancer and was inversely associated with overall survival. Overexpression of miR‑27a‑3p promoted EMT in AGS gastric cancer cells. Additionally, overexpression of miR‑27a‑3p inhibited NOVA1 expression, while silencing of NOVA1 promoted EMT in AGS cells. A total of 108 gastric cancer samples were examined for NOVA1 expression by immunohistochemistry. Decreased NOVA1 expression was linked to lymph node metastasis, tumor‑node‑metastasis stage and shorter overall survival. Therefore, these results indicated that NOVA1 could be a potential tumor suppressive gene and that miR‑27a‑3p promotes EMT by targeting NOVA1 in gastric cancer.
Collapse
Affiliation(s)
- Kai Li
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiangrong Zhu
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| | - Xihua Chen
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| | - Xiongtie Wang
- Department of General Surgery, Cixi People's Hospital, Cixi, Zhejiang 315300, P.R. China
| |
Collapse
|
29
|
Chen S, Zhang JY, Sun LS, Li XF, Bai JY, Zhang HY, Li TJ. miR-762 Promotes Malignant Development of Head and Neck Squamous Cell Carcinoma by Targeting PHLPP2 and FOXO4. Onco Targets Ther 2019; 12:11425-11436. [PMID: 31920332 PMCID: PMC6935361 DOI: 10.2147/ott.s221442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is among the most common malignant tumors worldwide. This study, investigated the role of microRNA (miR)-762 in regulating HNSCC progression. Materials and methods The expression levels of miR-762 in HNSCC tissues were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Statistical analyses were performed to investigate the association of miR-762 with clinicopathological features in patients with HNSCC. Cell proliferation and migration were examined by cell counting (CCK-8) and IncuCyte assays. Target genes of miR-762 were screened using bioinformatics tools and microarrays, and confirmed using a luciferase activity reporter assay, qRT-PCR and Western blot analysis. Recuse experiments were performed to detect whether target genes mediated the effects of miR-762 on HNSCC cells. The in vivo effects of miR-762 were verified using tumor xenografts. Results HNSCC clinical specimens showed high expression levels of miR-762, which positively correlated with tumor-node-metastasis (TNM) stage and poor prognosis of HNSCC. miR-762 overexpression promoted the proliferation and migration of HNSCC cells in vitro. In addition, overexpression of miR-762 upregulated the expression of phosphorylated AKT (p-AKT) and mesenchymal markers (N-cadherin and vimentin), but suppressed epithelial marker (E-cadherin) expression. miR-762 also promoted HNSCC tumor growth in vivo. PH domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) and Forkhead box O4 (FOXO4) were direct target genes of miR-762. HNSCC tissues had low expression levels of PHLPP2 and FOXO4, showing a negative correlation with miR-762 expression. Moreover, silencing of PHLPP2 and FOXO4 mimicked the tumor-promotive effects of miR-762 on HNSCC cells. Notably, overexpression of PHLPP2 and FOXO4 abolished the pro-tumoral function of miR-762 on cell proliferation and migration. Conclusion miR-762 promotes HNSCC progression by targeting PHLPP2 and FOXO4. Therefore, miR-762 might be a potential diagnostic or therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Jian-Yun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Li-Sha Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Xue-Fen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Jia-Ying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - He-Yu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Tie-Jun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
30
|
Wang H, Gu R, Tian F, Liu Y, Fan W, Xue G, Cai L, Xing Y. PHLPP2 as a novel metastatic and prognostic biomarker in non-small cell lung cancer patients. Thorac Cancer 2019; 10:2124-2132. [PMID: 31571378 PMCID: PMC6825916 DOI: 10.1111/1759-7714.13196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background PH domain and leucine‐rich repeat protein phosphatase 2 (PHLPP2) has been reported to be a potent tumor suppressor in many human cancers. However, PHLPP2 has not been fully researched as a putative clinical prognostic biomarker of lung cancer. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases including data on 1383 non‐small cell lung cancer (NSCLC) patients were used to determine PHLPP2 expression. PHLPP2 expression was then examined by immunohistochemistry, and its clinical significance analyzed in 134 NSCLC patients, including 73 patients with adenocarcinoma and 81 with squamous cell carcinoma. Results We found PHLPP2 expression to be less pronounced in NSCLC tissue samples than that in nontumoral lung tissues according to data taken from TCGA and GEO datasets; this outcome was further validated by immunohistochemistry assay. The low PHLPP2 expression level was found to be associated with the presence of lymph node metastasis (P = 0.003). Importantly, PHLPP2 was found to be an independent indicator of prognosis for overall (hazard ratio [HR] = 0.520, 95% confidence interval [Cl] = 0.327–0.827; P = 0.006) and disease‐free survival (HR = 0.489, 95% Cl = 0.308–0.775; P = 0.002) in patients with surgically‐resected NSCLC by multivariate analysis. Conclusion Taken together, our findings show that PHLPP2 is a robust clinical marker for NSCLC survival and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ruixue Gu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiqin Xue
- General Surgical Department, The Fifth Hospital of Daqing, Daqing, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
31
|
Zhang C, Zou Y, Dai DQ. Downregulation of microRNA-27b-3p via aberrant DNA methylation contributes to malignant behavior of gastric cancer cells by targeting GSPT1. Biomed Pharmacother 2019; 119:109417. [PMID: 31539861 DOI: 10.1016/j.biopha.2019.109417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetics play a vital role in the initiation and development of cancers, including gastric cancer (GC). In the present study, we aimed to explore potential up- and downstream mechanisms of miR-27b-3p in GC. METHODS The expression level of miR-27b-3p in GC cells and tissues (n = 80) was measured by quantitative RT-PCR. The mimics, inhibitors, and negative controls of miR-27b-3p were transfected into cell lines to perform the gain and loss of function study. Cell proliferation, migration, and invasion assays were utilized to assess biological behaviors caused by miR-27b-3p in vitro. Common target genes were predicted using four biological software programs and used for gene functional enrichment analysis. GSPT1 was selected for target gene verification using dual luciferase assays and its expression level was detected by western blot. The MKN-45 cell line was treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and the methylation level was measured by methylation-specific PCR (MSP). RESULTS miR-27b-3p was significantly downregulated in the GC cell lines and tissues compared with the normal group. The expression of miR-27b-3p was determined to be negatively associated with TNM stage and tumor size using statistical analysis. Overexpression of miR-27b-3p inhibited MKN-45 and SGC-7901 cell proliferation, invasion, and migration. Gene functional enrichment analysis indicated that the target genes were involved in several signaling pathways. Dual luciferase assays showed that miR-27b-3p combined with the 3'-untranslated region of GSPT1 mRNA. MSP demonstrated that miR-27b-3p promoter CpG island was hyper-methylated and 5-Aza-dC was able to partially reverse the methylation. CONCLUSIONS Our study data indicated that miR-27b-3p is downregulated by aberrant DNA methylation in GC. In addition, miR-27b-3p suppresses GC cell proliferation, invasion, and migration via negative expression regulation of GSPT1, which could be a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan Road, Shenyang, 110032, China
| | - Ying Zou
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan Road, Shenyang, 110032, China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan Road, Shenyang, 110032, China.
| |
Collapse
|
32
|
Li Z, Guo Q, Lu Y, Tian T. Increased expression of miR-181d is associated with poor prognosis and tumor progression of gastric cancer. Cancer Biomark 2019; 26:353-360. [PMID: 31524144 DOI: 10.3233/cbm-190091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aberrant expression of miR-181d has been noted in multiple human cancers, but its role in gastric cancer (GC) remains unclear. The aim of this study was to investigate the expression, clinical significance and functional role of miR-181d in GC. We applied quantitative real-time polymerase chain reaction (qRT-PCR) to quantify the expression of miR-181d in 131 GC tissues, as well as in GC cell lines. The correlation of miR-181d expression with overall survival of GC patients was analyzed using the Kaplan-Meier survival method. Cox regression analysis was conducted to further determine the prognostic value of miR-181d in GC. Cellular functional experiments were carried out to calculate the effect that miR-181d had on GC behaviors. MiR-181d expression was significantly up-regulated in both GC tissues and cells (all P< 0.001), and correlated with TNM stage and lymph node metastasis (all P< 0.05). GC patients in the high miR-181d expression group had shorter survival time than those in the low miR-181d expression group (log-rank P< 0.001). Multivariate Cox regression analysis demonstrated that miR-181d expression and TNM stage were two independent prognostic markers for GC. Overexpression of miR-181d significantly promoted the NCI-N87 and MGC-803 cells proliferation, migration and invasion (all P< 0.05). MiR-181d serves a role as an oncogene in GC by promoting tumor progression. And miR-181d might be a novel predictive marker for the prognosis of GC patients.
Collapse
Affiliation(s)
- Zhichun Li
- Department of General Surgery, Caoxian people's Hospital, Heze, Shandong, China.,Department of General Surgery, Caoxian people's Hospital, Heze, Shandong, China
| | - Qingbo Guo
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Shandong, China.,Department of General Surgery, Caoxian people's Hospital, Heze, Shandong, China
| | - Yugang Lu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tian Tian
- Department of General Medicine, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
33
|
Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front Oncol 2019; 9:893. [PMID: 31572683 PMCID: PMC6751266 DOI: 10.3389/fonc.2019.00893] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of highly conserved, non-coding single-stranded RNAs transcribed as ~70 nucleotide precursors to an 18–22 nucleotide product (1). miRNAs can silence their homologous target genes at the post-transcriptional level, and these genes have been revealed to play an important role in tumorigenesis, invasion and metastasis (2). MicroRNA-27a (miR-27a), transcripted by miR-27a gene, has proved to implicate with many kinds of solid tumors, showing potential as a useful biomarker or drug target for clinical application. However, even though miR-27a has been reported in many cancers, the mechanism and signal pathways of miR-27 in oncogenesis, invasion, and metastasis are still obscure. Moreover, recent studies show that miR-27a pays an important role in epithelial-mesenchymal-transition, regulating tumor immune response, and chemoresistance. In this review, we summarize the current literature, demonstrate the established link between miR-27a and tumorigenesis, and focus on recently identified mechanisms. The review also aims to demonstrate the potential of miR-27a as a diagnostic and/or prognostic biomarker in solid tumors and to discuss the possibilities of targeted therapy and drug design.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Abstract
Nickel is a naturally occurring element found in the Earth’s crust and an International Agency for Research on Cancer (IARC)-classified human carcinogen. While low levels found in the natural environment pose a minor concern, the extensive use of nickel in industrial settings such as in the production of stainless steel and various alloys complicate human exposure and health effects. Notably, interactions with nickel macromolecules, primarily through inhalation, have been demonstrated to promote lung cancer. Mechanisms of nickel-carcinogenesis range from oxidative stress, DNA damage, and hypoxia-inducible pathways to epigenetic mechanisms. Recently, non-coding RNAs have drawn increased attention in cancer mechanistic studies. Specifically, nickel has been found to disrupt expression and functions of micro-RNAs and long-non-coding RNAs, resulting in subsequent changes in target gene expression levels, some of which include key cancer genes such as p53, MDM2, c-myc, and AP-1. Non-coding RNAs are also involved in well-studied mechanisms of nickel-induced lung carcinogenesis, such as the hypoxia-inducible factor (HIF) pathway, oxidative stress, DNA damage and repair, DNA hypermethylation, and alterations in tumor suppressors and oncogenes. This review provides a summary of the currently known epigenetic mechanisms involved in nickel-induced lung carcinogenesis, with a particular focus on non-coding RNAs.
Collapse
|
35
|
Xu Z, Yu Z, Tan Q, Wei C, Tang Q, Wang L, Hong Y. MiR-876-5p regulates gastric cancer cell proliferation, apoptosis and migration through targeting WNT5A and MITF. Biosci Rep 2019; 39:BSR20190066. [PMID: 31171711 PMCID: PMC6597843 DOI: 10.1042/bsr20190066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to play critical roles in various cancers. Recently, mounting miRNAs are found to exert oncogenic or tumor inhibitory role in gastric cancer (GC), however, their potential molecular mechanism in GC remains ill-defined. Currently, we aimed to elucidate the functional and mechanistic impacts of a novel miRNA on GC cellular process. The significant down-regulation of miR-876-5p in GC cells attracted our attention. In function, we performed gain-of-function assays and found that miR-876-5p overexpression repressed proliferative, anti-apoptotic and migratory abilities and epithelial-mesenchymal transition (EMT) of GC cells. By applying bioinformatics prediction and mechanism experiments, we verified that miR-876-5p could double-bind to the 3' untranslated regions (3'UTRs) of Wnt family member 5A (WNT5A) and melanogenesis associated transcription factor (MITF), thus regulating their mRNA and protein levels. Both WNT5A and MITF were highly expressed in GC cells. Additionally, we conducted loss-of-function assays and confirmed the oncogenic roles of WNT5A and MITF in GC. Finally, rescue assay uncovered a fact that miR-876-5p suppressed GC cell viability and migration, but induced cell apoptosis via targeting WNT5A and MITF. Taken together, we might offer a valuable evidence for miR-876-5p role in GC development.
Collapse
Affiliation(s)
- Zhenglei Xu
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Zhichao Yu
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Qinghong Tan
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Cheng Wei
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Qi Tang
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Lisheng Wang
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Yingcai Hong
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
36
|
Zhang LY, Chen Y, Jia J, Zhu X, He Y, Wu LM. MiR-27a promotes EMT in ovarian cancer through active Wnt/𝜷-catenin signalling by targeting FOXO1. Cancer Biomark 2019; 24:31-42. [PMID: 30614794 DOI: 10.3233/cbm-181229] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ovarian cancer (OC) is the fifth most common type of cancer in women worldwide. MiR-27a plays an important role in the development of ovarian cancer. However, the exact function and molecular mechanism of miR-27a in epithelial-mesenchymal transition (EMT) has not been thoroughly elucidated to date. METHODS Quantitative real-time PCR (qRT-PCR) was used to determine the expression of miR-27a and FOXO1 mRNA in ovarian tissues and cells. The function of miR-27a in ovarian cancer was investigated through overexpression and knockdown of miR-27a in vitro. Wound healing and Transwell assays were performed to evaluate the migration and invasive capacity of the cells. A luciferase reporter assay was conducted to confirm the interaction between miR-27a and FOXO1. Western blotting was used to evaluate FOXO1, EMT and Wnt/β-catenin relative protein expression. RESULTS In our study, we found that the mRNA expression level of miR-27a was significantly higher in ovarian cancer tissues and in HO8910 and OV90 cells. Functional experiments showed that miR-27a overexpression potentiated the migration and invasion of HO8910 and OV90 cells, while miR-27a inhibition reduced the cells' migration and invasion. Moreover, miR-27a upregulated the expression of mesenchymal cell markers and downregulated the expression of epithelial cell markers, which were restored via silencing of miR-27a expression. Subsequently, miR-27a was found to directly target and suppress the expression of FOXO1. Finally, we demonstrated that miR-27a promoted the progression of ovarian cancer cells and induced the process of EMT via the Wnt/β-catenin signalling pathway through inhibition of FOXO1. CONCLUSIONS Taken together, these results indicate that targeting miR-27a and FOXO1 could represent a strategy for anticancer therapy in ovarian cancer.
Collapse
Affiliation(s)
- Li-Ya Zhang
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Yuan Chen
- Huizhou College of Life Sciences, Huizhou, Guangdong 516001, China
| | - Jue Jia
- Department of Gynecology, Shandong Provincial Tumor Hospital, Jinan, Shandong 250117, China
| | - Xi Zhu
- Department of Gynecology, Shenyang Maternal and Child Hospital, Shenyang, Liaoning 110000, China
| | - Yan He
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| | - Li-Ming Wu
- Department of Gynecology, Huizhou No. 2 Women's and Children's Healthcare Hospital, Huizhou, Guangdong 516001, China
| |
Collapse
|
37
|
Relationship between microRNA-27a and efficacy of neoadjuvant chemotherapy in gastric cancer and its mechanism in gastric cancer cell growth and metastasis. Biosci Rep 2019; 39:BSR20181175. [PMID: 30902884 PMCID: PMC6527950 DOI: 10.1042/bsr20181175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of the present study is to investigate the relationship between microRNA-27a (miR-27a) and the efficacy of neoadjuvant chemotherapy in gastric cancer (GC) and its mechanism in the growth and metastasis of GC cells. Methods: The expression of miR-27a in serum of 74 GC patients received neoadjuvant chemotherapy was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Clinical value and prognosis of miR-27a expression in predicting the efficacy of neoadjuvant chemotherapy in GC were evaluated. Besides, GC cells with low miR-27a expression were transfected with miR-27a mimics, and cells with high miR-27a expression were transfected with miR-27a inhibitors and secreted frizzled-related protein 1 (SFRP1) siRNA. A series of experiments were applied for the determination of cell viability, invasion and migration of GC cells. Results: After neoadjuvant chemotherapy, the expression of miR-27a in serum of GC patients decreased significantly. Additionally, the expression of miR-27a in GC cell line was significantly higher than that in normal gastric mucosa cell line. Meanwhile, after down-regulating the expression of miR-27a in GC cells, the mRNA and protein expression of SFRP1 increased, the proliferation rate of cells slowed down, and the ability of invasion and migration decreased. Furthermore, combined with low expression of miR-27a and SFRP1, the proliferation rate of GC cells increased and the ability of invasion and migration increased. Conclusion: Collectively, our study highlights that the high expression of miR-27a indicates the poor efficacy and prognosis of neoadjuvant chemotherapy in GC patients. Down-regulation of miR-27a can inhibit the growth and metastasis of GC cells via up-regulation of SFRP1.
Collapse
|
38
|
Tang H, Xu X, Xiao W, Liao Y, Xiao X, Li L, Li K, Jia X, Feng H. Silencing of microRNA-27a facilitates autophagy and apoptosis of melanoma cells through the activation of the SYK-dependent mTOR signaling pathway. J Cell Biochem 2019; 120:13262-13274. [PMID: 30994959 DOI: 10.1002/jcb.28600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
Melanoma is considered as an aggressive neoplastic transformation and featured with high metastatic potential. Although some studies have provided targets for novel therapeutic interventions, clinical development of targeted drugs for melanoma still remains obscure. Therefore, this study aims to identify the role of microRNA-27a (miR-27a) in autophagy and apoptosis of melanoma cells in regulating spleen tyrosine kinase (SYK)-mediated the mammalian target of rapamycin (mTOR) signaling pathway. A microarray-based analysis was made to screen differentially expressed genes and predict target miRNA. Melanoma specimens were collected with pigmented nevus as a control. Melanoma cell line Mel-RM was treated with miR-27a inhibitor or pcDNA-SYK to prove their effects on autophagy and apoptosis of melanoma cells. The volume change and tumor mass of nude mice in each group were detected by the tumorigenesis assay. Microarray-based analysis results showed that SYK was lowly expressed in melanoma cells and may be regulated by miR-27a. Besides, miR-27a expression was increased whereas SYK expression was decreased in melanoma tissues. Meanwhile, miR-27a was positively correlated with tumor stage and lymph node metastasis of melanoma tissues. Furthermore, miR-27a targeted SYK and silencing of miR-27a or overexpression of SYK cells promoted autophagy and apoptosis of melanoma cells and reduced their tumorigenic ability in vivo. In conclusion, this study proves that silencing of miR-27a facilitates autophagy and apoptosis of melanoma cells by upregulating SYK expression and activating the mTOR signaling pathway. The finding offers new ideas for the clinical development of melanoma.
Collapse
Affiliation(s)
- Hua Tang
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xiaopeng Xu
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Weirong Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Lan Li
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Ke Li
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xiaomin Jia
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
39
|
Wang R, Sun Y, Yu W, Yan Y, Qiao M, Jiang R, Guan W, Wang L. Downregulation of miRNA-214 in cancer-associated fibroblasts contributes to migration and invasion of gastric cancer cells through targeting FGF9 and inducing EMT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:20. [PMID: 30646925 PMCID: PMC6334467 DOI: 10.1186/s13046-018-0995-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs), one of the principal constituents of the tumor microenvironment, have a pivotal role in tumor progression. Dysregulation of microRNAs (miRNAs) in CAFs contributes to the tumor-promoting ability of CAFs. However, the mechanism underlying the involvement of miRNAs in CAFs of gastric cancer (GC) is not fully understood. This study aimed to explore the effects of miRNA-214 in CAFs on GC migration and invasion. Methods The primary CAFs and corresponding normal fibroblasts (NFs) were isolated. Cell counting kit-8, EdU cell proliferation staining and Transwell assays were used to determine the role of miRNA-214 in GC progression. Real-time polymerase chain reaction, Western blot analysis, and dual-luciferase reporter assay were performed to verify the target genes of miRNA-214. Immunofluorescence and Western blot analysis were applied to detect the expression of epithelial–mesenchymal transition (EMT) markers. Immunohistochemistry and in situ hybridization were implemented to analyze the fibroblast growth factor 9 (FGF9) and miRNA-214 expression in human GC tissues, respectively. Finally, to assess its prognostic relevance, Kaplan–Meier survival analysis was conducted. Results MiRNA-214 was significantly downregulated in CAFs of GC compared with NFs. The upregulation of miRNA-214 in CAFs inhibited GC cell migration and invasion in vitro but failed to affect proliferation. Moreover, GC cells cultured with conditioned medium from CAFs transfected with miR-214 mimic showed increased expression of E-cadherin and decreased expression of Vimentin, N-cadherin and Snail, indicating the suppression of EMT of GC cells. Furthermore, FGF9 was proved to be a direct target gene of miR-214. The expression of FGF9 was higher in CAFs than that in tumor cells not only in primary tumor but also in lymph node metastatic sites (30.0% vs 11.9%, P < 0.01 and 32.1% vs 12.3%, P < 0.01, respectively). Abnormal expression of FGF9 in CAFs of lymph node metastatic sites was significantly associated with poor prognosis in patients with GC (P < 0.05). Conclusions This study showed that miR-214 inhibited the tumor-promoting effect of CAFs on GC through targeting FGF9 in CAFs and regulating the EMT process in GC cells, suggesting miRNA-214/FGF9 in CAFs as a potential target for therapeutic approaches in GC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0995-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruifen Wang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yeqi Sun
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wenwei Yu
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yu Yan
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Meng Qiao
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Ruiqi Jiang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wenbin Guan
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Lifeng Wang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
40
|
Yan L, Zhang J, Guo D, Ma J, Shui SF, Han XW. IL-21R functions as an oncogenic factor and is regulated by the lncRNA MALAT1/miR-125a-3p axis in gastric cancer. Int J Oncol 2018; 54:7-16. [PMID: 30387833 PMCID: PMC6255062 DOI: 10.3892/ijo.2018.4612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-21 receptor (IL-21R) is involved in the immunological regulation of immune cells and tumor progression in multiple malignancies. However, the potential molecular mechanisms through which non-coding RNAs (ncRNAs) modulate IL-21R signaling in gastric cancer (GC) remain elusive. In this study, the expression of IL-21R was detected by RT-qPCR and western blot analysis in GC cell lines. The association between IL-21R expression and clinicopathological characteristics and the prognosis of patients with GC was analyzed by immunohistochemistry and Kaplan-Meier plotter analysis. The biological functions of IL-21R were analyzed by a series of in vitro and in vivo experiments, and its regulation by ncRNAs was predicted by bioinformatics analysis and confirmed by luciferase assays and rescue experiments. As a result, the expression of IL-21R was found to be significantly increased in GC cell lines and tissues as compared with normal tissues, and was associated with tumor size and lymphatic metastasis, acting as an independent prognostic factor of poor survival and recurrence in patients with GC. The knockdown of IL-21R markedly suppressed GC cell proliferation and invasion, and IL-21R expression was further validated to be negatively regulated by miR-125a-3p (miR-125a). The overexpression of IL-21R reversed the tumor suppressive effects of miR-125a in vitro and in vivo. Moreover, lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) acted as a sponge of miR-125a to modulate the IL-21R signaling pathway in GC cells and represented a risk factor for survival and recurrence in patients with GC. Taken together, the findings of this study reveal an oncogenic role for IL-21R in gastric tumorigenesis and verify that its activation is partly due to the dysregulation of the lncRNA MALAT1/miR-125a axis. These findings may provide a potential prognostic marker for patients with GC.
Collapse
Affiliation(s)
- Lei Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ji Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Shao-Feng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
41
|
Zhang W, Sun Z, Su L, Wang F, Jiang Y, Yu D, Zhang F, Sun Z, Liang W. miRNA-185 serves as a prognostic factor and suppresses migration and invasion through Wnt1 in colon cancer. Eur J Pharmacol 2018; 825:75-84. [PMID: 29454608 DOI: 10.1016/j.ejphar.2018.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 02/06/2023]
Abstract
Colon cancer is one of the deadliest cancers worldwide; abnormal microRNA expression is common during colon cancer development. The aim of the present study was to elucidate the role played by miR-185 in this context. We used quantitative real-time PCR (qRT-PCR) to measure miR-185 expression levels in colon cancer cell lines. The effects of miR-185 on colon cancer cell proliferation and invasion were assessed using the MTT, colony-forming, wound-healing, and transwell assays. A luciferase activity assay was used to confirm the target of miR-185. Our data showed that miR-185 was significantly down-regulated in colon cancer cells and colonic cancer tissues compared with NCM460 normal colonic epithelial cells and adjacent normal tissues. A functional analysis revealed that ectopic expression of miR-185 significantly inhibited colon cancer cell proliferation, colony formation, migration, and invasion. In addition, western blot, qRT-PCR, and luciferase assays confirmed in colon cancer cells that Wnt1 was a downstream target of miR-185, in turn suppressing β-catenin-mediated signaling. In conclusion, we found that miR-185 inhibits colon cancer cell proliferation and invasion by targeting Wnt1, and that it serves as a tumor suppressor, indicating that the modulation of miR-185 levels may potentially be therapeutic in colon cancer patients.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Zheng Sun
- Department of Endocrinology, The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Liang Su
- Department of Oncology, Medical College of Dalian University, Dalian 116622, China
| | - Feng Wang
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Yiming Jiang
- Department of Oncology, Medical College of Dalian University, Dalian 116622, China
| | - Dengfeng Yu
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Fujie Zhang
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Zhe Sun
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Wenbo Liang
- Department of Oncology, Medical College of Dalian University, Dalian 116622, China.
| |
Collapse
|
42
|
Xu X, Gao F, Wang J, Tao L, Ye J, Ding L, Ji W, Chen X. MiR-122-5p inhibits cell migration and invasion in gastric cancer by down-regulating DUSP4. Cancer Biol Ther 2018; 19:427-435. [PMID: 29509059 DOI: 10.1080/15384047.2018.1423925] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To explore the relationship between miR-122-5p and DUSP4 and their effects on gastric cancer (GC) cell mobility and invasiveness. METHODS Abnormally expressed miRNAs and mRNAs were analyzed using microarrays. The miR-122-5p and DUSP4 mRNA expression levels in GC tissues and cells were determined by RT-qPCR. The target relationship between miR-122-5p and DUSP4 was validated by dual luciferase reporter assay. GC cell mobility and invasiveness were respectively observed by wound healing assay and transwell invasion assay. Western blot and immunohistochemistry were used for detection of the expressions of DUSP4 protein and MMP2 and MMP9 proteins related to cell invasion and migration. The migration and invasion abilities of gastric cancer cells in vivo were evaluated according to the number of lung metastatic nodules in mice. RESULTS The expression of miR-122-5p in GC tissues and cells was significantly down-regulated, whereas DUSP4 expression was up-regulated. Bioinformatics prediction strategies and dual luciferase reporter assay verified the binding sites of miR-122-5p on 3'UTR of DUSP4 and the target relationship between miR-122-5p and DUSP4. Overexpression of miR-122-5p and knockdown of DUSP4 in BGC-823 cells observantly suppressed GC cell mobility and invasiveness, whereas downregulation of miR-122-5p expression promoted cell metastasis. MiR-122-5p inhibited GC cell mobility and invasiveness and pulmonary tumor metastasis via downregulation of DUSP4. CONCLUSION MiR-122-5p restrained migration and invasion abilities of GC cells by repressing DUSP4.
Collapse
Affiliation(s)
- Xiaofeng Xu
- a Department of Laboratory Medicine , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Feng Gao
- b Department of Gastroenterology , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Jianjiang Wang
- b Department of Gastroenterology , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Lan Tao
- c Department of Central Laboratory , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Jinsong Ye
- a Department of Laboratory Medicine , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Li Ding
- a Department of Laboratory Medicine , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Wei Ji
- a Department of Laboratory Medicine , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| | - Xing Chen
- d Department of Science and Education , Jingjiang People's Hospital , Jingjiang , Jiangsu , China
| |
Collapse
|
43
|
Ding K, Tan S, Huang X, Wang X, Li X, Fan R, Zhu Y, Lobie PE, Wang W, Wu Z. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J Biol Chem 2018; 293:3949-3964. [PMID: 29367342 DOI: 10.1074/jbc.ra117.001103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer remains a malignancy with poor survival outcome. We herein report that GSE1, a proline-rich protein, possesses a role in the progression of human gastric cancer. The expression of GSE1 was observed to be much higher in human gastric cancer tissues compared with normal gastric tissues, and GSE1 expression correlated positively with lymph node metastasis, histological grade, depth of invasion, and clinical stage in gastric cancer patients. Moreover, GSE1 expression was also associated with decreased post-operative relapse-free survival and overall survival in the cohort. The forced expression of GSE1 in gastric cancer cell lines resulted in increased cell proliferation, increased colony formation, enhanced cell migration, and invasion. Furthermore, forced expression of GSE1 also increased tumor size and enhanced lung metastasis in xenograft models. The depletion of endogenous GSE1 with shRNAs decreased the oncogenicity and invasiveness of gastric cancer cells both in vitro and in vivo In addition, GSE1 was determined to be a direct target of miR-200b and miR-200c. Furthermore, GSE1 positively regulated the downstream gene SLC7A5 (also known as LAT-1), which was scanned and verified from mRNA sequencing. GSE1 therefore possesses an oncogenic role in human gastric cancer, and targeted therapeutic approaches to inhibit GSE1 function in gastric cancer warrant further consideration.
Collapse
Affiliation(s)
- Keshuo Ding
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China.,the Department of Pathology and
| | - Sheng Tan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xing Huang
- the Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.,the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaonan Wang
- the Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | | | - Rong Fan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Zhu
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peter E Lobie
- the Tsinghua-Berkeley Shenzhen Institute and Division of Life Sciences and Health, Tsinghua University Graduate School, Shenzhen 518055, China, and.,the Cancer Science Institute of Singapore and Department of Pharmacology, National University Health System, National University of Singapore, Singapore 117599
| | - Wenbin Wang
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China,
| | | |
Collapse
|
44
|
Mirra P, Nigro C, Prevenzano I, Leone A, Raciti GA, Formisano P, Beguinot F, Miele C. The Destiny of Glucose from a MicroRNA Perspective. Front Endocrinol (Lausanne) 2018; 9:46. [PMID: 29535681 PMCID: PMC5834423 DOI: 10.3389/fendo.2018.00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases.
Collapse
Affiliation(s)
- Paola Mirra
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Cecilia Nigro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Immacolata Prevenzano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessia Leone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gregory Alexander Raciti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudia Miele
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Claudia Miele,
| |
Collapse
|
45
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
46
|
Liu X, Wang Y, Zhao J. MicroRNA-337 inhibits colorectal cancer progression by directly targeting KRAS and suppressing the AKT and ERK pathways. Oncol Rep 2017; 38:3187-3196. [DOI: 10.3892/or.2017.5997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022] Open
|