1
|
Le XY, Feng JB, Guo Y, Zhou YQ, Li CM. Predicting preoperative lymph node metastasis in esophageal cancer: Advancement and challenges. World J Clin Oncol 2025; 16:102863. [PMID: 40130042 PMCID: PMC11866083 DOI: 10.5306/wjco.v16.i3.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/21/2025] Open
Abstract
Accurate preoperative prediction of lymph node metastasis is crucial for developing clinical management strategies for patients with esophageal cancer. In this letter, we present our insights and opinions on a new nomogram proposed by Xu et al. Although this research has great potential, there are still concerns regarding the small sample size, limited consideration of biological complexity, subjective image segmentation, incomplete image feature extraction and statistical analyses. Furthermore, we discuss how to achieve more robust and accurate predictive performance in future research.
Collapse
Affiliation(s)
- Xing-Yan Le
- Department of Medical Imaging, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Jun-Bang Feng
- Department of Medical Imaging, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Yi Guo
- Department of Medical Imaging, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Yue-Qin Zhou
- Department of Medical Imaging, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| | - Chuan-Ming Li
- Department of Medical Imaging, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400014, China
| |
Collapse
|
2
|
Włodarczyk M, Maryńczak K, Burzyński J, Włodarczyk J, Basak J, Fichna J, Majsterek I, Ciesielski P, Spinelli A, Dziki Ł. The role of miRNAs in the pathogenesis, diagnosis, and treatment of colorectal cancer and colitis-associated cancer. Clin Exp Med 2025; 25:86. [PMID: 40091000 PMCID: PMC11911275 DOI: 10.1007/s10238-025-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
MicroRNAs (miRNAs) are a group of noncoding single-stranded RNA biomolecules that act in posttranscriptional regulation of gene expression. Their role in the development of inflammatory bowel disease (IBD), colitis-associated cancer (CAC), and colorectal cancer (CRC) is currently under investigation. A few miRNAs present promising results in terms of diagnostic or therapeutic use, for example, miR-21 increases in CRC and inflammation, while also being a possible target for cancer therapy; miR-301a increases in inflammation but only in patients with IBD; miR-31 increases in CRC, especially in advanced stages, namely III-IV in TNM scale; miR-200 family plays a role in carcinogenesis of CRC and other tumors; examined as a group, miR-31-5p, miR-223-3p, and let-7f-5p trigger and exacerbate CAC; miR-19a could potentially be used in therapy and prevention of both CRC and CAC. Here, we discuss available studies and outline future directions concerning the validity of using miRNAs in the diagnosis and/or therapy of IBD, CAC, and CRC. Extensive research confirms that miRNAs play an important role in the pathogenesis of CAC and CRC. Since the significantly altered expression of certain miRNAs is an early prognostic marker for the development of these diseases, miRNAs have the potential to serve as diagnostic tools, enabling quick and straightforward disease detection.
Collapse
Affiliation(s)
- Marcin Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jacek Burzyński
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Basak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Przemysław Ciesielski
- Department of General Surgery, Hospital of Our Lady of Perpetual Help in Wołomin, Wołomin, Poland
| | - Antonino Spinelli
- Colon and Rectal Surgery Division, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Rozzano, Italy
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
3
|
Cao L, Han R, Zhao Y, Qin X, Li Q, Xiong H, Kong Y, Liu Z, Li Z, Dong F, Li T, Zhao X, Lei L, Zhao Q, Liu D, Wang B, Wu X. A LATS2 and ALKBH5 positive feedback loop supports their oncogenic roles. Cell Rep 2024; 43:114032. [PMID: 38568805 DOI: 10.1016/j.celrep.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
N(6)-methyladenosine (m6A) critically regulates RNA dynamics in various biological processes. The m6A demethylase ALKBH5 promotes tumorigenesis of glioblastoma, while the intricate web that orchestrates its regulation remains enigmatic. Here, we discover that cell density affects ALKBH5 subcellular localization and m6A dynamics. Mechanistically, ALKBH5 is phosphorylated by the large tumor suppressor kinase 2 (LATS2), preventing its nuclear export and enhancing protein stability. Furthermore, phosphorylated ALKBH5 reciprocally erases m6A from LATS2 mRNA, thereby stabilizing this transcript. Unexpectedly, LATS2 depletion suppresses glioblastoma stem cell self-renewal independent of yes-associated protein activation. Additionally, deficiency in either LATS2 or ALKBH5 phosphorylation impedes tumor progression in mouse xenograft models. Moreover, high levels of LATS2 expression and ALKBH5 phosphorylation are associated with tumor malignancy in patients with gliomas. Collectively, our study unveils an oncogenic positive feedback loop between LATS2 and ALKBH5, revealing a non-canonical branch of the Hippo pathway for RNA processing and suggesting potential anti-cancer interventions.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ruohui Han
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Yingying Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiaoyang Qin
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Hui Xiong
- Department of Immunology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Yu Kong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ziyi Liu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Zexing Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Feng Dong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiujuan Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Lei Lei
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
4
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
Schiavoni G, Messina B, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Bon G, Maugeri-Saccà M. Role of Hippo pathway dysregulation from gastrointestinal premalignant lesions to cancer. J Transl Med 2024; 22:213. [PMID: 38424512 PMCID: PMC10903154 DOI: 10.1186/s12967-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND First identified in Drosophila melanogaster, the Hippo pathway is considered a major regulatory cascade controlling tissue homeostasis and organ development. Hippo signaling components include kinases whose activity regulates YAP and TAZ final effectors. In response to upstream stimuli, YAP and TAZ control transcriptional programs involved in cell proliferation, cytoskeletal reorganization and stemness. MAIN TEXT While fine tuning of Hippo cascade components is essential for maintaining the balance between proliferative and non-proliferative signals, pathway signaling is frequently dysregulated in gastrointestinal cancers. Also, YAP/TAZ aberrant activation has been described in conditions characterized by chronic inflammation that precede cancer development, suggesting a role of Hippo effectors in triggering carcinogenesis. In this review, we summarize the architecture of the Hippo pathway and discuss the involvement of signaling cascade unbalances in premalignant lesions of the gastrointestinal tract, providing a focus on the underlying molecular mechanisms. CONCLUSIONS The biology of premalignant Hippo signaling dysregulation needs further investigation in order to elucidate the evolutionary trajectories triggering cancer inititation and develop effective early therapeutic strategies targeting the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Giulia Schiavoni
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
6
|
Amano Y, Matsubara D, Kihara A, Yoshimoto T, Fukushima N, Nishino H, Mori Y, Niki T. The significance of Hippo pathway protein expression in oral squamous cell carcinoma. Front Med (Lausanne) 2024; 11:1247625. [PMID: 38444414 PMCID: PMC10912186 DOI: 10.3389/fmed.2024.1247625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The Hippo pathway consists of mammalian sterile 20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), and yes-associated protein (YAP)1. Herein, we present the first report on the significance of major Hippo pathway protein expression in oral squamous cell carcinoma (OSCC). Methods The analyses included oral epithelial dysplasia (OED, n = 7), carcinoma in situ (CIS, n = 14), and oral squamous cell carcinoma (OSCC, n = 109). Results Cytoplasmic expression of MST1, LATS1, and LATS2 was low in OED, CIS, and OSCC. The cytoplasmic expression of MST2 was high in OED (5/7 cases), CIS (9/14 cases), and poorly differentiated OSCC (8/8 cases) but was low/lost in a proportion of differentiated OSCC (60/101 cases). The expression of YAP1 was associated with differentiation; low YAP expression was significantly more frequent in well-differentiated OSCC (35/71 cases), compared to moderately and poorly differentiated OSCC (11/38 cases). An infiltrative invasion pattern was associated with a high expression of MST2 and high expression of YAP1. The high expression of YAP1 was associated with features of epithelial-to-mesenchymal transition (EMT), such as the loss of E-cadherin and high expression of vimentin, laminin 5, and Slug. High expression of protein arginine methyltransferase (PRMT) 1 or 5, which positively regulates YAP activity, was associated with the high expression of YAP1 (p < 0.0001). Conclusion Among the major Hippo pathway proteins, MST2 displayed a distinctive expression pattern in a significant proportion of differentiated OSCC, suggesting a possible differential role for MST2 depending on the course of OSCC progression. A high YAP1 expression may indicate aggressive OSCC with EMT via PRMTs at the invasive front.
Collapse
Affiliation(s)
- Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
- Department of Diagnostic Pathology, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Taichiro Yoshimoto
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Noriyoshi Fukushima
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Nishino
- Department of Otolaryngology, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Saitama Medical Center Jichi Medical University, Saitama, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
7
|
Sindhoo A, Sipy S, Khan A, Selvaraj G, Alshammari A, Casida ME, Wei DQ. ESOMIR: a curated database of biomarker genes and miRNAs associated with esophageal cancer. Database (Oxford) 2023; 2023:baad063. [PMID: 37815872 PMCID: PMC10563827 DOI: 10.1093/database/baad063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 10/12/2023]
Abstract
'Esophageal cancer' (EC) is a highly aggressive and deadly complex disease. It comprises two types, esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), with Barrett's esophagus (BE) being the only known precursor. Recent research has revealed that microRNAs (miRNAs) play a crucial role in the development, prognosis and treatment of EC and are involved in various human diseases. Biological databases have become essential for cancer research as they provide information on genes, proteins, pathways and their interactions. These databases collect, store and manage large amounts of molecular data, which can be used to identify patterns, predict outcomes and generate hypotheses. However, no comprehensive database exists for EC and miRNA relationships. To address this gap, we developed a dynamic database named 'ESOMIR (miRNA in esophageal cancer) (https://esomir.dqweilab-sjtu.com)', which includes information about targeted genes and miRNAs associated with EC. The database uses analysis and prediction methods, including experimentally endorsed miRNA(s) information. ESOMIR is a user-friendly interface that allows easy access to EC-associated data by searching for miRNAs, target genes, sequences, chromosomal positions and associated signaling pathways. The search modules are designed to provide specific data access to users based on their requirements. Additionally, the database provides information about network interactions, signaling pathways and region information of chromosomes associated with the 3'untranslated region (3'UTR) or 5'UTR and exon sites. Users can also access energy levels of specific miRNAs with targeted genes. A fuzzy term search is included in each module to enhance the ease of use for researchers. ESOMIR can be a valuable tool for researchers and clinicians to gain insight into EC, including identifying biomarkers and treatments for this aggressive tumor. Database URL https://esomir.dqweilab-sjtu.com.
Collapse
Affiliation(s)
- Asma Sindhoo
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road Minhang District, Shanghai 200240, PR China
| | - Saima Sipy
- Sindh Madressatul Islam University, Karachi, Sindh 74600, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road Minhang District, Shanghai 200240, PR China
- State Key Laboratory of Microbial Metabolism, Shanghai–Islamabad–Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai, Minhang 200030, PR China
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modelling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mark Earl Casida
- Laboratoire de Spectrom´etrie, Interactions et Chimie th´eorique (SITh), D´epartement de Chimie Mol´eculaire (DCM, UMR CNRS/UGA 5250), Institut de Chimie Mol´eculaire de Grenoble (ICMG, FR2607), Universit´e Grenoble Alpes (UGA), 301 rue de la Chimie BP 53, Grenoble Cedex F-38041, France
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Dongchuan Road Minhang District, Shanghai 200240, PR China
- State Key Laboratory of Microbial Metabolism, Shanghai–Islamabad–Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai, Minhang 200030, PR China
- Peng Cheng Laboratory, Phase I Building 8, Xili Street, Montreal, Vanke Cloud City, Nashan District, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
8
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
9
|
Ooki A, Osumi H, Chin K, Watanabe M, Yamaguchi K. Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther Adv Med Oncol 2023; 15:17588359221138377. [PMID: 36872946 PMCID: PMC9978325 DOI: 10.1177/17588359221138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/21/2022] [Indexed: 01/15/2023] Open
Abstract
Esophageal cancer (EC) remains a public health concern with a high mortality and disease burden worldwide. Esophageal squamous cell carcinoma (ESCC) is a predominant histological subtype of EC that has unique etiology, molecular profiles, and clinicopathological features. Although systemic chemotherapy, including cytotoxic agents and immune checkpoint inhibitors, is the main therapeutic option for recurrent or metastatic ESCC patients, the clinical benefits are limited with poor prognosis. Personalized molecular-targeted therapies have been hampered due to the lack of robust treatment efficacy in clinical trials. Therefore, there is an urgent need to develop effective therapeutic strategies. In this review, we summarize the molecular profiles of ESCC based on the findings of pivotal comprehensive molecular analyses, highlighting potent therapeutic targets for establishing future precision medicine for ESCC patients, with the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31
Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Keisho Chin
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| |
Collapse
|
10
|
Abbas MA, El Sayed IET, Kamel Abdu-Allah AM, Kalam A, Al-Sehemi AG, Al-Hartomy OA, Salah Abd El-rahman M. Expression of MiRNA-29b and MiRNA-31 and their diagnostic and prognostic values in Egyptian females with breast cancer. Noncoding RNA Res 2022; 7:248-257. [PMID: 36247409 PMCID: PMC9530401 DOI: 10.1016/j.ncrna.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is a major health threat to women globally. Many circulating microRNAs are non-invasive cancer biomarkers. In this study, the expression of miR-29b and miR-31 was assessed in blood samples from 200 patients with breast cancer and wholesome volunteer women using quantitative reverse transcriptase PCR to evaluate their role in the disease. MiR-29b was significantly overexpressed in patients compared to controls. Multivariate regression analysis showed that it was an established risk factor for relapse and mortality. MiR-31 was significantly under-expressed in patients. It was an established risk factor for relapse and was strongly associated with mortality. For the prediction of relapse, miR-29b had a sensitivity of 81.25% and a specificity of 88.24% at a cutoff of > 30.09, while miR-31 had a sensitivity of 87.50% and a specificity of 79.41% at a cutoff of 0.12. The specificity was enhanced to 100% by combining the values of miR-29b and miR-31. In predicting mortality, miR-29b exhibited a sensitivity of 90% and a specificity of 97.5% at a cutoff of > 48.10. At a cutoff of 0.119, miR-31 exhibited a sensitivity of 87.50% and a specificity of 79.41%. High miR-29b expression and low miR-31 expression were linked with a low survival rate. MiR-29b and miR-31 could be useful markers for predicting breast cancer relapse and mortality.
Collapse
|
11
|
Mbatha S, Hull R, Dlamini Z. Exploiting the Molecular Basis of Oesophageal Cancer for Targeted Therapies and Biomarkers for Drug Response: Guiding Clinical Decision-Making. Biomedicines 2022; 10:biomedicines10102359. [PMID: 36289620 PMCID: PMC9598679 DOI: 10.3390/biomedicines10102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Worldwide, oesophageal cancer is the sixth leading cause of deaths related to cancer and represents a major health concern. Sub-Saharan Africa is one of the regions of the world with the highest incidence and mortality rates for oesophageal cancer and most of the cases of oesophageal cancer in this region are oesophageal squamous cell carcinoma (OSCC). The development and progression of OSCC is characterized by genomic changes which can be utilized as diagnostic or prognostic markers. These include changes in the expression of various genes involved in signaling pathways that regulate pathways that regulate processes that are related to the hallmarks of cancer, changes in the tumor mutational burden, changes in alternate splicing and changes in the expression of non-coding RNAs such as miRNA. These genomic changes give rise to characteristic profiles of altered proteins, transcriptomes, spliceosomes and genomes which can be used in clinical applications to monitor specific disease related parameters. Some of these profiles are characteristic of more aggressive forms of cancer or are indicative of treatment resistance or tumors that will be difficult to treat or require more specialized specific treatments. In Sub-Saharan region of Africa there is a high incidence of viral infections such as HPV and HIV, which are both risk factors for OSCC. The genomic changes that occur due to these infections can serve as diagnostic markers for OSCC related to viral infection. Clinically this is an important distinction as it influences treatment as well as disease progression and treatment monitoring practices. This underlines the importance of the characterization of the molecular landscape of OSCC in order to provide the best treatment, care, diagnosis and screening options for the management of OSCC.
Collapse
Affiliation(s)
- Sikhumbuzo Mbatha
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Department of Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| |
Collapse
|
12
|
Cordycepin Inhibits Growth and Metastasis Formation of MDA-MB-231 Xenografts in Nude Mice by Modulating the Hedgehog Pathway. Int J Mol Sci 2022; 23:ijms231810362. [PMID: 36142286 PMCID: PMC9499653 DOI: 10.3390/ijms231810362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/23/2022] Open
Abstract
We previously found that cordycepin inhibits the growth and metastasis formation of MDA-MB-231 cells through the Hedgehog pathway but has not validated this in vivo. In this study, we confirmed cordycepin’s anti-triple-negative breast cancer (TNBC) effect in nude mice and documented its mechanism. We found that cordycepin reduced the volume and weight of MDA-MB-231 xenografts and affected the expression of proliferation-, apoptosis-, epithelial–mesenchymal transition-, and matrix metalloproteinase-related proteins without side effects. RNA sequencing screening, pathway enrichment, and the protein network interaction analysis revealed enriched pathways and targets mainly concentrated on the Hedgehog pathway and its core components of SHH and GLI2. This indicates that the Hedgehog pathway plays a central role in the cordycepin-mediated regulation of growth and metastasis formation in TNBC. The database analysis of the Hedgehog pathway markers (SHH, PTCH1, SMO, GLI1, and GLI2) revealed that the Hedgehog pathway is activated in breast cancer tissues, and its high expression is not conducive to a patient’s survival. Finally, we verified that cordycepin effectively inhibited the Hedgehog pathway in TNBC through Western blotting and immunohistochemistry. This study found that cordycepin could regulate the growth and metastasis formation of TNBC through the Hedgehog pathway in vivo, which provides new insights for targeting and treating breast cancer.
Collapse
|
13
|
Zhu M, Liao G, Wang Y, Mo J, Yi D, Zhang Y, Xian L. Identifying LATS2 as a prognostic biomarker relevant to immune infiltrates in human esophageal squamous cell carcinoma. Front Genet 2022; 13:952528. [PMID: 36118851 PMCID: PMC9479129 DOI: 10.3389/fgene.2022.952528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
According to the TIMER database, large tumor suppressor 2 (LATS2) is differentially expressed in various tumors. However, the correlation between LATS2 and esophageal squamous cell carcinoma (ESCC) and the association between LATS2 and immune infiltration in ESCC remain unclear. Our synthetic research on LATS2 in ESCC revealed that the expression was low in esophageal squamous epithelium tissues, revealing the pernicious and adverse prognosis of ESCC. The Kaplan–Meier survival investigation pointed out that low LATS2 expression would result in an adverse prognosis. Biological investigation indicated that LATS2 was engaged in cell migration, adhesion, and junction. To further explore the relationship between LATS2 and tumor immunity, we utilized CIBERSORT to assess immune infiltration. The findings revealed that specimens with lower LATS2 expression showed higher immune infiltration, including T-cell follicular helper cells, M0 macrophages, M1 macrophages, and myeloid dendritic cell resting. An association investigation indicated that LATS2 was negatively relevant to immune checkpoints that restrain operative antitumor immune reactions. We also conducted immunohistochemical staining to explore the link between LATS2 expression and immunophenotype. The indicated association between low LATS2 expression and an immunophenotype is conducive to our understanding of ESCC mini-environments and might offer new indications for enhancing new therapeutic targets.
Collapse
Affiliation(s)
- Minqi Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoran Liao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuxuan Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junxian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, Guangxi, China
| | - Dunbo Yi
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, Guangxi, China
| | - Yuhong Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Xian
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Lei Xian,
| |
Collapse
|
14
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
15
|
Akrida I, Bravou V, Papadaki H. The deadly cross-talk between Hippo pathway and epithelial–mesenchymal transition (EMT) in cancer. Mol Biol Rep 2022; 49:10065-10076. [DOI: 10.1007/s11033-022-07590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
16
|
SFN Enhanced the Radiosensitivity of Cervical Cancer Cells via Activating LATS2 and Blocking Rad51/MDC1 Recruitment to DNA Damage Site. Cancers (Basel) 2022; 14:cancers14081872. [PMID: 35454780 PMCID: PMC9026704 DOI: 10.3390/cancers14081872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Radiotherapy is the main treatment for cervical cancer patients in advanced stages. However a considerable number of patients are not sensitive to radiotherapy. Dysregulation of DNA double-strand break (DSB) repair is characteristic of cancer cells in a radiotherapy-resistance state. The aim of this study is to explore Sulforaphane (SFN) downstream target and the radiotherapy sensitization mechanism in cervical cancer. We identified SFN as cervical cancer cells radiotherapy sensitizer and LATS2 served as a downstream target of SFN treatment. SFN treatment resulted in the inhibition of the homologous recombination (HR) pathway, and LATS2 has an indispensable contribution to this SFN-facilitated radiotherapy sensitization. Abstract Background: Sulforaphane (SFN) is one kind of phytochemical anticancer drug. It inhibits cancer cell proliferation and promotes cell apoptosis while the mechanism behind is still uncertain. We aimed to explore its downstream target and the radiotherapy sensitization mechanism in cervical cancer. Methods: We treated established cervical cancer cells line (SiHa, HeLa, C33A) with SFN followed by irradiation, and explored its survival, apoptosis, and DNA damage repair in vitro and validated the radiosensitivity of SFN treatment in vivo. We conducted mRNA sequencing to identify differentially expressed mRNAs after SFN treatment. We further investigated SFN downstream target and its involvement in DNA damage repair under irradiation. Results: We found that SFN inhibited the survival of cervical cancer cells under radiotherapy treatment in vitro and prolonged the survival period after radiotherapy in the mouse tumorigenic model. SFN increased the protein expression of LATS2 and promoted apoptosis of cervical cancer cells. Overexpressed LATS2 decreased the cellular survival rate of cervical cancer cells. Additionally, SFN treatment and LATS2 overexpression prevented MDC1 and Rad51 from accumulating in the nucleus in cervical cancer cells after being exposed to ionized radiation. LATS2 loss intervened with SFN-alleviated RAD51 and MDC1 nucleus accumulation and resumed the repairment of DNA damage. Conclusion: We identified SFN as cervical cancer cells radiotherapy sensitizer and LATS2 served as a downstream target of SFN treatment. SFN treatment resulted in the inhibition of the homologous recombination (HR) pathway, and LATS2 has an indispensable contribution to this SFN-facilitated radiotherapy sensitization.
Collapse
|
17
|
Liu Y, Zhu X, Zhang W, Bian T, Wu Z, Zhang J, Qiu H, Hu Y, Feng J, Shi J. RASSF10 exhibits tumor‑suppressing potential involving tumor proliferation, metastasis and epithelial‑mesenchymal transition in esophageal squamous cell carcinoma. Oncol Rep 2022; 47:80. [PMID: 35211758 PMCID: PMC8892611 DOI: 10.3892/or.2022.8291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Growing evidence indicates that Ras-association domain family 10 (RASSF10) is a novel tumor-suppressor gene that is involved in the inhibition of tumor progression and metastasis; however, the biological functions and molecular mechanisms of RASSF10 in esophageal squamous cell carcinoma (ESCC) have not yet been thoroughly elucidated. The expression of RASSF10 in ESCC tissues and adjacent non-tumor tissues was investigated employing quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) assays of tissue microarrays. The function of RASSF10 in ESCC cell growth, migration and invasion was determined by CCK-8, colony formation, scratch wound healing and Transwell invasion assays, respectively. The correlation between RASSF10 and markers related to epithelial-mesenchymal transition (EMT) was evaluated by tissue microarray (TMA)-IHC, western blotting and immunofluorescence staining. RASSF10 was found to be highly downregulated in ESCC tissues compared with that noted in the adjacent non-tumor tissues, and closely correlated with tumor progression and patient prognosis. Moreover, functional studies demonstrated that RASSF10 overexpression not only resulted in reduced cell growth and colony formation but also inhibited migration and invasion of the ESCC cells. Tumor RASSF10 expression was positively correlated with E-cadherin expression and negatively correlated with vimentin. In addition, it was demonstrated that the antineoplastic functions of RASSF10 mediate inactivation of the Wnt/β-catenin pathway in ESCC. Our findings revealed that RASSF10 may constitute a prognostic factor for ESCC patients and a crucial candidate for targeted therapy against ESCC.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Xiaohui Zhu
- Department of Internal Medicine, Nantong Tumor Hospital, Nantong, Jiangsu 226600, P.R. China
| | - Wenwen Zhang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Zheng Wu
- Department of Respiration, Affiliated Hai'an Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Hongmei Qiu
- Department of Respiration, Nantong Geriatric Rehabilitation Hospital, Branch of the Affiliated Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Yingzi Hu
- Medical School of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Jiahai Shi
- Department of Cardio‑Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| |
Collapse
|
18
|
The promotional effect of microRNA-103a-3p in cervical cancer cells by regulating the ubiquitin ligase FBXW7 function. Hum Cell 2022; 35:472-485. [PMID: 35094292 PMCID: PMC8866291 DOI: 10.1007/s13577-021-00649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) have been reported to be involved in the initiation and progression of human tumors including cervical cancer (CC). However, the mechanisms underlying of their actions in CC remain to be fully elucidated. Herein, the differentially expressed miRNAs that were screened based on GSE55940 microarray data retrieved from Gene Expression Omnibus (GEO), and miR-103a-3p was significantly upregulated in CC tissues which was selected as the target miRNA for further research. We also found that high expression of miR-103a-3p was closely associated with histological grades, FIGO stage and distant metastasis as well as reflected poor overall survival. Moreover, miR-103a-3p inhibition decreased the growth capacity of SiHa and HeLa cells by inducing cell apoptosis. And F-box and WD repeat-domain containing protein 7 (FBXW7), a well-known tumor suppressor in many cancer types, was identified as a direct target of miR-103a-3p. It was further found that FBXW7 was significantly downregulated in CC tissues, and it was inversely correlated with miR-103a-3p expression levels. Further investigation demonstrated that FBXW7 upregulation could simulate the roles of miR-103a-3p knockdown in cell viability and apoptosis. Moreover, FBXW7 knockdown efficiently abrogated the influences of CC cells proliferation caused by miR-103a-3p inhibition. Notably, miR-103a-3p could block FBXW7 mediated the downstream transcription factor pathways. Taken together, these findings suggest that miR-103a-3p functions as an oncogene in CC by targeting FBXW7.
Collapse
|
19
|
Yang HJ, Kang Y, Li YZ, Liu FH, Yan S, Gao S, Huo YL, Gong TT, Wu QJ. Relationship between different forms of dietary choline and ovarian cancer survival: findings from the ovarian cancer follow-up study, a prospective cohort study. Food Funct 2022; 13:12342-12352. [DOI: 10.1039/d2fo02594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Higher levels of pre-diagnosis fat-soluble choline intake was associated with better overall survival of ovarian cancer, and this association was more attributed to phosphatidylcholine.
Collapse
Affiliation(s)
- Hui-Juan Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shi Yan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yun-Long Huo
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Jiang Z, Xia W, Dai G, Zhang B, Li Y, Chen X. MicroRNA miR-4709-3p targets Large Tumor Suppressor Kinase 2 (LATS2) and induces obstructive renal fibrosis through Hippo signaling. Bioengineered 2021; 12:12357-12371. [PMID: 34931960 PMCID: PMC8810092 DOI: 10.1080/21655979.2021.2002493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Obstructive renal fibrosis is the consequence of abnormal extracellular matrix assembly, which eventually results in renal failure, acute, and end‑stage renal infection. MicroRNAs (miRNAs), a particular category of small RNAs, modulate the expression of genes post-transcriptionally and regulate biological activities, including fibrogenesis. The study probed to estimate the key functions of miR-4709-3p in obstructive renal fibrosis. This investigation used TGF-β1 stimulated HK-2 in-vitro model, unilateral ureteral occlusion (UUO) mice model, and human Diabetic nephropathy (DN) and Renal interstitial fibrosis (RIF) specimens to depict the abundance of the miR-4709-3p level using FISH and RT-qPCR. MiR-4709-3p mimics and inhibitors were utilized to evaluate the functions of miR-4709-3p in-vitro. Luciferase assay was exploited to verify miR-4709-3p and LATS2 3'UTR binding. Finally, to depict the functions of miR-4709-3p in-vivo, the UUO model was injected with miR-4709-3p inhibitors. Results exhibited the upregulation of miR-4709-3p in UUO-induced in-vivo model, TGF-β1 stimulated HK-2, and human RIF and DN samples. Moreover, it was determined that modulating miR-4709-3p regulated the level of fibrosis markers. Luciferase assay miR-4709-3p modulates renal fibrosis by targeting LATS2. Finally, it was found that miR-4709-3p regulates obstructive renal fibrosis through the Hippo signaling pathway. Overall, the study concludes that aberrant miR-4709-3p expression plays an essential function in the renal fibrosis progression, and miR-4709-3p overexpression could advance obstructive renal fibrosis via LATS2 targeting in Hippo signaling pathway. Therefore, miR-4709-3p inhibition may be a potential renal fibrosis therapy target.
Collapse
Affiliation(s)
- Zexiang Jiang
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, China
| | - Weiping Xia
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, China
| | - Guoyu Dai
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, China
| | - Bo Zhang
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, China
| | - Yang Li
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, China
| | - Xiang Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, China
| |
Collapse
|
21
|
Luo J, Xiang H. LncRNA MYLK-AS1 acts as an oncogene by epigenetically silencing large tumor suppressor 2 (LATS2) in gastric cancer. Bioengineered 2021; 12:3101-3112. [PMID: 34181498 PMCID: PMC8806516 DOI: 10.1080/21655979.2021.1944019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extensive studies showed the vital function of long noncoding RNAs (lncRNAs) in the pathological and physiological progression of tumors. Previous evidence has indicated that lncRNA MYLK Antisense RNA 1 (MYLK-AS1) acts as an oncogene to facilitate the progression of several tumors. Nevertheless, little is known about its biological role in gastric cancer (GC). Our report intended to probe the underlying mechanism and function of MYLK-AS1 in GC. Results revealed that MYLK-AS1 showed an upregulated level in GC. It was worth mentioning that upregulated MYLK-AS1 caused the unfavorable clinical outcome in GC patients. Functional assays indicated that MYLK-AS1 silencing retarded the proliferation, cell cycle, migration, and invasion in GC. Besides, in vivo assay validated that MYLK-AS1 deficiency also restrained tumor growth. Through in-depth mechanism exploration, MYLK-AS1 was uncovered to bind with wnhancer of zeste homolog 2 (EZH2), an epigenetic inhibitor, to inhibit the level of Large Tumor Suppressor 2 (LATS2), thereby exerting carcinogenicity. Conclusively, our research highlighted the importance of MYLK-AS1 in GC, indicating that MYLK-AS1 might be an effective biomarker for GC.![]() ![]()
Collapse
Affiliation(s)
- Juan Luo
- Department of Gastroenterology, Huaihua First People's Hospital, Huaihua, P.R. China
| | - Huifei Xiang
- Department of General Surgery, Huaihua First People's Hospital, Huaihua, P.R. China
| |
Collapse
|
22
|
Oshima S, Asai S, Seki N, Minemura C, Kinoshita T, Goto Y, Kikkawa N, Moriya S, Kasamatsu A, Hanazawa T, Uzawa K. Identification of Tumor Suppressive Genes Regulated by miR-31-5p and miR-31-3p in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:6199. [PMID: 34201353 PMCID: PMC8227492 DOI: 10.3390/ijms22126199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Takashi Kinoshita
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| |
Collapse
|
23
|
Yu D, Liu H, Qin J, Huangfu M, Guan X, Li X, Zhou L, Dou T, Liu Y, Wang L, Fu M, Wang J, Chen X. Curcumol inhibits the viability and invasion of colorectal cancer cells via miR-30a-5p and Hippo signaling pathway. Oncol Lett 2021; 21:299. [PMID: 33732375 PMCID: PMC7905558 DOI: 10.3892/ol.2021.12560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-30a-5p (miR-30a-5p), which functions as a tumor suppressor, has been reported to be downregulated in colorectal cancer (CRC) tissues and to be associated with cancer invasion. However, the detailed regulatory mechanism of curcumol in the malignant progression of CRC remains unknown. MTT, Transwell, scratch, western blotting and reverse transcription-quantitative PCR assays were performed to examine how curcumol inhibited CRC cell viability, invasion and migration, and to detect the role of miR-30a-5p and curcumol in the invasion and Hippo signaling pathways of CRC cells. The present study revealed that miR-30a-5p expression was downregulated in human CRC tissues and cells. The results demonstrated that miR-30a-5p downregulation was accompanied by the inactivation of the Hippo signaling pathway, which was demonstrated to promote CRC cell viability, invasion and migration. Curcumol treatment was identified to increase miR-30a-5p expression and to activate the Hippo signaling pathway, which in turn inhibited the invasion and migration of CRC cells. Overexpression of miR-30a-5p enhanced the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. Furthermore, downregulation of miR-30a-5p reversed the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. These findings identified novel signaling pathways associated with miR-30a-5p and revealed the effects of curcumol on miR-30a-5p expression. Therefore, curcumol may serve as a potential therapeutic strategy to delay CRC progression.
Collapse
Affiliation(s)
- Dan Yu
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Haiping Liu
- Science and Technology Department, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Jianli Qin
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Mengjie Huangfu
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Xiao Guan
- Department of Pharmacology, Xiangya School of Medicine of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xumei Li
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Lin Wang
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Minglei Fu
- Department of Dispensary, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China.,Department of Pharmacy, China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China.,Department of Pharmacy, Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China.,Department of Pharmacy, Guangxi Key Laboratory of Sphingolipid Metabolism (Incubated), Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| |
Collapse
|
24
|
Maehama T, Nishio M, Otani J, Mak TW, Suzuki A. The role of Hippo-YAP signaling in squamous cell carcinomas. Cancer Sci 2020; 112:51-60. [PMID: 33159406 PMCID: PMC7780025 DOI: 10.1111/cas.14725] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The Hippo‐YAP pathway regulates organ size, tissue homeostasis, and tumorigenesis in mammals. In response to cell density, external mechanical pressure, and/or other stimuli, the Hippo core complex controls the translocation of YAP1/TAZ proteins to the nucleus and thereby regulates cell growth. Abnormal upregulation or nuclear localization of YAP1/TAZ occurs in many human malignancies and promotes their formation, progression, and metastasis. A key example is squamous cell carcinoma (SCC) genesis. Many risk factors and crucial signals associated with SCC development in various tissues accelerate YAP1/TAZ accumulation, and mice possessing constitutively activated YAP1/TAZ show immediate carcinoma in situ (CIS) formation in these tissues. Because CIS onset is so rapid in these mutants, we propose that many SCCs initiate and progress when YAP1 activity is sustained and exceeds a certain oncogenic threshold. In this review, we summarize the latest findings on the roles of YAP1/TAZ in several types of SCCs. We also discuss whether targeting aberrant YAP1/TAZ activation might be a promising strategy for SCC treatment.
Collapse
Affiliation(s)
- Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tak Wah Mak
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,The Princess Margaret Cancer Centre, UHN, Toronto, Canada.,Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Canada
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
25
|
Feng Y, Hu S, Li L, Peng X, Chen F. Long noncoding RNA HOXA-AS2 functions as an oncogene by binding to EZH2 and suppressing LATS2 in acute myeloid leukemia (AML). Cell Death Dis 2020; 11:1025. [PMID: 33268767 PMCID: PMC7710717 DOI: 10.1038/s41419-020-03193-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is the most common hematological malignancy in the world. Long noncoding RNAs (lncRNAs) play an important role in the development of physiology and pathology. Many reports have shown that lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) is a carcinogen and plays an important role in many tumors, but little is known about its role in AML. The aim of this study was to explore the potential mechanism and role of HOXA-AS2 in AML. HOXA-AS2 was upregulated in AML cell lines and tissues, and the overexpression of HOXA-AS2 is negatively correlated with the survival of patients. Silencing HOXA-AS2 can inhibit the proliferation and induce differentiation of AML cells in vitro and in vivo. Overexpressing HOXA-AS2 showed the opposite result. Moreover, more in-depth mechanism studies showed that carcinogenicity of HOXA-AS2 exerted mainly through binding with the epigenetic inhibitor Enhancer of zeste homolog 2 (EZH2) and then inhibiting the expression of Large Tumor Suppressor 2 (LATS2). Taken together, our findings highlight the important role of HOXA-AS2 in AML, suggesting that HOXA-AS2 may be an effective therapeutic target for patients with AML.
Collapse
Affiliation(s)
- Yubin Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
| | - Lanlan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China
| | - Xiaoqing Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China. .,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China.
| | - Feihu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China. .,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
26
|
Sun Z, Zhang Q, Yuan W, Li X, Chen C, Guo Y, Shao B, Dang Q, Zhou Q, Wang Q, Wang G, Liu J, Kan Q. MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:250. [PMID: 33218358 PMCID: PMC7678148 DOI: 10.1186/s13046-020-01705-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Background Glycolysis plays an essential role in the growth and metastasis of solid cancer and has received increasing attention in recent years. However, the complex regulatory mechanisms of tumour glycolysis remain elusive. This study aimed to explore the molecular effect and mechanism of the noncoding RNA miR-103a-3p on glycolysis in colorectal cancer (CRC). Methods We explored the effects of miR-103a-3p on glycolysis and the biological functions of CRC cells in vitro and in vivo. Furthermore, we investigated whether miR-103a-3p regulates HIF1A expression through the Hippo/YAP1 pathway, and evaluated the role of the miR-103a-3p-LATS2/SAV1-YAP1-HIF1A axis in promoting glycolysis and angiogenesis in CRC cells and contributed to invasion and metastasis of CRC cells. Results We found that miR-103a-3p was highly expressed in CRC tissues and cell lines compared with matched controls and the high expression of miR-103a-3p was associated with poor patient prognosis. Under hypoxic conditions, a high level of miR-103a-3p promoted the proliferation, invasion, migration, angiogenesis and glycolysis of CRC cells. Moreover, miR-103a-3p knockdown inhibited the growth, proliferation, and glycolysis of CRC cells and promoted the Hippo-YAP1 signalling pathway in nude mice in a xenograft model. Here, we demonstrated that miR-103a-3p could directly target LATS2 and SAV1. Subsequently, we verified that TEAD1, a transcriptional coactivator of Yes-associated protein 1 (YAP1), directly bound to the HIF1A promoter region and the YAP1 and TEAD1 proteins co-regulated the expression of HIF1A, thus promoting tumour glycolysis. Conclusions MiR-103a-3p, which is highly expressed in CRC cells, promotes HIF1A expression by targeting the core molecules LATS2 and SAV1 of the Hippo/YAP1 pathway, contributing to enhanced proliferation, invasion, migration, glycolysis and angiogenesis in CRC. Our study revealed the functional mechanisms of miR-103a-3p/YAP1/HIF1A axis in CRC glycolysis, which would provide potential intervention targets for molecular targeted therapy of CRC.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Qiuge Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Department of Geriatric Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoli Li
- Department of Geriatric Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.,School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qisan Wang
- Department of Gastrointestinal Surgery, The Affiliated Tumor Hospital, Xinjiang Medical University, Xinjiang, 830000, Urumqi, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
27
|
Astamal RV, Maghoul A, Taefehshokr S, Bagheri T, Mikaeili E, Derakhshani A, Delashoub M, Taefehshokr N, Isazadeh A, Hajazimian S, Tran A, Baradaran B. Regulatory role of microRNAs in cancer through Hippo signaling pathway. Pathol Res Pract 2020; 216:153241. [PMID: 33065484 DOI: 10.1016/j.prp.2020.153241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
Cancer is the major cause of death worldwide in countries of all income levels. The Hippo signaling pathway is a Drosophila kinase gene that was identified to regulate organ size, cell regeneration, and contribute to tumorigenesis. A huge variety of extrinsic and intrinsic signals regulate the Hippo signaling pathway. The Hippo signaling pathway consists of a wide array of components that merge numerous signals such as mechanical signals to address apoptosis resistance, cell proliferation, cellular outputs of growth, cell death and survival at cellular and tissue level. Recent studies have shed new light on the regulatory role of microRNAs in Hippo signaling and how they contribute to cancer progression. MicroRNAs influence various cancer-related processes such as, apoptosis, proliferation, migration, cell cycle and metabolism. Inhibition and overexpression of miRNAs via miRNA mimics and miRNA inhibitors, respectively, can uncover a hopeful and reliable insight for treatment and early diagnosis of cancer patients. In this review we will discuss our current understanding of regulatory role of miRNAs in Hippo signaling pathway.
Collapse
Affiliation(s)
- Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Asma Maghoul
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taha Bagheri
- Department of Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ehsan Mikaeili
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Delashoub
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Antalique Tran
- Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Liu C, Wu Y, Ma J. Interaction of non-coding RNAs and Hippo signaling: Implications for tumorigenesis. Cancer Lett 2020; 493:207-216. [PMID: 32822816 DOI: 10.1016/j.canlet.2020.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Hippo signaling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis, and stem cell self-renewal by "turning off" or "turning on" the kinase cascade chain reaction to manipulate the expression of downstream genes. Dysregulation of the Hippo pathway contributes to cancer development and metastasis. Emerging evidence has revealed new insights into tumorigenesis through the interplay between the Hippo pathway and non-coding RNAs (ncRNAs), especially microRNA, long non-coding RNA and circular RNA. Here, we reviewed the interactions between the Hippo pathway and ncRNAs and their implication for a variety of tumor-promoting or tumor-repressing effects. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Can Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yangge Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
29
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Yang M, Huang W. Circular RNAs in nasopharyngeal carcinoma. Clin Chim Acta 2020; 508:240-248. [PMID: 32417214 DOI: 10.1016/j.cca.2020.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a geographical distributed epithelial tumor of head and neck, which is prevalent in east Africa and Asia, especially southern China. Moreover, NPC has an unfavorable clinical effect and is prone to metastasis at an advanced stage. Although the recovery rate of patients has been improved due to concurrent chemoradiotherapy, poor curative effects and low overall survival remain key issues. The precise mechanisms and pivotal regulators of NPC remain still unclear. To improve the therapeutic efficacy, we focused on related-NPC circular RNAs (circRNAs). CircRNAs are a unique type of endogenous non-coding RNAs (ncRNAs) with a covalent closed-loop structure. Their expression is rich, stable and conservative. Different circRNA have specific tissue and developmental stages and can be detected in body fluids. In addition, circRNAs are involved in multiple pathological processes, especially in cancers. In recent years, using high-throughput indicator technology and bioinformatics technology, a large number of circRNAs have been identified in NPC cells and verified to have biological functions and mechanisms of action. This article aims to provide a retrospective review of the latest research on the proliferation and migration of related-NPC circRNA. Specifically, we focused on the roles and mechanisms of circRNAs in the development and progression of NPC. CONCLUSION CircRNA can act as an oncogene or tumor suppressor gene and participate in NPC progression (e.g., proliferation, apoptosis, migration, and invasion). In short, circRNAs have potential as biomarkers for the diagnosis, prognosis and treatment of NPC.
Collapse
Affiliation(s)
- Mingxiu Yang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang, Hunan Province, People's Republic of China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang, Hunan Province, People's Republic of China.
| |
Collapse
|
31
|
Xia W, Jie W. ZEB1-AS1/miR-133a-3p/LPAR3/EGFR axis promotes the progression of thyroid cancer by regulating PI3K/AKT/mTOR pathway. Cancer Cell Int 2020; 20:94. [PMID: 32231464 PMCID: PMC7103072 DOI: 10.1186/s12935-020-1098-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid cancer (TC) is a member of common malignant tumors in endocrine system. To develop effective treatment, further comprehension of understanding molecular mechanism in TC is necessary. In this research, we attempted to search the underlying molecular mechanism in TC. Methods ZEB1-AS1 expression was analyzed via qRT-PCR analysis. CCK-8, colony formation, flow cytometry and TUNEL assays were used to evaluate TC cell growth. The interaction between miR-133a-3p and LPAR3, EGFR and ZEB1-AS1 was testified through using RNA pull down and luciferase reporter assays. Results LPAR3 and EGFR were expressed at high levels in TC tissues and cell lines. Besides, both LPAR3 and EGFR could promote TC cell growth. Later, miR-133a-3p was searched as an upstream gene of LPAR3 and EGFR, and LPAR3 could partially rescue the suppressive effect of miR-133a-3p overexpression on TC progression, whereas the co-transfection of LPAR3 and EGFR completely restored the inhibition. Next, ZEB1-AS1 was confirmed as a sponge of miR-133a-3p. ZEB1-AS1 has a negative correlation with miR-133a-3p and a positive association with LPAR3 and EGFR through ceRNA analysis. Importantly, ZEB1-AS1 boosted the proliferation and suppressed the apoptosis in TC cells. Through restoration assays, we discovered that ZEB1-AS1 regulated LPAR3 and EGFR expression to mediate TC cell proliferation and apoptosis by sponging miR-133a-3p. Further investigation also indicated the oncogenic role of ZEB1-AS1 by mediating PI3K/AKT/mTOR pathway. Conclusions ZEB1-AS1 could be an underlying biomarker in TC.
Collapse
Affiliation(s)
- Wu Xia
- 1The Department of Endocrinology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'An Branch), 259 Xikang Road, Jing'an District, Shanghai, 200040 China
| | - Wen Jie
- 2Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
32
|
Yang B, Liu Y, Li L, Deng H, Xian L. MicroRNA‑200a promotes esophageal squamous cell carcinoma cell proliferation, migration and invasion through extensive target genes. Mol Med Rep 2020; 21:2073-2084. [PMID: 32323771 PMCID: PMC7115244 DOI: 10.3892/mmr.2020.11002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Despite investigations into microRNA (miRNA) expression in esophageal cancer (EC) tissue, miRNAs that participate in EC pathogenesis and their subsequent mechanisms of action remain to be determined. The present study aimed to identify important miRNAs that contribute to EC development, and to assess miRNA biomarkers that could be used in EC diagnosis, prognosis and therapy. Bioinformatics analysis was performed to reanalyze EC tissue miRNA expression microarray dataset GSE113776, which was followed by in vitro verification of miRNA functions using reverse transcription‑quantitative PCR, western blot analysis and a dual‑luciferase reporter assay. Out of 93 miRNAs extracted, only miR‑200a was significantly increased in EC tissues. Transfection of KYSE150 esophageal squamous cell carcinoma (ESCC) cells with miR‑200a mimics significantly increased their proliferative, migratory and invasive ability, whereas the opposite cell behaviors were observed in ESCC cells transfected with a miR‑200a inhibitor. A total of six miR‑200a target genes [catenin β1 (CTNNB1), cadherin‑1 (CDH1), PTEN, adenomatous polyposis coli (APC), catenin α1 (CTNNA1) and superoxide dismutase 2 (SOD2)] were selected for further analysis based on Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein‑protein interaction network map data and protein expression in esophageal tissue. These target genes were downregulated under miR‑200a expression and upregulated in the presence of the miR‑200a inhibitor. The association between miR‑200a and the 3'‑untranslated region of target genes in ESCC cells was confirmed using a dual‑luciferase reporter assay. In conclusion, the present study demonstrated that miR‑200a may participate in the promotion of ESCC cell proliferation, migration and invasion, and provided novel evidence for the direct interaction between miR‑200a and CTNNB1, CDH1, PTEN, APC, CTNNA1 and SOD2, which may contribute to the observed altered cell behavior.
Collapse
Affiliation(s)
- Bian Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Yumeng Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Lipeng Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Hailong Deng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Lei Xian
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
33
|
circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis 2020; 11:112. [PMID: 32041942 PMCID: PMC7010827 DOI: 10.1038/s41419-020-2273-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/08/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a poor prognosis. Circular RNA (circRNA) has been increasingly recognized as a crucial contributor to carcinogenesis. circRNA_0000140 has been aberrantly expressed in OSCC, but its role in tumor growth and metastasis remains largely unclear. Sanger sequencing, actinomycin D, and RNase R treatments were used to confirm head-to-tail junction sequences and the stability of circ_0000140. In vitro cell activities, including proliferation, migration, invasion, and apoptosis, were determined by colony formation, transwell, and flow cytometry assays. The expression levels of circ_0000140, Hippo signaling pathway, and serial epithelial–mesenchymal transition (EMT) markers were measured by quantitative real-time PCR, western blotting, immunofluorescence, and immunohistochemistry. Dual luciferase reporter assays and Argonaute 2-RNA immunoprecipitation assays were performed to explore the interplay among circ_0000140, miR-31, and LATS2. Subcutaneous tumor growth was observed in nude mice, in which in vivo metastasis was observed following tail vein injection of OSCC cells. circ_0000140 is derived from exons 7 to 10 of the KIAA0907 gene. It was down-regulated in OSCC tissues and cell lines, and correlated negatively with poor prognostic outcomes in OSCC patients. Gain-of-function experiments demonstrated that circ_0000140 enhancement suppressed cell proliferation, migration, and invasion, and facilitated cell apoptosis in vitro. In xenograft mouse models, overexpression of circ_0000140 was able to repress tumor growth and lung metastasis. Furthermore, mechanistic studies showed that circ_0000140 could bind with miR-31 and up-regulate its target gene LATS2, thus affecting OSCC cellular EMT. Our findings demonstrated the roles of circ_0000140 in OSCC tumorigenesis as well as in metastasis, and circ_0000140 exerts its tumor-suppressing effect through miR-31/LATS2 axis of Hippo signaling pathway in OSCC.
Collapse
|
34
|
Wu M, Duan Q, Liu X, Zhang P, Fu Y, Zhang Z, Liu L, Cheng J, Jiang H. MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomed Pharmacother 2020; 122:109696. [PMID: 31918270 DOI: 10.1016/j.biopha.2019.109696] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dysregulation of miRNAs is associated with aberrant migration and invasion by suppressing relevant target genes in multiple cancers, including oral squamous cell carcinoma (OSCC). Accumulating evidence suggests that microRNA-155-5p is involved in carcinogenesis and tumor progression. However, the exact function and molecular mechanism of miR-155-5p in OSCC remain unclear. This study aimed to investigate the function of miR-155-5p and the molecular mechanisms underlying the influencing progression of OSCC. METHODS The miR-155-5p expression level in the OSCC tissues and oral cancer cell lines were determined by the qRT-PCR. Gain-of-function and knockdown approach were used to examine the effect of miR-155-5p on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of OSCC. The luciferase reporter assay was applied to confirm the AT-rich interactive domain 2 (ARID2) as a potential target of miR-155-5p, and the rescue experiment was employed to verify the roles of the miRNA-155-5p-ARID2 axis in OSCC progression. Immunohistochemical staining was used to detect ARID2 expression in another cohort sample tissues from OSCC patients. RESULTS MiR-155-5p was significantly upregulated in OSCC tissues and cell lines. The miR-155-5p expression level was positively correlated with tumor size, TNM stage, histological grade and lymph node metastasis of OSCC patients. Functional assays demonstrated that miR-155-5p enhanced OSCC cell proliferation, migration and invasion. Mechanistically, ARID2 was identified as a direct target and functional effector of miR-155-5p in OSCC. Furthermore, ARID2 overexpression could rescue the aberrant biological function by overexpressed miR-155-5p in OSCC cells. Notably, we showed that ARID2 could be used as an independent prognosis factor in OSCC. CONCLUSIONS Our results suggest that miR-155-5p facilitates tumor progression of OSCC by targeting ARID2, and miR-155-5p-ARID2 axis may be a potential therapeutic target of OSCC.
Collapse
Affiliation(s)
- Meng Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, China.
| | - Qingyun Duan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Xue Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Zhenxing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
35
|
Zhang R, Liu J, Zhang W, Hua L, Qian LT, Zhou SB. EphA5 knockdown enhances the invasion and migration ability of esophageal squamous cell carcinoma via epithelial-mesenchymal transition through activating Wnt/β-catenin pathway. Cancer Cell Int 2020; 20:20. [PMID: 31956298 PMCID: PMC6958788 DOI: 10.1186/s12935-020-1101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background The erythropoietin-producing hepatocellular (Eph) receptor A5 (EphA5) has been found to be overexpressed in some malignant tumors and is associated with disease prognosis. However, the role of EphA5 in esophageal squamous cell carcinoma (ESCC) is not clear. Methods In the present study, we measured the expression of EphA5 in ESCC tissues and cell lines including KYSE150 and KYSE450 cells. siRNA transfection was used to interfere with EphA5 expression in ESCC cell lines. Cell viability, colony formation, scratch and invasion assays were performed to explore the roles of EphA5 in ESCC cell lines. Flow cytometry analysis was performed to investigate whether EphA5 could affect the cell apoptosis and cycle. The biomarkers related to epithelial-mesenchymal transition (EMT) and molecules associated with Wnt/β‑catenin signaling were also measured by western blot and immunofluorescence. Results The protein and mRNA expression of EphA5 were significantly higher in fresh ESCC tissues and cell lines compared with normal control groups and human normal esophageal epithelial cells (HEEC). The cell viability assay and colony formation assay revealed that EphA5 knockdown enhanced the proliferation of KYSE150 and KYSE450 cells in vitro. The invasion and migration of ESCC cells were accelerated after EphA5 knockdown. The expression of EMT biomarkers was altered in ESCC cells transfected with siRNA targeting EphA5. Moreover, EphA5 downregulation enhanced the protein levels of β‑catenin and p-GSK-3βSer9, which play a key role in the Wnt/β‑catenin pathway. Conclusions EphA5 knockdown promotes the proliferation of esophageal squamous cell carcinoma,enhances invasion and migration ability via epithelial-mesenchymal transition through activating Wnt/β‑catenin pathway.
Collapse
Affiliation(s)
- Rui Zhang
- 1School of Clinical Medicine, Shan Dong University, Jinan, 250000 Shandong People's Republic of China.,2Department of Oncology, Qing Pu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799 People's Republic of China
| | - Jing Liu
- 2Department of Oncology, Qing Pu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201799 People's Republic of China
| | - Wei Zhang
- 3Department of Pathology, Taixing People's Hospital, Taixing, 225400 Jiangsu People's Republic of China
| | - Lei Hua
- 4Department of Provincial Clinical College, Anhui Provincial Hospital of Anhui Medical University, Hefei, 230031 Anhui People's Republic of China
| | - Li-Ting Qian
- 5Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 People's Republic of China
| | - Shao-Bing Zhou
- 6Department of Radiation Oncology, Taixing People's Hospital, Taixing, Jiangsu 225400 People's Republic of China
| |
Collapse
|
36
|
Chen Z, Chu S, Liang Y, Xu T, Sun Y, Li M, Zhang H, Wang X, Mao Y, Loor JJ, Wu Y, Yang Z. miR-497 regulates fatty acid synthesis via LATS2 in bovine mammary epithelial cells. Food Funct 2020; 11:8625-8636. [DOI: 10.1039/d0fo00952k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both mRNA and miRNA play an important role in the regulation of mammary fatty acid metabolism and milk fat synthesis.
Collapse
|
37
|
Emerging Role of Non-Coding RNAs in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2019; 21:ijms21010258. [PMID: 31905958 PMCID: PMC6982002 DOI: 10.3390/ijms21010258] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly prevalent tumor and is associated with ethnicity, genetics, and dietary intake. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) have been reported as functional regulatory molecules involved in the development of many human cancers, including ESCC. Recently, several ncRNAs have been detected as oncogenes or tumor suppressors in ESCC progression. These ncRNAs influence the expression of specific genes or their associated signaling pathways. Moreover, interactions of ncRNAs are evident in ESCC, as miRNAs regulate the expression of lncRNAs, and further, lncRNAs and circRNAs function as miRNA sponges to compete with the endogenous RNAs. Here, we discuss and summarize the findings of recent investigations into the role of ncRNAs (miRNAs, lncRNAs, and circRNAs) in the development and progression of ESCC and how their interactions regulate ESCC development.
Collapse
|
38
|
Lats2-Underexpressing Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice. Mediators Inflamm 2019; 2019:4851431. [PMID: 31772503 PMCID: PMC6854183 DOI: 10.1155/2019/4851431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
The pathophysiology of the acute lung injury (ALI) is characterized by the damage of alveolar epithelial cells, which can be repaired by exogenous bone marrow-derived mesenchymal stem cells (BMSCs). However, the migration and differentiation abilities of BMSCs are not sufficient for the purpose, and a new approach that could strengthen the repair effects of BMSCs in ALI still needs to be clarified. We have previously proved that in vitro large tumor suppressor kinase 2- (Lats2-) underexpressing BMSCs may enhance their tissue repair effects in ALI; thus, in the present study, we tried to explore whether Lats2-underexpressing BMSCs could rescue lipopolysaccharide- (LPS-) induced ALI in vivo. BMSCs from C57BL/6 mice transfected with Lats2-interfering lentivirus vector or lentivirus blank controls were transplanted intratracheally into LPS-induced ALI mice. The retention and differentiation of BMSCs in the lung were evaluated by in vivo imaging, immunofluorescence staining, and Western blotting. The lung edema and permeability were assessed by lung wet weight/body weight ratio (LWW/BW) and measurements of proteins in bronchoalveolar lavage fluid (BALF) using ELISA. Acute lung inflammation was measured by the cytokines in the lung homogenate and BALF using RT-qPCR and ELISA, respectively. Lung injury was evaluated by HE staining and lung injury scoring. Pulmonary fibrosis was evaluated by Picrosirius red staining, immunohistochemistry for α-SMA and TGF-β1, and hydroxyproline assay and RT-qPCR for Col1α1 and Col3α1. Lats2-mediated inhibition of the Hippo pathway increased the retention of BMSCs and their differentiation toward type II alveolar epithelial cells in the lung. Furthermore, Lats2-underexpressing BMSCs improved lung edema, permeability of the lung epithelium, and lung inflammation. Finally, Lats2-underexpressing BMSCs alleviated lung injury and early pulmonary fibrosis. Our studies suggest that underexpression of Lats2 could further enhance the repair effects of BMSCs against epithelial impair and the therapeutic potential of BMSCs in ALI mice.
Collapse
|
39
|
Hsu HH, Kuo WW, Shih HN, Cheng SF, Yang CK, Chen MC, Tu CC, Viswanadha VP, Liao PH, Huang CY. FOXC1 Regulation of miR-31-5p Confers Oxaliplatin Resistance by Targeting LATS2 in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11101576. [PMID: 31623173 PMCID: PMC6827018 DOI: 10.3390/cancers11101576] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related illness worldwide and one of the most common malignancies. Therefore, colorectal cancer research and cases have gained increasing attention. Oxaliplatin (OXA) is currently used in first-line chemotherapy to treat stage III and stage IV metastatic CRC. However, patients undergoing chemotherapy often develop resistance to chemo drugs being used. Evidence has confirmed that microRNAs regulate downstream genes in cancer biology and thereby have roles related to tumor growth, proliferation, invasion, angiogenesis, and multi-drug resistance. The aim of our study is to establish whether miR-31-5p is an oncogene in human colorectal cancers that are resistant to OXA and further confirm its malignant phenotype-associated target molecule. From the results of miRNA microarray assay, we establish that miR-31-5p expression was upregulated in oxaliplatin-resistant (OR)-LoVo cells compared with parental LoVo cells. Moreover, through in vitro and in vivo experiments, we demonstrate that miR-31-5p and large tumor suppressor kinase 2 (LATS2) were inversely related and that miR-31-5p and Forkhead box C1 (FOXC1) were positively correlated in the same LoVo or OR-LoVo cells. Importantly, we reveal a novel drug-resistance mechanism in which the transcription factor FOXC1 binds to the miR-31 promoter to increase the expression of miR31-5p and regulate LATS2 expression, resulting in cancer cell resistance to OXA. These results suggest that miR-31-5p may be a novel biomarker involved in drug resistance progression in CRC patients. Moreover, the FOXC1/miR31-5p/LATS2 drug-resistance mechanism provides new treatment strategies for CRC in clinical trials.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 251, Taiwan.
- MacKay Medicine, Nursing and Management College, Taipei 104, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
| | - Hui-Nung Shih
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung 404, Taiwan.
| | - Sue-Fei Cheng
- MacKay Medicine, Nursing and Management College, Taipei 104, Taiwan.
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei 105, Taiwan.
| | - Ching-Kuo Yang
- Division of Colorectal Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 251, Taiwan.
| | - Ming-Cheng Chen
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung 411, Taiwan.
| | | | - Po-Hsiang Liao
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung 404, Taiwan.
- Graduate Institute of Biomedicine, China Medical University and Hospital, Taichung 404, Taiwan.
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Biomedicine, China Medical University and Hospital, Taichung 404, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
40
|
Liu Q, Shuai M, Xia Y. Knockdown of EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag Res 2019; 11:8023-8031. [PMID: 31695488 PMCID: PMC6717849 DOI: 10.2147/cmar.s218967] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Epstein-Barr virus (EBV)-produced non-coding RNAs, including circular RNA (circRNA), regulate host cell gene expression and play important roles in development of nasopharyngeal carcinoma (NPC). EBV-encoded circRNA circRPMS1 consists of the head-to-tail splicing of exons 2-4 from the RPMS1 gene. Its roles and mechanism on NPC remain unknown. Purpose In this study, we investigated the biological functions and molecular mechanisms of circRPMS1 in tumor proliferation, apoptosis, invasion, metastasis and as a potential biomarker for NPC diagnosis and prognosis. Patients and methods NPC tissues and the adjacent tissues were collected. Cell proliferation assay, cell apoptosis assay, cell invasion assay, luciferase reporter assay, RNA immunoprecipitation and tumor xenograft in nude mice were performed to analyze the circRPMS1 functions. Results: We found that EBV-encoded circRPMS1 was increased in metastatic NPC and was associated with short survival time. Knockdown of circRPMS1 inhibited cell proliferation, induced apoptosis and repressed cell invasion in EBV-positive NPC cells. Further mechanism investigation revealed that circRPMS1-meadiated NPC oncogenesis through sponging multiple miRNA and promoting epithelial-mesenchymal transition (EMT). The inhibitors of miR-203, miR-31 and miR-451 could reverse the effects of circRPMS1 knockdown on NPC cells. Conclusion: The findings indicate circRPMS1 as a potential therapeutic target for EBV-associated NPC. Our findings provide important understanding for the further elucidation on the therapeutic use of circRNA in NPC.
Collapse
Affiliation(s)
- Qianwen Liu
- Colorectal Anal Surgical Department, Hepatobiliary and Enteric Surgery Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Mingxia Shuai
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yong Xia
- Department of Blood Transfusion, Affiliated Hospital of Xiangnan University, Chenzhou, People's Republic of China
| |
Collapse
|
41
|
Sun L, Liu M, Luan S, Shi Y, Wang Q. MicroRNA-744 promotes carcinogenesis in osteosarcoma through targeting LATS2. Oncol Lett 2019; 18:2523-2529. [PMID: 31452740 PMCID: PMC6676671 DOI: 10.3892/ol.2019.10530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) mortality rate is increasing. Various microRNAs (miRNAs) have been investigated in the pathological process of OS except for miR-744. Hence, this research was designed to explore miR-744 function in OS. RT-qPCR and western blot analysis were used to quantify miR-744 and large tumor suppressor kinase 2 (LATS2) expression levels. The function of miR-744 was investigated using MTT and Transwell assays. Target gene of miR-744 was verified by dual-luciferase reporter assay. miR-744 expression was increased in OS, which was associated with worse clinical features and prognosis of OS patients. Importantly, miR-744 promoted cell viability and metastasis in OS. Furthermore, miR-744 induced Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT) in OS. In addition, miR-744 directly targeted LATS2 and blocked its expression in OS. Moreover, upregulation of LATS2 weakened the promotion of cell viability and metastasis induced by miR-744 in OS. In conclusion, miR-744 accelerated OS progression through restraining LATS2 and activating Wnt/β-catenin pathway and EMT.
Collapse
Affiliation(s)
- Liangzhi Sun
- Department of Orthopedics, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Ming Liu
- Department of Orthopedics, Hanting People's Hospital, Weifang, Shandong 261100, P.R. China
| | - Suxian Luan
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yulin Shi
- Department of Orthopedics, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qiang Wang
- Department of Orthopedics, Hanting People's Hospital, Weifang, Shandong 261100, P.R. China
| |
Collapse
|
42
|
Chen G, Feng Y, Li X, Jiang Z, Bei B, Zhang L, Han Y, Li Y, Li N. Post-transcriptional Gene Regulation in Colitis Associated Cancer. Front Genet 2019; 10:585. [PMID: 31275360 PMCID: PMC6593052 DOI: 10.3389/fgene.2019.00585] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/04/2019] [Indexed: 01/07/2023] Open
Abstract
Colitis-associated cancer (CAC) has been linked to microRNA (miRNA) aberrant expression elicited by inflammation. In this study, we used the AOM/DSS-induced CAC mice model to explore the ectopic expression of miRNAs in the precancerous stage of CAC. As a result, we found that miR-31-5p, miR-223-3p, and let-7f-5p were dysregulated during the development of intestinal dysplasia. Subsequently, we first identified the role of these three miRNAs in CAC. Adenomatous polyposis coli (APC) was revealed as a new target of miR-223-3p, and solute carrier family 9- subfamily A-member 9 (SLC9A9) and APC membrane recruitment protein 3 (AMER3) were suggested as two new targets for let-7f-5p. For miR-31-5p, we proved that it can target LATS2 mRNA so as to modulate Hippo pathway in Caco2 cells. Second, to examine if targeting these three miRNAs would lead to CAC prevention, pedunculoside, a natural triterpene glycoside capable of rescuing the down-regulation of LATS2 and APC caused by either miR-31-5p or miR-223-3p overexpression, respectively, was used in the in vivo AOM/DSS-induced CAC model. The results showed that pedunculoside (25 mg/kg) substantially mitigated the damage to mice intestine caused by DSS/AOM. These results suggested that miRNAs-elicited post-transcriptional regulation is involved in the pathogenesis of CAC, and CAC can be prevented through targeting key miRNAs that are ectopically expressed in CAC.
Collapse
Affiliation(s)
- Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuezheng Li
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Zhe Jiang
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Bei Bei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yueqing Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanwu Li
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Li Y, Sun D, Gao J, Shi Z, Chi P, Meng Y, Zou C, Wang Y. Retracted: MicroRNA-373 promotes the development of endometrial cancer by targeting LATS2 and activating the Wnt/β-Catenin pathway. J Cell Biochem 2019; 120:8611-8618. [PMID: 30485504 DOI: 10.1002/jcb.28149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
In the female reproductive tract, endometrial cancer is the most common malignant tumor. Recently, the specific functions of many miRNAs have been identified in endometrial cancer. However, the contradictory effects of microRNA-373 (miR-373) in different human cancers draw our attention. In the present research, upregulation of miR-373 was identified in endometrial cancer which predicted poor prognosis. Moreover, upregulation of miR-373 promoted the migration, invasion, and proliferation of endometrial cancer cells. To further confirm that results, the EMT and Wnt/β-Catenin pathways were also investigated, which were promoted by overexpression of miR-373. Then, we further investigate the downstream factor, large tumor suppressor kinase 2 (LATS2) which was inhibited by miR-373. LATS2 was verified as a direct target gene of miR-373 through luciferase reporter assay. Especially, the facilitation of miR-373 for cell proliferation, migration and invasion was impaired by LATS2. Taken together, miR-373 promotes the progression of endometrial cancer through targeting LATS2 and promoting EMT and Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Emergency, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Dongxia Sun
- Department of Pathology, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Jie Gao
- Department of Function Examination, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, PR China
| | - Zhimin Shi
- Department of Pathology, College of Medicine, Hebei University of Engineering, Handan, Hebei, PR China
| | - Pengyu Chi
- Obstetrical Department, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Yuanyuan Meng
- Department of Physiology, College of Medicine, Hebei University of Engineering, Handan, Hebei, PR China
| | - Changjun Zou
- Department of Emergency, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| | - Yanhua Wang
- Department of Pathology, Handan Municipal Maternal and Child Health Hospital, Handan, Hebei, PR China
| |
Collapse
|
44
|
Isoliquiritigenin suppresses the proliferation and induced apoptosis via miR-32/LATS2/Wnt in nasopharyngeal carcinoma. Eur J Pharmacol 2019; 856:172352. [PMID: 31004603 DOI: 10.1016/j.ejphar.2019.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Nasopharyngeal Carcinoma is limited by the various severe side-effects and surgery is rarely performed. Iosliquiritigenin has a series of biological activities, such as antiviral, anti-free radical and antitumor. However, the role and underlying mechanism of isoliquiritigenin in nasopharyngeal carcinoma have not been understood yet. Herein, the results revealed that isoliquiritigenin could inhibit cell proliferation in nasopharyngeal carcinoma cell lines, including C666-1 and CNE2, in both Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assay. In addition, isoliquiritigenin promoted nasopharyngeal carcinoma cell apoptosis, with the up-regulations of Bax, Caspase-3 and Caspase-9 and the down-regulation of Bcl-2. Meanwhile, isoliquiritigenin suppressed nasopharyngeal carcinoma cells migration and invasion with the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9. Furthermore, the expression of miR-32 was up-regulated in the nasopharyngeal carcinoma tissues, while isoliquiritigenin could significantly down-regulate the expression of miR-32. And over-expression of miR-32 promoted the nasopharyngeal carcinoma cells growth, migration and invasion, and suppressed apoptosis. However, isoliquiritigenin treatment dramatically inhibited the effect of miR-32. Besides, luciferase reporter assay confirmed that large tumor suppressor 2 (LATS2) was a direct target of miR-32. And isoliquiritigenin increased the expression of LATS2, while silencing of LATS2 promoted the nasopharyngeal carcinoma cells growth. Moreover, western blotting discovered that isoliquiritigenin inhibited nasopharyngeal carcinoma cells growth via Wnt signaling pathway. Finally, CNE2 cells transplanted xenografts tumor model in nude mice were performed and it suggested that isoliquiritigenin could inhibit the development of xenografts nude mice, along with the decrease of tumor volume and the expression of miR-32 and LATS2. Overall, isoliquiritigenin was confirmed to be a potent anti-nasopharyngeal carcinoma compound both in vitro and in vivo, and accomplished by regulation of miR-32/LATS2/Wnt.
Collapse
|
45
|
USF1-induced upregulation of LINC01048 promotes cell proliferation and apoptosis in cutaneous squamous cell carcinoma by binding to TAF15 to transcriptionally activate YAP1. Cell Death Dis 2019; 10:296. [PMID: 30931936 PMCID: PMC6443651 DOI: 10.1038/s41419-019-1516-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
Previous studies have revealed that dysregulation of long non-coding RNAs (lncRNAs) can facilitate carcinogenesis. This study aims to investigate the biological role of a certain lncRNA in cutaneous squamous cell carcinoma (CSCC). According to the data of TCGA database, high expression of long intergenic non-protein coding RNA 1048 (LINC01048) is an unfavorable prognostic factor for patients with CSCC. Therefore, we further detected the expression pattern of LINC01048 in CSCC tissues. Obviously, LINC01048 was expressed higher in the CSCC tissues and recurrence tissues compared with that in adjacent normal tissues and non-recurrence tissues. Furthermore, Kaplan-Meier analysis revealed the negative correlation between LINC01048 expression and the overall survival and disease-free survival of CSCC patients. Subsequently, functional assays were conducted to prove the inhibitory effect of silenced LINC01048 on the proliferation and apoptosis of CSCC cells. Mechanistically, LINC01048 was proved to be transcriptionally activated by USF1. Pathway analysis and western blot assay showed that knockdown of LINC01048 led to the activation of Hippo pathway. Moreover, YAP1, a Hippo pathway factor, was positively regulated by LINC01048. Further mechanism investigation revealed that LINC01048 increased the binding of TAF15 to YAP1 promoter to transcriptionally activate YAP1 in CSCC cells. Finally, rescue assays demonstrated that YAP1 involved in LINC01048-mediated CSCC cell proliferation and apoptosis. In conclusion, USF1-induced upregulation of LINC01048 promoted CSCC by interacting with TAF15 to upregulate YAP1.
Collapse
|
46
|
Guo C, Liang C, Yang J, Hu H, Fan B, Liu X. LATS2 inhibits cell proliferation and metastasis through the Hippo signaling pathway in glioma. Oncol Rep 2019; 41:2753-2761. [PMID: 30896861 PMCID: PMC6448087 DOI: 10.3892/or.2019.7065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/26/2018] [Indexed: 01/20/2023] Open
Abstract
As a core kinase in the Hippo pathway, large tumor suppressor kinase 2 (LATS2) regulates cell proliferation, migration and invasion through numerous signaling pathways. However, its functions on cell proliferation, migration and invasion in glioma have yet to be elucidated. The present study revealed that LATS2 was downregulated in glioma tissues and cells, as determined by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. In addition, Cell Counting Kit-8, scratch wound healing and Transwell assays revealed that overexpression of LATS2 in U-372 MG cells inhibited cell proliferation, migration and invasion. Furthermore, western blot analysis indicated that the expression levels of phosphorylated (p)-yes-associated protein and p-tafazzin were increased in cells with LATS2 overexpression. These results indicated that LATS2 is a potential tumor suppressor, and downregulation of LATS2 in glioma may contribute to cancer progression.
Collapse
Affiliation(s)
- Chengyong Guo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Chaohui Liang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jipeng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hongchao Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Bo Fan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
47
|
Zhou J, Zhang L, Zhou W, Chen Y, Cheng Y, Dong J. LIMD1 phosphorylation in mitosis is required for mitotic progression and its tumor-suppressing activity. FEBS J 2019; 286:963-974. [PMID: 30600590 DOI: 10.1111/febs.14743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/23/2018] [Accepted: 01/01/2019] [Indexed: 12/13/2022]
Abstract
LIM domains containing 1 (LIMD1) is a member of the Zyxin family proteins and functions as a tumor suppressor in lung cancer. LIMD1 has been shown to regulate Hippo-YAP signaling activity. Here, we report a novel regulatory mechanism for LIMD1. We found that cyclin-dependent kinase 1 (CDK1) and c-Jun NH2-terminal kinases 1/2 (JNK1/2) phosphorylate LIMD1 in vitro and in cells during anti-tubulin drug-induced mitotic arrest. Phosphorylation also occurs during normal mitosis. S272, S277, S421, and S424 were identified as the main phosphorylation sites in LIMD1. Deletion of LIMD1 resulted in a shortened mitotic cell cycle and phosphorylation of LIMD1 is required for proper mitotic progression. We further showed that the phosphorylation-deficient mutant LIMD1-4A is less active in suppressing cell proliferation, anchorage-independent growth, cell migration, and invasion in lung cancer cells. Together, our findings suggest that LIMD1 is a key regulator of mitotic progression, and that dysregulation of LIMD1 contributes to tumorigenesis.
Collapse
Affiliation(s)
- Jiuli Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lin Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
48
|
Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer. Cell Death Dis 2018; 9:1017. [PMID: 30282996 PMCID: PMC6170488 DOI: 10.1038/s41419-018-1064-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Gallbladder cancer (GBC) is the most common type of biliary tract cancer worldwide. Long noncoding RNAs (lncRNAs) play essential roles in physiological and pathological development. LncRNA MEG3, a tumor suppressor, has been reported to play important roles in some cancers, but the role of MEG3 in GBC remains largely unknown. The purpose of the present study was to explore the role of MEG3 in proliferation and invasion and the potential molecular mechanism in GBC. We found that MEG3 was downregulated in GBC tissues and cells, and low expression of MEG3 was correlated with poor prognostic outcomes in patients. Overexpression of MEG3 inhibited GBC cell proliferation and invasion, induced cell apoptosis and decreased tumorigenicity in nude mice. Moreover, we found that MEG3 was associated with EZH2 and attenuated EZH2 by promoting its ubiquitination. Furthermore, MEG3 executed its functions via EZH2 to regulate the downstream target gene LATS2. Taken together, these findings suggest that MEG3 is an effective target for GBC therapy and may facilitate the development of lncRNA-directed diagnostics and therapeutics against GBC.
Collapse
|
49
|
Yu T, Ma P, Wu D, Shu Y, Gao W. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother 2018; 108:1162-1169. [PMID: 30372817 DOI: 10.1016/j.biopha.2018.09.132] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs can exhibit opposite functions in different tumors. MiR-31 is a representative example as it can not only enhance tumor development and progression in pancreatic cancer, colorectal cancer and so on, but also inhibit tumorigenesis and induce apoptosis in ovarian cancer, prostate cancer and etc. The mechanism underlying its' pleiotropy remains unknown. Several recent studies that focused on the global gene expression changes caused by aberrant miR-31 provided information on the upstream and downstream events associated with deregulated miR-31. MiR-31 might interact with a number of signaling pathways including RAS/MARK, PI3K/AKT and RB/E2F to play its opposite functions. This review summarizes the target genes and pathways associated with miR-31 and examines the mechanisms underlying the function of miR-31. The resulting hypothesis is possible that the tissue-specific features of adenocarcinoma and squamous cell cancer and the positive feedback loop consists of miR-31 and its upstream and downstream may account for the diversity of miR-31 functions.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
50
|
Ushakov DS, Dorozhkova AS, Babayants EV, Ovchinnikov VY, Kushlinskii DN, Adamyan LV, Gulyaeva LF, Kushlinskii NE. Expression of microRNA Potentially Regulated by AhR and CAR in Malignant Tumors of the Endometrium. Bull Exp Biol Med 2018; 165:688-691. [PMID: 30225717 DOI: 10.1007/s10517-018-4242-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Indexed: 12/13/2022]
Abstract
We studied microRNA whose expression can be regulated by carcinogenic compounds. Bioinformatic analysis has detected microRNA potentially regulated by xenosensor receptors AhR (miR-28, miR-30c, miR-30e, miR-139, and miR-153) and CAR (miR-29c, miR-31, miR-185, miR-625, and miR-652). Published data indicate that these microRNAs are oncosuppressors, except miR-31 that can act as an oncogene. The expression of these microRNAs in malignant tumors of the endometrium was studied. The expression of the majority of the studied microRNAs, except miR-652, was 2-3-fold below the normal, which confirms their oncosuppressor function and indicates their involvement in the endometrial carcinogenesis and hence, allows considering them as potential markers of the disease.
Collapse
Affiliation(s)
- D S Ushakov
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.
| | - A S Dorozhkova
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - E V Babayants
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - V Yu Ovchinnikov
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D N Kushlinskii
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Adamyan
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L F Gulyaeva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|