1
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Zhang Y, Su R, Zhang Z, Jiang Y, Miao Y, Zhou S, Ji M, Hsu CW, Xu H, Li Z, Wang G. An ultrasensitive one-pot Cas13a-based microfluidic assay for rapid multiplexed detection of microRNAs. Biosens Bioelectron 2025; 274:117212. [PMID: 39893949 DOI: 10.1016/j.bios.2025.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Aberrant microRNA expression is associated with tumor progression in various organs. Detecting microRNAs as clinical cancer biomarkers can facilitate early cancer diagnosis and monitoring. However, the rapid and accurate quantification of microRNAs from biological samples remains a significant challenge. Here we developed a one-pot isothermal assay utilizing a molecular circuit with CRISPR/Cas13a (CRISPR-circuit) to rapidly convert, amplify and report different microRNAs within 15 min at the attomolar (aM) level. Then the full process was performed on an active centrifugal microfluidic chip and its corresponding portable equipment for parallel detection of multiple microRNAs, including miR-21, miR-141, miR-196a, and miR-1246. We also demonstrated its application for identifying cell lines and clinical samples of cancer patients with varying microRNA levels, which showed a strong correlation with the RT-qPCR. The assay can be easily adapted for the detection of any microRNA by simply modifying the converter primer, thereby holding significant potential for accurate disease detection and clinical diagnosis.
Collapse
Affiliation(s)
- Ya Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Rouyu Su
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Zheng Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Yiyue Jiang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yejia Miao
- Department of health, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Shiqi Zhou
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Miaomiao Ji
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Chih-Wen Hsu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Hongpan Xu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China.
| |
Collapse
|
3
|
Alonso‐Eiras J, Anton IM. Multifaceted role of the actin-binding protein WIP: Promotor and inhibitor of tumor progression and dissemination. Cytoskeleton (Hoboken) 2025; 82:186-196. [PMID: 39329352 PMCID: PMC11904860 DOI: 10.1002/cm.21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Cancer cells depend on actin cytoskeleton reorganization to achieve hallmark malignant functions including abnormal activation, proliferation, migration and invasiveness. (Neural)-Wiskott-Aldrich Syndrome protein ((N-)WASP) binds actin and forms a complex with the WASP-interacting protein (WIP), which plays a critical role in regulating the actin cytoskeleton, through (N)-WASP-dependent and independent functions. Mutations in the WIP gene (WIPF1) lead to severe early onset immunodeficiency in humans and severe autoimmunity and shortened lifespan in mice. This review covers the available evidence about the physiological role of WIP in different tissues and its contribution to human disease, focusing on cancer. In solid tumors overexpression of WIP has mostly been associated with tumor initiation, progression and dissemination through matrix degradation by invadopodia, while a suppressive function has been shown for WIP in certain hematological cancers. Interestingly, a minority of studies suggest a protective role for WIP in specific tumor contexts. These data support the need for further research to fully understand the mechanisms underlying WIP's diverse functions in health and disease and raise important questions for future work.
Collapse
Affiliation(s)
- Jorge Alonso‐Eiras
- Ciencias de la Salud, Escuela de Másteres OficialesUniversidad Rey Juan CarlosMadridSpain
| | - Ines M. Anton
- Departamento de Biología Molecular y CelularCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| |
Collapse
|
4
|
Li Y, Pan X, Luo W, Gamalla Y, Ma Z, Zhou P, Dai C, Han D. TMErisk score: A tumor microenvironment-based model for predicting prognosis and immunotherapy in patients with head and neck squamous cell carcinoma. Heliyon 2024; 10:e31877. [PMID: 38845978 PMCID: PMC11152963 DOI: 10.1016/j.heliyon.2024.e31877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Tumor microenvironment (TME) is closely associated with the progression and prognosis of head and neck squamous cell carcinoma (HNSCC). To investigate potential biomarkers for predicting therapeutic outcomes in HNSCC, we analyzed the immune and stromal status of HNSCC based on the genes associated with TME using the ESTIMATE algorithm. Immune and stromal genes were identified with differential gene expression and weighted gene co-expression network analysis (WGCNA). From these genes, 118 were initially selected through Cox univariate regression and then further input into least absolute shrinkage and selection operator (LASSO) regression analysis. As a result, 11 genes were screened out for the TME-related risk (TMErisk) score model which presented promising overall survival predictive potential. The TMErisk score was negatively associated with immune and stromal scores but positively associated with tumor purity. Individuals with high TMErisk scores exhibited decreased expression of most immune checkpoints and all human leukocyte antigen family genes, and reduced abundance of infiltrating immune cells. Divergent genes were mutated in HNSCC. In both high and low TMErisk score groups, the tumor protein P53 exhibited the highest mutation frequency. A higher TMErisk score was found to be associated with reduced overall survival probability and worse outcomes of immunotherapy. Therefore, the TMErisk score could serve as a valuable model for the outcome prediction of HNSCC in clinic.
Collapse
Affiliation(s)
- Yu Li
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, China
- Department of the Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guang-dong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Yaser Gamalla
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Zhan Ma
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Chunfu Dai
- Department of the Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Medical School, Guangxi University, Nanning, 530004, China
| |
Collapse
|
5
|
Lin J, Lu F, Wu Y, Huang H, Pan Y. The cellular trajectories of tumor-associated macrophages decipher the heterogeneity of pancreatic cancer. Funct Integr Genomics 2023; 23:343. [PMID: 37991591 DOI: 10.1007/s10142-023-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Emerging evidence indicates that the interactions and dynamic changes among tumor-associated macrophages (TAMs) are pivotal in molding the tumor microenvironment (TME), thereby influencing diverse clinical outcomes. However, the potential clinical ramifications of these evolutionary shifts in tumor-associated macrophages within pancreatic adenocarcinoma (PAAD) remain largely unexamined. Single-cell RNA sequencing (scRNA-seq) data were retrieved from the Tumor Immune Single-cell Hub. The Seurat and Monocle algorithms were employed to elucidate the progression of TAMs, using non-negative matrix factorization (NMF) to determine molecular classifications. Subsequently, the prognosis, biological characteristics, genomic modifications, and immune landscape across various clusters were interpreted. Furthermore, the sensitivity of potential therapeutic drugs between subtypes was predicted. Cellular experiments were conducted to explore the function of the NR1H3 gene in pancreatic cancer. These experiments encompassed gene knockdown, proliferation assessment, clone formation evaluation, transwell examination, and apoptosis analysis. Trajectory gene expression analysis of tumor-associated macrophages identified three disparate clusters, each associated with different clinical outcomes Compared to clusters C1 and C2, cluster C3 is seemingly at a less advanced pathological stage and associates with a relatively favorable prognosis. Further investigation revealed pronounced genetic instability in cluster C2, whereas cluster C3 demonstrated notable genetic stability. Cluster C1, characterized as "immune-hot," exhibits an abundance of immune cells and elevated immune checkpoint expression, suggesting its suitability for immunotherapy. Furthermore, several potential therapeutic agents have been pinpointed, potentially facilitating the clinical application of these insights. Cell assays indicated that NR1H3 knockdown markedly induced apoptosis and suppressed clonogenesis, migration, and proliferation of pancreatic cancer cells in the PTAU-8988 and PANC-1 cell lines. Overall, our study discerned three clusters with unique characteristics, defined by the evolution of TAMs. We propose customized therapeutic strategies for patients within these specific clusters to improve clinical outcomes and optimize clinical management.
Collapse
Affiliation(s)
- Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
6
|
Su F, Xiao R, Chen R, Yang T, Wang D, Xu X, Hou X, Guan Q, Feng M. WIPF1 promotes gastric cancer progression by regulating PI3K/Akt signaling in a myocardin-dependent manner. iScience 2023; 26:108273. [PMID: 38026208 PMCID: PMC10654612 DOI: 10.1016/j.isci.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Wiskott-Aldrich syndrome protein-interacting protein family member 1 (WIPF1) is associated with malignant tumor progression. However, molecular links between WIPF1 and gastric cancer (GC) remain elusive. The expression of WIPF1 was detected in GC tissues and cells. WIPF1 was overexpressed in GC tissues and cells and high expression of WIPF1 was an independent risk factor for a poor prognosis in patients with GC. Further experiments indicated that WIPF1 promoted the proliferation, invasion, and migration of GC cells in vivo and in vitro. WIPF1-regulated genes were closely related to cell proliferation and migration in GC, and silencing WIPF1 significantly repressed PI3K/AKT signaling pathway activation. WIPF1 was activated by myocardin (MYOCD) translation. Rescue experiments confirmed that MYOCD promotes the proliferation, invasion, and migration of GC cells in a WIPF1-dependent manner and activates the PI3K/AKT signaling pathway. MYOCD may transactivate WIPF1 and facilitate GC cell growth and metastasis by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ruowen Xiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Rui Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tianning Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Danwen Wang
- Center for Clinical Medicine of Peritoneal Cancer of Wuhan, Wuhan, Hubei 430060, P.R. China
- Clinical Cancer Study Center of Hubei Province, Wuhan, Hubei 430060, P.R. China
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xinni Xu
- Scientific Development and Planing Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Maohui Feng
- Center for Clinical Medicine of Peritoneal Cancer of Wuhan, Wuhan, Hubei 430060, P.R. China
- Clinical Cancer Study Center of Hubei Province, Wuhan, Hubei 430060, P.R. China
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Dong Y, Jin Q, Sun M, Qi D, Qu H, Wang X, Quan C. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. J Exp Clin Cancer Res 2023; 42:68. [PMID: 36935496 PMCID: PMC10026481 DOI: 10.1186/s13046-023-02644-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND As a breast cancer suppressor gene, CLDN6 overexpression was found to inhibit breast cancer metastasis in our previous studies, but the specific mechanism remains unclear. This study aimed to clarify the role and mechanism of CLDN6 in inhibiting breast cancer metastasis. METHODS Western blot, immunofluorescence and transmission electron microscopy were performed to detect autophagy. Wound healing, transwell assays and lung metastasis mouse models were used to examine breast cancer metastasis. Phalloidin staining and immunofluorescent staining were used to observe actin cytoskeleton. mRNA seq, RT-PCR, western blot, chromatin immunoprecipitation, dual luciferase reporter assay, co-immunoprecipitation and immunofluorescence were performed to define the molecular mechanism. The expression levels and clinical implication of CLDN6, WIP and LC3 in breast cancer tissues were evaluated using immunohistochemistry. RESULTS We demonstrated that CLDN6 inhibited breast cancer metastasis through autophagy in vitro and vivo. We unraveled a novel mechanism that CLDN6 regulated autophagy via WIP-dependent actin cytoskeleton assembly. Through its PDZ-binding motif, overexpressed CLDN6 interacted with JNK and upregulated JNK/c-Jun pathway. C-Jun promoted WIP expression at the transcriptional level. Notably, we observed c-Jun transcriptionally upregulated CLDN6 expression, and there was a positive feedback loop between CLDN6 and JNK/c-Jun. Finally, we found that CLDN6, WIP and LC3 expression correlated with each other, and WIP expression was significantly associated with lymph node metastasis of breast cancer patients. CONCLUSIONS The data provide a new insight into the inhibitory effects of CLDN6-mediated autophagy on breast cancer metastasis, and revealed the new mechanism of CLDN6 regulating autophagy through WIP-dependent actin cytoskeleton. Our findings enrich the theoretical basis for CLDN6 as a potential biomarker for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Pereira BJA, Marcondes Lerario A, Sola PR, Laurentino TDS, Mohan DR, de Almeida AN, Pires de Aguiar PH, da Silva Paiva W, Wakamatsu A, Teixeira MJ, Oba-Shinjo SM, Marie SKN. Impact of a cell cycle and an extracellular matrix remodeling transcriptional signature on tumor progression and correlation with EZH2 expression in meningioma. J Neurosurg 2023; 138:649-662. [PMID: 36029259 DOI: 10.3171/2022.7.jns22953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors searched for genetic and transcriptional signatures associated with tumor progression and recurrence in their cohort of patients with meningiomas, combining the analysis of targeted exome, NF2-LOH, transcriptome, and protein expressions. METHODS The authors included 91 patients who underwent resection of intracranial meningioma at their institution between June 2000 and November 2007. The search of somatic mutations was performed by Next Generation Sequencing through a customized panel and multiplex ligation-dependent probe amplification for NF2 loss of heterozygosity. The transcriptomic profile was analyzed by QuantSeq 3' mRNA-Seq. The differentially expressed genes of interest were validated at the protein level analysis by immunohistochemistry. RESULTS The transcriptomic analysis identified an upregulated set of genes related to metabolism and cell cycle and downregulated genes related to immune response and extracellular matrix remodeling in grade 2 (atypical) meningiomas, with a significant difference in recurrent compared with nonrecurrent cases. EZH2 nuclear positivity associated with grade 2, particularly with recurrent tumors and EZH2 gene expression level, correlated positively with the expression of genes related to cell cycle and negatively to genes related to immune response and regulation of cell motility. CONCLUSIONS The authors identified modules of dysregulated genes in grade 2 meningiomas related to the activation of oxidative metabolism, cell division, cell motility due to extracellular remodeling, and immune evasion that were predictive of survival and exhibited significant correlations with EZH2 expression.
Collapse
Affiliation(s)
| | - Antonio Marcondes Lerario
- 2Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Paula Rodrigues Sola
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Talita de Sousa Laurentino
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Dipika R Mohan
- 3Medical Scientist Training Program, and Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Paulo Henrique Pires de Aguiar
- 5Medical Research ABC Medical School, Santo André, Brazil.,6Pontifice Catholic University of São Paulo, Sorocaba, Brazil; and
| | | | - Alda Wakamatsu
- 7Department of Pathology, Hepatic Pathology Laboratory, University of São Paulo, São Paulo, Brazil
| | | | - Sueli Mieko Oba-Shinjo
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Möller S, Saul N, Projahn E, Barrantes I, Gézsi A, Walter M, Antal P, Fuellen G. Gene co-expression analyses of health(span) across multiple species. NAR Genom Bioinform 2022; 4:lqac083. [PMID: 36458022 PMCID: PMC9706456 DOI: 10.1093/nargab/lqac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Health(span)-related gene clusters/modules were recently identified based on knowledge about the cross-species genetic basis of health, to interpret transcriptomic datasets describing health-related interventions. However, the cross-species comparison of health-related observations reveals a lot of heterogeneity, not least due to widely varying health(span) definitions and study designs, posing a challenge for the exploration of conserved healthspan modules and, specifically, their transfer across species. To improve the identification and exploration of conserved/transferable healthspan modules, here we apply an established workflow based on gene co-expression network analyses employing GEO/ArrayExpress data for human and animal models, and perform a comprehensive meta-study of the resulting modules related to health(span), yielding a small set of literature backed health(span) candidate genes. For each experiment, WGCNA (weighted gene correlation network analysis) was used to infer modules of genes which correlate in their expression with a 'health phenotype score' and to determine the most-connected (hub) genes (and their interactions) for each such module. After mapping these hub genes to their human orthologs, 12 health(span) genes were identified in at least two species (ACTN3, ANK1, MRPL18, MYL1, PAXIP1, PPP1CA, SCN3B, SDCBP, SKIV2L, TUBG1, TYROBP, WIPF1), for which enrichment analysis by g:profiler found an association with actin filament-based movement and associated organelles, as well as muscular structures. We conclude that a meta-study of hub genes from co-expression network analyses for the complex phenotype health(span), across multiple species, can yield molecular-mechanistic insights and can direct experimentalists to further investigate the contribution of individual genes and their interactions to health(span).
Collapse
Affiliation(s)
- Steffen Möller
- To whom correspondence should be addressed. Tel: +49 381 494 7361; Fax: +49 381 494 7203;
| | - Nadine Saul
- Humboldt-University of Berlin, Institute of Biology, Berlin, Germany
| | - Elias Projahn
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| | - Israel Barrantes
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| | - András Gézsi
- Budapest University of Technology and Economics, Department of Measurement and Information Systems, Budapest, Hungary
| | - Michael Walter
- Rostock University Medical Center, Institute for Clinical Chemistry and Laboratory Medicine, Rostock, Germany
| | - Péter Antal
- Budapest University of Technology and Economics, Department of Measurement and Information Systems, Budapest, Hungary
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| |
Collapse
|
10
|
Zhang Y, Wang Y, Ji H, Ding J, Wang K. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:202. [PMID: 35701841 PMCID: PMC9199231 DOI: 10.1186/s13046-022-02403-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway was found coordinately modulates cell regeneration and organ size. Its dysregulation contributes to uncontrolled cell proliferation and malignant transformation. YAP/TAZ are two critical effectors of the Hippo pathway and have been demonstrated essential for the initiation or growth of most tumors. Noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have been shown to play critical roles in the development of many cancers. In the past few decades, a growing number of studies have revealed that ncRNAs can directly or indirectly regulate YAP/TAZ signaling. YAP/TAZ also regulate ncRNAs expression in return. This review summarizes the interactions between YAP/TAZ signaling and noncoding RNAs together with their biological functions on cancer progression. We also try to describe the complex feedback loop existing between these components.
Collapse
Affiliation(s)
- Yirao Zhang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Yang Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Hao Ji
- Department of Liver Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
11
|
Crosstalk between Venous Thromboembolism and Periodontal Diseases: A Bioinformatics Analysis. DISEASE MARKERS 2021; 2021:1776567. [PMID: 34925639 PMCID: PMC8683231 DOI: 10.1155/2021/1776567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Background This current study applied bioinformatics analysis to reveal the crosstalk between venous thromboembolism (VTE) and periodontitis, as well as the potential role of immune-related genes in this context. Methods Expression data were downloaded from the GEO database. Blood samples from venous thromboembolism (VTE) were used (GSE19151), while for periodontal disease, we used gingival tissue samples (GSE10334, GSE16134, and GSE23586). After batch correction, we used “limma” packages of R language for differential expression analysis (p value < 0.05, ∣logFC | ≥0.5). We used Venn diagrams to extract the differentially expressed genes common to VTE and periodontitis as potential crosstalk genes and applied functional enrichment analysis (GO biological process and KEGG pathway). The protein-protein interaction (PPI) network of crosstalk genes was constructed by Cytoscape software. The immune-related genes were downloaded from the literature. The Wilcoxon test was used to test the scores of immune infiltrating cells. The crosstalk genes were further screened by LASSO Logistic Regression. Results For periodontitis, 427 case and 136 control samples, and for VTE, 70 case and 63 control samples were included. The obtained PPI network had 1879 nodes and 2257 edges. Moreover, 782 immune genes and 28 cell types were included in the analysis. Over 90% of immune cells had different expressions in VTE and periodontitis. We obtained 12 significant pathways corresponding to crosstalk genes. CD3D, CSF3R, and CXCR4 acted as an immune gene and a crosstalk gene. We obtained a total of 12 shared biomarker crosstalk genes. Among those 12 biomarker crosstalk genes, 4 were immune genes (LGALS1, LSP1, SAMSN1, and WIPF1). Conclusion Four biomarker crosstalk genes between periodontitis and VTE were also immune genes, i.e., LGALS1, LSP1, SAMSN1, and WIPF1. The findings of the current study need further validation and are a basis for development of biomarkers.
Collapse
|
12
|
Wu D, Shi L, Chen F, Lin Q, Kong J. Methylation Status of the miR-141-3p Promoter Regulates miR-141-3p Expression, Inflammasome Formation, and the Invasiveness of HTR-8/SVneo Cells. Cytogenet Genome Res 2021; 161:501-513. [PMID: 34879371 DOI: 10.1159/000519740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/19/2021] [Indexed: 11/19/2022] Open
Abstract
MicroRNA-141 (miR-141-3p) is upregulated in preeclampsia. This study investigated the effect of methylation of the miR-141-3p promoter on cell viability, invasion capability, and inflammasomes in vitro. The expression of miR-141-3p and methylation status of the miR-141-3p promoter were examined by RT-qPCR and pyrosequencing in villus tissues of women with spontaneous delivery (VTsd), villus tissues of women with preeclampsia (VTpe), and also in HTR-8/SVneo cells treated with a miR-141-3p inhibitor and 20 μmol/L 5-aza-2'-deoxycytidine (5-Aza), a DNA methyltransferase inhibitor. Cell viability and invasion were evaluated by CCK-8 and transwell assays. In addition, the levels of CXCL12, CXCR4, CXCR2, MMPs, NLRP3, and ASC expression were assessed by western blotting, and IL-1β and IL-18 concentrations were assayed by ELISA. miR-141-3p expression was upregulated, and the levels of miR-141-3p promoter methylation and CXCL12, CXCR4, and CXCR2 expression were decreased in VTpe relative to VTsd. In HTR-8/SVneo cells, hypomethylation caused by 5-Aza treatment increased miR-141-3p expression, while DNA methyltransferase 3 (DNMT3) transfection decreased miR-141-3p expression. miRNA-141-3p induced NLRP3, IL-1β, and IL-18 production, decreased CXCR4, MMP, and MMP2 production, and suppressed cell growth and invasion. Furthermore, we observed that NLRP3 plays an important mediatory role in the effects of miR-141-3p described above. Decreased methylation of the miR-141-3p promoter increases miR-141-3p expression, which in turn increases NLRP3 expression, resulting in higher IL-1β and IL-18 levels and lower levels of MMP2/9 and CXCR4. We conclude that modification of the miR-141-3p promoter might be a curial mediator in preeclampsia.
Collapse
Affiliation(s)
- Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li Shi
- Department of Medical Ultrasonics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangrong Chen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qing Lin
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiao Kong
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Role of non-coding RNAs in tumor progression and metastasis in pancreatic cancer. Cancer Metastasis Rev 2021; 40:761-776. [PMID: 34591242 PMCID: PMC8556175 DOI: 10.1007/s10555-021-09995-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer with an overall 5-year survival rate of less than 10%. The 1-year survival rate of patients with locally advanced or metastatic disease is abysmal. The aggressive nature of cancer cells, hypovascularization, extensive desmoplastic stroma, and immunosuppressive tumor microenvironment (TME) endows PDAC tumors with multiple mechanisms of drug resistance. With no obvious genetic mutation(s) driving tumor progression or metastatic transition, the challenges for understanding the biological mechanism(s) of these processes are paramount. A better understanding of the molecular and cellular mechanisms of these processes could lead to new diagnostic tools for patient management and new targets for therapeutic intervention. microRNAs (miRNAs) are an evolutionarily conserved gene class of short non-coding regulatory RNAs. miRNAs are an extensive regulatory layer that controls gene expression at the posttranscriptional level. This review focuses on preclinical models that functionally dissect miRNA activity in tumor progression or metastatic processes in PDAC. Collectively, these studies suggest an influence of miRNAs and RNA-RNA networks in the processes of epithelial to mesenchymal cell transition and cancer cell stemness. At a cell-type level, some miRNAs mainly influence cancer cell–intrinsic processes and pathways, whereas other miRNAs predominantly act in distinct cellular compartments of the TME to regulate fibroblast and immune cell functions and/or influence other cell types’ function via cell-to-cell communications by transfer of extracellular vesicles. At a molecular level, the influence of miRNA-mediated regulation often converges in core signaling pathways, including TGF-β, JAK/STAT, PI3K/AKT, and NF-κB.
Collapse
|
14
|
Lymphoid Organ Proteomes Identify Therapeutic Efficacy Biomarkers Following the Intracavitary Administration of Curcumin in a Highly Invasive Rat Model of Peritoneal Mesothelioma. Int J Mol Sci 2021; 22:ijms22168566. [PMID: 34445271 PMCID: PMC8395293 DOI: 10.3390/ijms22168566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to identify the proteomic changes produced by curcumin treatment following stimulation of the host immune system in a rat model of malignant mesothelioma. We analyzed the proteomes of secondary lymphoid organs from four normal rats, four untreated tumor-bearing rats, and four tumor-bearing rats receiving repeated intraperitoneal administrations of curcumin. Cross-comparing proteome analyses of histological sections of the spleen from the three groups first identified a list of eighty-three biomarkers of interest, thirteen of which corresponded to proteins already reported in the literature and involved in the anticancer therapeutic effects of curcumin. In a second step, comparing these data with proteomic analyses of histological sections of mesenteric lymph nodes revealed eight common biomarkers showing a similar pattern of changes in both lymphoid organs. Additional findings included a partial reduction of the increase in spleen-circulating biomarkers, a decrease in C-reactive protein and complement C3 in the spleen and lymph nodes, and an increase in lymph node purine nucleoside phosphorylase previously associated with liver immunodeficiency. Our results suggest some protein abundance changes could be related to the systemic, distant non-target antitumor effects produced by this phytochemical.
Collapse
|
15
|
Song R, Lei S, Yang S, Wu SJ. LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis. J Cell Mol Med 2021; 25:7321-7334. [PMID: 34245091 PMCID: PMC8335679 DOI: 10.1111/jcmm.16761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease featured with elevated pulmonary vascular resistance and progressive pulmonary vascular remodelling. It has been demonstrated that lncRNA PAXIP1‐AS1 could influence the transcriptome in PAH. However, the exact molecular mechanism of PAXIP1‐AS1 in PAH pathogenesis remains largely unknown. In this study, in vivo rat PAH model was established by monocrotaline (MCT) induction and hypoxia was used to induce in vitro PAH model using human pulmonary artery smooth muscle cells (hPASMCs). Histological examinations including H&E, Masson's trichrome staining and immunohistochemistry were subjected to evaluate the pathological changes of lung tissues. Expression patterns of PAXIP1‐AS1 and RhoA were assessed using qRT‐PCR and Western blotting, respectively. CCK‐8, BrdU assay and immunofluorescence of Ki67 were performed to measure the cell proliferation. Wound healing and transwell assays were employed to evaluate the capacity of cell migration. Dual‐luciferase reporter assay, co‐immunoprecipitation, RIP and CHIP assays were employed to verify the PAXIP1‐AS1/ETS1/WIPF1/RhoA regulatory network. It was found that the expression of PAXIP1‐AS1 and RhoA was remarkably higher in both lung tissues and serum of MCT‐induced PAH rats, as well as in hypoxia‐induced hPASMCs. PAXIP1‐AS1 knockdown remarkably suppressed hypoxia‐induced cell viability and migration of hPASMCs. PAXIP1‐AS1 positively regulated WIPF1 via recruiting transcriptional factor ETS1, of which knockdown reversed PAXIP1‐AS1‐mediated biological functions. Co‐immunoprecipitation validated the WIPF1/RhoA interaction. In vivo experiments further revealed the role of PAXIP1‐AS1 in PAH pathogenesis. In summary, lncRNA PAXIP1‐AS1 promoted cell viability and migration of hPASMCs via ETS1/WIPF1/RhoA, which might provide a potential therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Rong Song
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Song Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shang-Jie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Kim Y, Lee S, Jang JY, Lee S, Park T. Identifying miRNA-mRNA Integration Set Associated With Survival Time. Front Genet 2021; 12:634922. [PMID: 34267778 PMCID: PMC8276759 DOI: 10.3389/fgene.2021.634922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
In the “personalized medicine” era, one of the most difficult problems is identification of combined markers from different omics platforms. Many methods have been developed to identify candidate markers for each type of omics data, but few methods facilitate the identification of multiple markers on multi-omics platforms. microRNAs (miRNAs) is well known to affect only indirectly phenotypes by regulating mRNA expression and/or protein translation. To take into account this knowledge into practice, we suggest a miRNA-mRNA integration model for survival time analysis, called mimi-surv, which accounts for the biological relationship, to identify such integrated markers more efficiently. Through simulation studies, we found that the statistical power of mimi-surv be better than other models. Application to real datasets from Seoul National University Hospital and The Cancer Genome Atlas demonstrated that mimi-surv successfully identified miRNA-mRNA integrations sets associated with progression-free survival of pancreatic ductal adenocarcinoma (PDAC) patients. Only mimi-surv found miR-96, a previously unidentified PDAC-related miRNA in these two real datasets. Furthermore, mimi-surv was shown to identify more PDAC related miRNAs than other methods because it used the known structure for miRNA-mRNA regularization. An implementation of mimi-surv is available at http://statgen.snu.ac.kr/software/mimi-surv.
Collapse
Affiliation(s)
- Yongkang Kim
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul, South Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Sun Y, Zong C, Liu J, Zeng L, Li Q, Liu Z, Li Y, Zhu J, Li L, Zhang C, Zhang W. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol 2021; 421:115536. [PMID: 33865896 DOI: 10.1016/j.taap.2021.115536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) can induce ovarian injury by microRNAs (miRNAs), however, the molecular mechanism of miRNAs after Cd exposure have not known. In this study, 56-day-old adult female Sprague-Dawley (SD) rats were injection with PMSG, after 48 h, ovarian granulosa cells (GCs) were extracted and cultured for 24 h, then treated with 0, 2.5, 5, 10 and 20 μM Cd for 24 h. The results showed that expression levels of miR-92a-2-5p (upregulated) and Bcl2 (downregulated) changed significantly after Cd exposure. The messenger RNA (mRNA) and protein expression levels of DNMT1, DNMT3A, and DNMT3B had changed, but no obvious differences were found in miR-92a-2-5p single site methylation. The transcription factors C-MYC (upregulated), E2F1 (downregulated), and SP1 (downregulated), which target miRNAs significantly changed after exposure to Cd. The human ovarian GC tumor line (COV434) was used to knocked down C-myc, and the expression of miR-92a-2-5p was downregulated in the COV434-C-myc + 10 μM Cd group compared with COV434 cells. The N6-methyladenosine (m6A) methylation modification levels of long noncoding RNA (lncRNA) MT1JP and lncRNA CDKN2B-AS, which regulate miR-92a-2-5p were detected. In the 10 μM Cd group, m6A methylation levels at MT1JP-84, CDKN2B-AS-257, and CDKN2B-AS-329 were reduced. In summary, after Cd exposure, expression of miR-92a-2-5p, which targets the antiapoptotic gene Bcl2, was upregulated, which may be primarily related to upregulation of C-myc. MiR-92a-2-5p promoter DNA methylation may has no obvious effect on miR-92a-2-5p. Otherwise, the role of m6A methylation modified lncRNA MT1JP and lncRNA CDKN2B-AS in the regulation of miR-92a-2-5p needs further study.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chaowei Zong
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfeng Zeng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School Key Discipline of Nutrition and Food Hygiene, Public Health School, Changsha Medical University, Changsha, China
| | - Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfang Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
18
|
Gregorova J, Vychytilova-Faltejskova P, Sevcikova S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers (Basel) 2021; 13:1333. [PMID: 33809566 PMCID: PMC8002357 DOI: 10.3390/cancers13061333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.
Collapse
Affiliation(s)
- Jana Gregorova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Petra Vychytilova-Faltejskova
- Department of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic;
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| |
Collapse
|
19
|
Liu Y, Lin W, Dong Y, Li X, Lin Z, Jia J, Zou W, Pan Y. Long noncoding RNA HCG18 up-regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR-141-3p in gastric cancer. Cancer Med 2020; 9:6752-6765. [PMID: 32725768 PMCID: PMC7520348 DOI: 10.1002/cam4.3288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accumulating works show that lncRNAs play critical roles in the development of gastric cancer (GC). LncRNA HLA complex group 18 (HCG18) was implicated in the progression of bladder cancer and glioma, but its role in GC is unknown. METHODS RT-PCR was used to detect HCG18 and miR-141-3p expression in GC specimen. GC cell lines (AGS and MKN-28) were exploited as cell model. The biological effect of HCG18 on cancer cells was probed by CCK-8, colony formation, flow cytometry, Transwell and wound-healing experiments in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Interaction between HCG18 and miR-141-3p was determined by bioinformatics analysis, RT-PCR, and luciferase reporter experiments. Downstream gene expression of miR-141-3p, including Wiskott-Aldrich syndrome protein interacting protein family member 1 (WIPF1), Yes associated protein 1 (YAP), and tafazzin (TAZ) were detected using Western blot. RESULTS HCG18 was markedly up-regulated in GC specimens, while miR-141-3p was markedly down-regulated. Down-regulation of HCG18 inhibited viability, migration, and invasion of GC cells, while miR-141-3p transfection led to opposite effect. HCG18 could down-regulate miR-141-3p through adsorbing it, and a negative association between HCG18 and miR-141-3p was found in GC specimens. HCG18 promoted WIPF1, YAP and TAZ expression, nonetheless, such influence was reversed by co-transfecting with miR-141-3p. CONCLUSION HCG18 was aberrantly up-regulated in GC tissues, and it indirectly regulated the activity of Hippo signaling through counteracting miR-141-3p expression.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Wenji Lin
- Department of RadiologyQuanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Yangyang Dong
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Xinyu Li
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Zhibin Lin
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Jing Jia
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Wenbing Zou
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Yu Pan
- Department of General SurgeryFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
20
|
Escoll M, Lastra D, Robledinos-Antón N, Wandosell F, Antón IM, Cuadrado A. WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells. Antioxidants (Basel) 2020; 9:E773. [PMID: 32825452 PMCID: PMC7555221 DOI: 10.3390/antiox9090773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.
Collapse
Affiliation(s)
- Maribel Escoll
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Diego Lastra
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Natalia Robledinos-Antón
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Inés María Antón
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Cellular and Molecular Biology, Darwin 3, 28049 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| |
Collapse
|
21
|
PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis 2020; 11:506. [PMID: 32632098 PMCID: PMC7338457 DOI: 10.1038/s41419-020-2701-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022]
Abstract
PD-L1 is overexpressed in tumor cells and contributes to cancer immunoevasion. However, the role of the tumor cell-intrinsic PD-L1 in cancers remains unknown. Here we show that PD-L1 regulates lung cancer growth and progression by targeting the WIP and β-catenin signaling. Overexpression of PD-L1 promotes tumor cell growth, migration and invasion in lung cancer cells, whereas PD-L1 knockdown has the opposite effects. We have also identified WIP as a new downstream target of PD-L1 in lung cancer. PD-L1 positively modulates the expression of WIP. Knockdown of WIP also inhibits cell viability and colony formation, whereas PD-L1 overexpression can reverse this inhibition effects. In addition, PD-L1 can upregulate β-catenin by inhibiting its degradation through PI3K/Akt signaling pathway. Moreover, we show that in lung cancer cells β-catenin can bind to the WIP promoter and activate its transcription, which can be promoted by PD-L1 overexpression. The in vivo experiments in a human lung cancer mouse model have also confirmed the PD-L1-mediated promotion of tumor growth and progression through activating the WIP and β-catenin pathways. Furthermore, we demonstrate that PD-L1 expression is positively correlated with WIP in tumor tissues of human adenocarcinoma patients and the high expression of PD-L1 and WIP predicts poor prognosis. Collectively, our results provide new insights into understanding the pro-tumorigenic role of PD-L1 and its regulatory mechanism on WIP in lung cancer, and suggest that the PD-L1/Akt/β-catenin/WIP signaling axis may be a potential therapeutic target for lung cancers.
Collapse
|
22
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
|
24
|
Xu X, Yu Y, Zong K, Lv P, Gu Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:497. [PMID: 31852504 PMCID: PMC6921559 DOI: 10.1186/s13046-019-1470-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Background The survival of pancreatic cancer patients remains poor. However, the underlying molecular mechanism and new therapeutic target of pancreatic cancer are still needed to be found. Many studies have shown that the IGF2 mRNA-binding protein 2 (IGF2BP2) plays oncogenic roles in cancers. However, the clinical significance, role and molecular mechanisms of IGF2BP2 in pancreatic cancer remain unclear. Methods The expression of IGF2BP2 and miR-141 was detected in pancreatic cancer, and clinical significances were analyzed by statistical analysis. The function of IGF2BP2 and miR-141 was determined in vitro and in vivo, and the underlying mechanism was investigated. The gene copy number variation (CNV) of IGF2BP2 was analyzed based on The Cancer Genome Atlas (TCGA) dataset. microRNAs (miRNAs) regulating IGF2BP2 were predicted by online tools and confirmed by experiments. Results IGF2BP2 is overexpressed in pancreatic cancer tissues compared with control tissues. Upregulation of IGF2BP2 predicts shorter overall survival (OS) in pancreatic cancer patients by statistical analysis. IGF2BP2 overexpression is partially due to genomic amplification. Bioinformatics analyses and validation experiments showed that IGF2BP2 is a direct target of miR-141. A negative correlation between IGF2BP2 mRNA expression and the expression of miR-141 was observed in pancreatic cancer tissues and more importantly, reexpression of miR-141 rescued the oncogenic role of IGF2BP2. Moreover, upregulating IGF2BP2 expression promotes pancreatic cancer cell growth by activating the PI3K/Akt signaling pathway in vitro and in vivo. Conclusions We comprehensively reveal the oncogenic role of IGF2BP2 in pancreatic cancer carcinogenesis and confirm that genomic amplification and the silencing of miR-141 contribute to its activation. Our findings highlight that IGF2BP2 may be a promising molecular target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe east Road, Zhengzhou, 450000, China
| | - Yan Yu
- Department of Infection Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Ke Zong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Pengwei Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe east Road, Zhengzhou, 450000, China.
| | - Yuantin Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe east Road, Zhengzhou, 450000, China.
| |
Collapse
|
25
|
MiR-200 family and cancer: From a meta-analysis view. Mol Aspects Med 2019; 70:57-71. [DOI: 10.1016/j.mam.2019.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
26
|
Cao G, Cui R, Liu C, Zhang Z. MicroRNA regulation of transthyretin in trophoblast biofunction and preeclampsia. Arch Biochem Biophys 2019; 676:108129. [PMID: 31593646 DOI: 10.1016/j.abb.2019.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
Preeclampsia (PE) is the major cause of maternal, fetal and neonatal mortality affecting approximately 2-7% of pregnancies. Transthyretin (TTR) is down-regulated in PE pregnancies serum and placenta. Our bioinformatic analysis showed that TTR is a predicted target for miR-200a-3p and miR-141-3p. The aim of this study was to determine whether miR-200a-3p and miR-141-3p are involved in preeclampsia through its targeting of TTR in human placental trophoblasts. In human PE placenta, TTR transcript and protein levels were significantly lower associated with high expression of miR-141-3p and 200a-3p. We found that miR-200a-3p and miR-141-3p inhibited TTR expression by directly binding to the 3'UTR of TTR, which is reversed by mutation in the microRNA binding site. In preeclamptic plasm, TTR levels were significantly downregulated. TTR was validated as a direct target of miR-200a-3p and miR-141-3p using dual luciferase assays in JEG3 cells. Transwell insert invasion assays showed that TTR mediated the invasion-inhibitory effect of miR-200a-3p and miR-141-3p in JEG3 cells. These data provides new insight into physiological role of miR-141-3p and miR-200a-3p in regulating TTR during trophoblast dysfunction and PE development.
Collapse
Affiliation(s)
- Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Cui
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
27
|
Diaz-Riascos ZV, Ginesta MM, Fabregat J, Serrano T, Busquets J, Buscail L, Cordelier P, Capellá G. Expression and Role of MicroRNAs from the miR-200 Family in the Tumor Formation and Metastatic Propensity of Pancreatic Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:491-503. [PMID: 31336236 PMCID: PMC6656921 DOI: 10.1016/j.omtn.2019.06.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs from the miR-200 family are commonly associated with the inhibition of the metastatic potential of cancer cells, following inhibition of ZEB transcription factors expression and epithelial-to-mesenchymal transition. However, previous studies performed in pancreatic adenocarcinoma revealed a more complex picture challenging this canonical model. To gain better insights into the role of miR-200 family members in this disease, we analyzed the expression of miR-200a, miR-200b, miR-200c, miR-141, miR-429, and miR-205, and ZEB1, ZEB2, and CDH1 in pancreatic tumors and matching normal adjacent parenchyma and patient-derived xenografts. We found that miR-200a, miR-429, and miR-205 are frequently overexpressed in pancreatic tumors, whereas CDH1 is downregulated, and ZEB1 and ZEB2 levels remain unchanged. Furthermore, we measured a positive correlation between miR-200 family members and CDH1 expression, and a negative correlation between ZEB1 and miR-200c, miR-141, and miR-205 expression, respectively. Interestingly, we identified significant changes in expression of epithelial-to-mesenchymal transition regulators and miR-200 members in patient-derived xenografts. Lastly, functional studies revealed that miR-141 and miR-429 inhibit the tumorigenic potential of pancreatic cancer cells. Taken together, this comprehensive analysis strongly suggests that miRNAs from the miR-200 family, and in particular miR-429, may act as a tumor suppressor gene in pancreatic cancer.
Collapse
Affiliation(s)
- Zamira Vanessa Diaz-Riascos
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mireia M Ginesta
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Centro de Investigación Biomédica en Red en Cáncer, Madrid, Spain
| | - Joan Fabregat
- Department of Surgery, Hepatobiliopancreatic Unit, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Serrano
- Department of Pathology, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juli Busquets
- Department of Surgery, Hepatobiliopancreatic Unit, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France; Department of Gastroenterology, CHU Toulouse-Rangueil, Toulouse, France
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France.
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Centro de Investigación Biomédica en Red en Cáncer, Madrid, Spain.
| |
Collapse
|
28
|
Pan Y, Fei Q, Xiong P, Yang J, Zhang Z, Lin X, Pan M, Lu F, Huang H. Synergistic inhibition of pancreatic cancer with anti-PD-L1 and c-Myc inhibitor JQ1. Oncoimmunology 2019; 8:e1581529. [PMID: 31069140 PMCID: PMC6492971 DOI: 10.1080/2162402x.2019.1581529] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/29/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) exhibits marginal responses to anti-PD-1/PD-L1 immunotherapy and its mechanism remains poorly understood. We have investigated the effect of anti-PD-L1 and c-Myc inhibition in PDAC. Using 87 patients with PDAC from our hospital database we found a significant correlation between the expression of PD-L1 and c-Myc. Moreover, the expression of both PD-L1 and c-Myc was associated with poor overall survival. In addition, we confirmed this finding with the PDAC patients in the TCGA database. Using several PDAC cell lines we demonstrated a significant correlation between the expression of PD-L1 and c-Myc. We also found that expression of PD-L1 correlated with high-grade histology. JQ1, an inhibitor of c-Myc inhibited PD-L1 expression and tumor growth. Using xenograft models, we demonstrated that the combination of JQ1 and anti-PD-L1 antibody exerted synergistic inhibition of PDAC growth. Our data demonstrated that the expression of PD-L1 and c-Myc may be helpful prognostic biomarkers, and their inhibition may potentially serve as an effective treatment for PDAC.
Collapse
Affiliation(s)
- Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Qinglin Fei
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Ping Xiong
- Department of obstetrics and gynecology, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Jianyang Yang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Zheyang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Minggui Pan
- Department of Oncology and Hematology and Division of Research, Kaiser Permanente, Santa Clara, CA, USA
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|