1
|
Fu B, Ma H, Wang L, Guo Z, Wang F, Liu D, Zhang D. Embryonic Origins of Cancer: Insights from Double Homeobox 4 Regulation. Biomolecules 2025; 15:721. [PMID: 40427614 PMCID: PMC12108839 DOI: 10.3390/biom15050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Embryogenesis and tumorigenesis share several key biological characteristics, such as rapid cell proliferation, high plasticity, and immune evasion. This similarity indicates that developmental pathways can be hijacked, leading to the formation of malignant cell states. With regard to this, cancer can be regarded as a stem cell disease. On the contrary, a fetus, in many ways, has similar characteristics to the "ideal tumor", such as immune evasion and rapid growth. Therefore, deciphering the molecular mechanisms beneath these phenomena will help us to understand the embryonic origins of cancer. This review discusses the relationship between embryogenesis and tumorigenesis, highlighting the potential roles played by DUX4. DUX4 is involved in the activation of the zygote genome and then facilitates the establishment of totipotency in pre-implantation embryos, whereas the misexpression of DUX4 is associated with different types of cancer. Taken together, this indicates that DUX4 performs analogous functions in these two processes and connects embryogenesis and tumorigenesis. Through examining DUX4, this review underscores the importance of developmental mechanisms in cancer biology, suggesting that the insights gained from studying embryonic processes may provide novel therapeutic strategies. As we continue to explore the complex relationship between cancer and embryogenesis, elucidating the role of DUX4 in linking these two processes will be critical for developing targeted therapies that exploit developmental pathways.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Zhenhua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Fang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
2
|
Del Vecchio V, Sanchez-Pajares IR, Panda SK, Rehman A, De Falco V, Nigam A, Mosca L, Russo D, Arena C, Nicoletti MM, Desiderio V, Papaccio G, Mele L, Laino L. Xanthohumol modulate autophagy and ER stress to counteract stemness and enhance cisplatin efficacy in head and neck squamous cell carcinoma. Sci Rep 2025; 15:13137. [PMID: 40240816 PMCID: PMC12003764 DOI: 10.1038/s41598-025-98003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Natural compounds have been increasingly investigated for their efficient anti-cancer activity. Xanthohumol (XN), a flavonoid derived from hops, has shown promise in preclinical studies for various cancers due to its unique biological properties. This study investigates the effects of XN and a cost-effective hop extract (HOP EX) on head and neck squamous cell carcinoma (HNSCC), focusing on their potential to modulate cancer stemness and enhance the efficacy of Cisplatin chemotherapy. Using a combination of flow cytometry, qPCR, and cellular assays, we assessed the impact of XN and HOP EX on cell viability, stemness, and chemoresistance in HNSCC cell lines. Further, we explored the underlying mechanisms by examining the induction of apoptosis, ER stress, and autophagy activation. Our findings demonstrate that both XN and HOP EX significantly decrease cell viability and stemness in HNSCC cells and enhance the cytotoxic effects of Cisplatin, suggesting a synergistic interaction. Mechanistically, we identified that the induction of ER stress and subsequent activation of the unfolded protein response (UPR) promote autophagy, leading to increased apoptosis. By modulating key cellular pathways such as ER stress and autophagy, these natural compounds could be developed into supportive treatments for HNSCC.
Collapse
Affiliation(s)
- Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 4, Roma, 00165, Italia
| | | | - Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Ayesha Rehman
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Vincenzo De Falco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Laura Mosca
- Department of Life Sciences, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 4, Roma, 00165, Italia
| | - Diana Russo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "L. Vanvitelli", Via L. de Crecchio 6, Naples, 80138, Italy
| | - Claudia Arena
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "L. Vanvitelli", Via L. de Crecchio 6, Naples, 80138, Italy
| | - Maria Maddalena Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "L. Vanvitelli", Via L. de Crecchio 6, Naples, 80138, Italy
- Dermatology Unit, University of Campania "L.Vanvitelli", Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy.
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Luigi Mele
- Department of Health Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Luigi Laino
- Dermatology Unit, University of Campania "L.Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Zhra M, Akhund SA, Mohammad KS. Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies. Pharmaceuticals (Basel) 2025; 18:520. [PMID: 40283955 PMCID: PMC12030420 DOI: 10.3390/ph18040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma is recognized as the most prevalent primary bone malignancy, primarily affecting children and adolescents. It is characterized by its aggressive behavior and high metastatic potential, which often leads to poor patient outcomes. Despite advancements in surgical techniques and chemotherapy regimens, the prognosis for patients with osteosarcoma remains unsatisfactory, with survival rates plateauing over the past few decades. A significant barrier to effective treatment is the development of chemotherapy resistance, which complicates the management of the disease and contributes to high rates of recurrence. This review article aims to provide a comprehensive overview of recent advancements in osteosarcoma therapy, particularly in overcoming chemotherapy resistance. We begin by discussing the current standard treatment modalities, including surgical resection and conventional chemotherapy agents such as methotrexate, doxorubicin, and cisplatin. While these approaches have been foundational in managing osteosarcoma, they are often limited by adverse effects and variability in efficacy among patients. To address these challenges, we explore novel pharmacological strategies that aim to enhance treatment outcomes. This includes targeted therapies focusing on specific molecular alterations in osteosarcoma cells and immunotherapeutic approaches designed to harness the body's immune system against tumors. Additionally, we review innovative drug delivery systems that aim to improve the bioavailability and efficacy of existing treatments while minimizing toxicity. The review also assesses the mechanisms underlying chemotherapy resistance, such as drug efflux mechanisms, altered metabolism, and enhanced DNA repair pathways. By synthesizing current research findings, we aim to highlight the potential of new therapeutic agents and strategies for overcoming these resistance mechanisms. Ultimately, this article seeks to inform future research directions and clinical practices, underscoring the need for continued innovation in treating osteosarcoma to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.); (S.A.A.)
| |
Collapse
|
4
|
Wu H, Xu H, Man Y, Huang P, Huang L, He M. N-terminal histone acetyltransferase NAA40 modulates osteosarcoma progression by controlling AGR2 expression. Biochem Biophys Res Commun 2025; 754:151491. [PMID: 40020320 DOI: 10.1016/j.bbrc.2025.151491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
PURPOSE Osteosarcoma (OS) is the most common primary malignant bone neoplasm in children and adolescents, characterized by high mortality and disability owing to frequent relapse and metastasis. However, N-alpha-acetyltransferase 40 (NAA40) molecular mechanisms underlying OS progression and metastasis remain unexplored. METHODS Bioinformatics analysis was used to evaluate NAA40 role in OS data from GEO and TARGET database. OS cell multiplication, invasion and migration were gauged in CCK8, EdU assays, and Transwell assays. RT-qPCR, ChIP-qPCR, dual luciferase reporter assay and rescue experiments were to explore NAA40 regulatory mechanism. Animal experiments further confirmed cell-based assays and NAA40 molecular mechanism. RESULTS Herein NAA40 expression was upregulated in OS samples and associated with shorter survival among patients. Functionally, NAA40 depletion resulted in reduced OS cell viability, decreased migration, and invasion in vitro. Mechanistically, NAA40 loss was associated with increased H4S1ph and H4R3me2a and decreased H4R3me2s.NAA40 overexpression improved the transcriptional activity in the promoter of AGR2. Histone marks, H3K4me3 and H3K27me3, at the AGR2 promoter were altered, inducing changes in AGR2 expression in NAA40-depleted OS cells. Anterior gradient 2 (AGR2) was identified as a downstream target of NAA40.AGR2 knockdown in OS cells resulted in reduced viability, decreased migration, and invasion. Ectopic overexpression of AGR2 partially rescued these phenotypic changes. In vivo experiments revealed that NAA40 depletion led to reduced AGR2 protein levels, inhibiting the proliferative and metastatic potential of OS cells. CONCLUSION NAA40 contributes to OS development and progression by epigenetically regulating AGR2 expression.
Collapse
Affiliation(s)
- Hanhua Wu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Hua Xu
- Center for Education Evaluation & Faculty Development, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yunan Man
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Piwei Huang
- Division of Spinal Surgery, The Tenth Affiliated Hospital of Guangxi Medical University (Qinzhou First People's Hospital), Qinnan District, Qinzhou, Guangxi Zhuang Autonomous Region, 535000, PR China
| | - Linhai Huang
- Division of Orthopedic Surgery, Wuming Hospital of Guangxi Medical University, Wuming District, Nanning, Guangxi Zhuang Autonomous Region, 530199, PR China.
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China.
| |
Collapse
|
5
|
Movahed ZG, Mansouri K, Mohsen AH, Matin MM. Bone marrow mesenchymal stem cells enrich breast cancer stem cell population via targeting metabolic pathways. Med Oncol 2025; 42:90. [PMID: 40045066 DOI: 10.1007/s12032-025-02632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
The role of cancer cell metabolic reprogramming in the formation and maintenance of cancer stem cells (CSCs) has been well established. This reprogramming involves alterations in the metabolic pathways of cancer cells, leading to the acquisition of stem cell-like properties such as self-renewal and differentiation. This study aimed to investigate the potential effects of bone marrow mesenchymal stem cells (BM-MSCs) on the enrichment of breast CSCs. Exosomes (Exo) and conditioned media (CM) were isolated from BM-MSCs for use in this experimental study. The impact of BM-MSCs-Exo and BM-MSCs-CM on the expression of stemness genes NANOG and OCT-4, as well as CD24 and CD44 markers, was assessed in MCF-7 and MDA-MB-231 cell cultures to identify CSCs. Furthermore, the effects of BM-MSCs-Exo and BM-MSCs-CM on cancer cell metabolism were evaluated by examining changes in glycolysis, the pentose phosphate pathway (PPP), and amino acid profiles. Additionally, the influence of BM-MSCs-Exo and BM-MSCs-CM on tumor growth in vivo was also investigated. The analysis of stemness marker expression in cells treated with BM-MSCs-Exo and BM-MSCs-CM revealed an increase in stemness characteristics compared to the control group. Furthermore, the examination of changes in cell metabolism following these treatments showed alterations in glycolysis, PPP, and amino acid metabolism pathways. Additionally, it was demonstrated that BM-MSCs-Exo and BM-MSCs-CM can promote tumor growth in mice following transplantation of 4T1 cells. These findings suggest that BM-MSCs-Exo and BM-MSCs-CM can enrich the population of CSCs in MCF-7 and MDA-MB-231 cells by targeting metabolic pathways, however, further studies are required to elicit the exact mechanisms of these phenomena.
Collapse
Affiliation(s)
- Zahra Ghanbari Movahed
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Bākhtarān, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, School of Medicine, Kermanshah University of Medical Sciences, P.O. Box 67145-1673, Bākhtarān, Iran.
| | - Ali Hamrahi Mohsen
- Institute of Biochemistry and Biophysics, Faculty of Science, University of Tehran, Tehran, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
6
|
Li L, Liu S, Guo Z, Tang Y, Zhang Y, Qiu L, Li Y. Molecular Signatures of Cancer Stemness Characterize the Correlations with Prognosis and Immune Landscape and Predict Risk Stratification in Pheochromocytomas and Paragangliomas. Bioengineering (Basel) 2025; 12:219. [PMID: 40150683 PMCID: PMC11939611 DOI: 10.3390/bioengineering12030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Pheochromocytoma and paragangliomas (PPGLs) caused refractory hypertension in clinics. The sustained risk of local or metastatic recurrences or new tumor development prompted more research on diagnosis, prognosis prediction, and immunotherapy. METHOD The tumor stemness is closely related to the heterogeneous growth of tumor, metastasis, and drug-resistance, and mRNA expression-based stemness indices (mRNAsi) could reflect tumor stemness. This was calculated based on OCLR machine learning algorithm and PPGLs patients' TCGA RNAseq data. The relationship between clinical, molecular, and tumor microenvironment (TME) features and tumor stemness was analyzed through the hub genes that best captured the stem cell characteristics of PPGLs using weighted gene co-expression network analysis (WGCNA), Cox, and LASSO regression analysis. RESULTS Our study found that metastatic PPGLs had higher mRNAsi scores, suggesting the degree of tumor stemness could affect metastasis and progression. HRAS, CSDE1, NF1, RET, and VHL-mutant subtypes displayed significant difference in stemness expression. Patients were divided into stemness high-score and low-score subtypes. High-score PPGLs displayed the more unfavorable prognosis compared with low-score, associated with their immune-suppressive features, manifested as low macrophages M1 infiltration and downregulated expression of immune checkpoints. Furthermore, from the viewpoint of stemness features, we established a reliable prognostic for PPGLs, which has the highest AUC value (0.908) in the field so far. And this could stratify PPGLs patients into high-risk and low-risk subtypes, showing the significant differences in prognosis, underlying mechanisms correlated with specific molecular alterations, biological processes activation, and TME. Notably, high immune infiltration and tumor neoantigen in low-risk patients and further resulted in more responsive to immunotherapy. CONCLUSION We indicated that tumor stemness could act as the potential biomarker for metastasis or prognosis of PPGLs, and integrated multi-data sources, analyzed valuable stemness-related genes, developed and verified a novel stemness scoring system to predict prognosis and guide the choice of treatment strategies.
Collapse
Affiliation(s)
- Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; (L.L.); (Y.T.)
| | - Shuangyu Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (S.L.); (Z.G.); (Y.Z.)
| | - Zeqi Guo
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (S.L.); (Z.G.); (Y.Z.)
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; (L.L.); (Y.T.)
| | - Yue Zhang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (S.L.); (Z.G.); (Y.Z.)
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; (L.L.); (Y.T.)
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (S.L.); (Z.G.); (Y.Z.)
| |
Collapse
|
7
|
Zheng S, Li Y, Wang L, Wei Q, Wei M, Yu T, Zhao L. Extrachromosomal circular DNA and their roles in cancer progression. Genes Dis 2025; 12:101202. [PMID: 39534571 PMCID: PMC11554924 DOI: 10.1016/j.gendis.2023.101202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a chromosome-independent circular DNA, has garnered significant attention due to its widespread distribution and intricate biogenesis in carcinoma. Existing research findings propose that multiple eccDNAs contribute to drug resistance in cancer treatments through complex and interrelated regulatory mechanisms. The unique structure and genetic properties of eccDNA increase tumor heterogeneity. This increased diversity is a result of eccDNA's ability to stimulate oncogene remodeling and participate in anomalous splicing processes through chimeric cyclization and the reintegration of loop DNA back into the linear genome. Such actions promote oncogene amplification and silencing. eccDNA orchestrates protein interactions and modulates protein degradation by acting as a regulatory messenger. Moreover, it plays a pivotal role in modeling the tumor microenvironment and intensifying the stemness characteristics of tumor cells. This review presented detailed information about the biogenesis, distinguishing features, and functions of eccDNA, emphasized the role and mechanisms of eccDNA during cancer treatment, and further proposed the great potential of eccDNA in inspiring novel strategies for precision cancer therapy and facilitating the discovery of prognostic biomarkers for cancer.
Collapse
Affiliation(s)
- Siqi Zheng
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
8
|
Feng J, Zheng X. Histone Deacetylase 2 Stabilizes SPARC-related Modular Calcium Binding 2 to Promote Metastasis and Stemness in Gallbladder Cancer. Curr Mol Med 2025; 25:56-68. [PMID: 38173203 DOI: 10.2174/0115665240257970231013094101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND We aimed to investigate the relationship between histone deacetylase 2 (HDAC2) and SPARC-related modular calcium binding 2 (SMOC2) and the role of SMOC2 in gallbladder cancer (GBC). METHODS The expression of HDAC2 and SMOC2 in GBC and normal cells was detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), which was also used to detect the mRNA stability of SMOC2. The combination between HDAC2 and SMOC2 was detected by Chromatin immunoprecipitation (ChIP) assay. After silencing and/or overexpressing HDAC2 and SMOC2, cell viability, migration, invasion, and stemness were respectively tested by the Cell Counting Kit-8 (CCK-8), cell scratch, transwell, and sphere-formation assay. RESULTS In GBC cells, HDAC2 and SMOC2 were highly expressed. HDAC2 combined with SMOC2 promoted mRNA stability of SMOC2. HDAC2 or SMOC2 overexpression promoted GBC cell metastasis and stemness. SMOC2 overexpression rescued the negative effects of silencing HDAC2 in GBC. CONCLUSION HDAC2 stabilizes SMOC2 to promote metastasis and stemness in gallbladder cancer.
Collapse
Affiliation(s)
- Ji Feng
- Department of General Surgery, Sir Run Run Shaw Hospital (SRRSH), Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, China
| | - Xueyong Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital (SRRSH), Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, China
| |
Collapse
|
9
|
Yang Y, Tang X, Liu Z. Multi-omics Analysis of Histone-related Genes in Osteosarcoma: A Multidimensional Integrated Study Revealing Drug Sensitivity and Immune Microenvironment Characteristics. Technol Cancer Res Treat 2025; 24:15330338251336275. [PMID: 40241525 PMCID: PMC12035212 DOI: 10.1177/15330338251336275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
IntroductionOsteosarcoma (OS) is a highly aggressive primary bone malignancy with poor prognosis. Histone modifications play crucial roles in tumor progression, but their systematic investigation in OS remains unexplored.MethodsThis study integrated single-cell RNA sequencing data and large-scale clinical information to systematically analyze the spatial heterogeneity of histone modifications in OS and their clinical significance. We employed Seurat for single-cell data analysis, CellChat for cell-cell communication network analysis, and LASSO Cox regression to construct a prognostic model. Additionally, we conducted functional enrichment analysis, immune characteristics analysis, and drug sensitivity prediction.ResultsWe identified five major cell types in the OS microenvironment and discovered significant differences in histone modification levels among different cell types, with osteosarcoma cells and endothelial cells exhibiting higher modification levels. Cell-cell communication network analysis revealed the importance of signaling pathways such as SPP1, CypA, MIF, IGFBP, and VEGF in OS. Based on nine histone modification-related genes, we constructed an efficient prognostic model (AUC values of 0.713, 0.845, and 0.888 for 1-, 3-, and 5-year predictions, respectively), which was validated in an external cohort (AUC = 0.808). Immune microenvironment analysis showed significantly higher proportions of CD8+ T cells and Treg cells in the low-risk group. Drug sensitivity analysis revealed that the low-risk group was more sensitive to Imatinib, Rapamycin, and Sunitinib, while the high-risk group was more sensitive to MAPK pathway inhibitors.ConclusionThis study systematically revealed the spatial heterogeneity of histone modifications in OS and their clinical significance for the first time, proposing an "epigenetic-immune" regulatory network hypothesis and developing a histone modification-based prognostic model. Our proposed "epigenetic-guided personalized medication strategy" provides new insights for precision treatment of OS, potentially significantly improving patient prognosis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopedic Surgery, Xiangtan Central Hospital, Xiangtan, Hunan, P.R. China
| | - Xinqiao Tang
- Department of Orthopedic Surgery, Xiangtan Central Hospital, Xiangtan, Hunan, P.R. China
| | - Zhong Liu
- Xiangtan Central Hospital, Xiangtan, Hunan, P.R. China
| |
Collapse
|
10
|
Li Z, Xue Y, Huang X, Xiao G. Stratifying osteosarcoma patients using an epigenetic modification-related prognostic signature: implications for immunotherapy and chemotherapy selection. Transl Cancer Res 2024; 13:3556-3574. [PMID: 39145082 PMCID: PMC11319966 DOI: 10.21037/tcr-23-2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/30/2024] [Indexed: 08/16/2024]
Abstract
Background Osteosarcoma (OS) poses significant challenges in treatment and lacks reliable prognostic markers. Epigenetic alterations play a crucial role in disease progression. This study aimed to develop an accurate prognostic signature for OS using epigenetic modification genes (EMGs). Methods The Therapeutically Applicable Research to Generate Effective Treatments (TARGET)-OS cohort was analyzed. Univariate Cox analysis identified survival-associated EMGs. Based on least absolute shrinkage and selection operator (LASSO) regression and multivariate analysis, a 6-gene prognostic signature termed the epigenetic modification-related prognostic signature (EMRPS) was derived in the testing cohort. Kaplan-Meier and receiver operating characteristic (ROC) curve analysis confirmed predictive accuracy through internal and external validation (GEO accession GSE21257). A prognostic nomogram incorporating EMRPS and clinical features was constructed. Transcriptomic analysis including differential gene expression, Gene Ontology (GO), gene set enrichment analysis (GSEA), and immune infiltration analysis was conducted to explore mechanisms linking EMRPS to OS prognosis. Additionally, EMRPS impact on drug sensitivity was predicted. Results A 6-gene EMRPS comprising DDX24, DNAJC1, HDAC4, SIRT7, SP140 and UHRF2 was successfully developed. The high-risk group showed significantly shorter survival, consistently observed in both internal and external validation. EMRPS demonstrated high predictive efficacy for 1-, 3-, and 5-year overall survival, with area under curve (AUC) >0.85 in training and ~0.7 in testing. The nomogram integrating age, gender, metastasis status, and EMRPS exhibited high predictive performance based on concordance index analysis. Mechanistic analysis indicated the low-risk group had increased immune infiltration and activity with higher immune checkpoint expression, reflecting an immune-activated tumor microenvironment (TME) suitable for immunotherapy. Drug sensitivity analysis revealed the low-risk group had increased sensitivity to cisplatin, a first-line OS chemotherapy. Conclusions Our study successfully established an efficient EMRPS and nomogram, highlighting their potential as novel prognostic markers and indicators for selecting appropriate immunotherapy and chemotherapy candidates in OS treatment.
Collapse
Affiliation(s)
- Zhichao Li
- Orthopedics Ward 2, Shaowu Municipal Hospital of Fujian Province, Nanping, China
| | - Yong Xue
- Orthopedics Ward 2, Shaowu Municipal Hospital of Fujian Province, Nanping, China
| | - Xianxing Huang
- Orthopedics Ward 2, Shaowu Municipal Hospital of Fujian Province, Nanping, China
| | - Gang Xiao
- Department of Thoracic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Center for Medical Research on Innovation and Translation, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
George S, Serpe L. Exploring the redox potential induced by low-intensity focused ultrasound on tumor masses. Life Sci 2023; 332:122040. [PMID: 37633418 DOI: 10.1016/j.lfs.2023.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cancer is still a major health problem worldwide despite huge efforts being spent on its biomedical research. Beyond the mainstream therapeutic interventions (i.e., surgery, chemotherapy, immunotherapy and radiotherapy), further significant progresses in anticancer therapy could rely on the development of novel treatment paradigms. To this end, one emerging approach consists in the use of non-thermal low-intensity focused ultrasound (LIFU) for conditioning cancer molecules and/or cancer-targeted compounds, thereby leading to cancer cell death with least side-effects. Cellular redox homeostasis manifested as the generation of reactive oxygen species (ROS) during energy metabolism as well as the antioxidant capacity is interwoven to the composition, size and anatomical location of the tumor masses. The higher content of "oxide free radicals" in cancers makes them vulnerable to disruption of redox homeostasis than in the healthy cells and therefore, one of the best options for preferentially eradicating them is increasing their oxidative stress, excessively. A little is known about the modulation of cellular redox homeostasis by LIFU, and so it will be of great interest and utility to understand the effects of LIFU on the energy metabolism of cancer cells. This review is intended to improve our knowledge on the effect of LIFU on cancer cells with particular reference to its redox metabolism for ultrasound-based therapies. Thereby, it could pave the way for exploring novel methodologies and designing combined anti-cancer therapies, especially, for faster and safer eradication of drug resistant and metastasizing solid tumors.
Collapse
Affiliation(s)
- Sajan George
- School of Bio Sciences & Technology, Vellore Institute of Technology, TN 632 014, India; Laser Research Centre, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Loredana Serpe
- Department of Drug Science & Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
12
|
Twenhafel L, Moreno D, Punt T, Kinney M, Ryznar R. Epigenetic Changes Associated with Osteosarcoma: A Comprehensive Review. Cells 2023; 12:1595. [PMID: 37371065 DOI: 10.3390/cells12121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. While clinical outcomes have improved, the 5-year survival rate is only around 60% if discovered early and can require debilitating treatments, such as amputations. A better understanding of the disease could lead to better clinical outcomes for patients with osteosarcoma. One promising avenue of osteosarcoma research is in the field of epigenetics. This research investigates changes in genetic expression that occur above the genome rather than in the genetic code itself. The epigenetics of osteosarcoma is an active area of research that is still not fully understood. In a narrative review, we examine recent advances in the epigenetics of osteosarcoma by reporting biomarkers of DNA methylation, histone modifications, and non-coding RNA associated with disease progression. We also show how cancer tumor epigenetic profiles are being used to predict and improve patient outcomes. The papers in this review cover a large range of epigenetic target genes and pathways that modulate many aspects of osteosarcoma, including but not limited to metastases and chemotherapy resistance. Ultimately, this review will shed light on the recent advances in the epigenetics of osteosarcoma and illustrate the clinical benefits of this field of research.
Collapse
Affiliation(s)
- Luke Twenhafel
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - DiAnna Moreno
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Trista Punt
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Madeline Kinney
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Englewood, CO 80112, USA
| |
Collapse
|
13
|
Wang Y, Yu Y, Yang W, Wu L, Yang Y, Lu Q, Zhou J. SETD4 Confers Cancer Stem Cell Chemoresistance in Nonsmall Cell Lung Cancer Patients via the Epigenetic Regulation of Cellular Quiescence. Stem Cells Int 2023; 2023:7367854. [PMID: 37274024 PMCID: PMC10239305 DOI: 10.1155/2023/7367854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Increasing evidence indicates that quiescent cancer stem cells (CSCs) are a root cause of chemoresistance. SET domain-containing protein 4 (SETD4) epigenetically regulates cell quiescence in breast cancer stem cells (BCSCs), and SETD4-positive BCSCs are chemoradioresistant. However, the role of SETD4 in chemoresistance, tumor progression, and prognosis in nonsmall cell lung cancer (NSCLC) patients is unclear. Here, SETD4-positive cells were identified as quiescent lung cancer stem cells (qLCSCs) since they expressed high levels of ALDH1 and CD133 and low levels of Ki67. SETD4 expression was significantly higher in advanced-stage NSCLC tissues than in early-stage NSCLC tissues and significantly higher in samples from the chemoresistant group than in those from the chemosensitive group. Patients with high SETD4 expression had shorter progression-free survival (PFS) times than those with low SETD4 expression. SETD4 facilitated heterochromatin formation via H4K20me3, thereby leading to cell quiescence. RNA-seq analysis showed upregulation of genes involved in cell proliferation, glucose metabolism, and PI3K-AKT signaling in activated qLCSCs (A-qLCSCs) compared with qLCSCs. In addition, SETD4 overexpression facilitated PTEN-mediated inhibition of the PI3K-mTOR pathway. In summary, SETD4 confers chemoresistance, tumor progression, and a poor prognosis by regulating CSCs in NSCLC patients.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuman Yu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weijun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linying Wu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yaoshun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qianyun Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
14
|
An X, Wu W, Yang L, Dong J, Liu B, Guo J, Chen J, Guo B, Cao W, Jiang Q. ZBTB7C m6A modification incurred by METTL3 aberration promotes osteosarcoma progression. Transl Res 2023:S1931-5244(23)00072-5. [PMID: 37121538 DOI: 10.1016/j.trsl.2023.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Aberrant N6-methyladenosine (m6A) modification of mRNAs contributes significantly to the epigenetic tumorigenesis, however, its precise role and the key targets in osteosarcoma (OS) are not defined. Here we reported that selective METTL3 (methyltransferase like 3) elevation and the consequential increase of m6A modification causally affect OS progression. The fast-growing OS cells displayed preferential upregulation of METTL3 and increased m6A modification. Conversely, m6A inhibition by 3-deazaadenosine, siRNA-mediated METTL3 knockdown or a METTL3-selective inhibitor by STM2457 effectively inhibits OS cell growth and induced OS cell apoptosis. Further investigation revealed that an oncogenic protein ZBTB7C was likely a critical m6A target that mediated the oncogenic effects. ZBTB7C mRNA contains a typical m6A motif of high confidence and its mRNA and protein were enriched with increased m6A modification in OS samples/cells. In an OS xenograft model, STM2457 or siRNA-mediated METTL3 knockdown effectively lowed ZBTB7C abundance. More importantly, the anti-OS effects of STM2457 were significantly reduced when ZBTB7C was overexpressed by lentivirus. Together, our results demonstrate that the METTL3 aberration and the resultant ZBTB7C m6A modification form an important epigenetic regulatory loop that promotes OS progression, and targeting the METTL3/ZBTB7C axis may provide novel insights into the potential strategies for OS therapy.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Yang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Bin Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Junxia Guo
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jianmei Chen
- Institute of Translational Medicine, Medical College,Yangzhou University, Yangzhou, China..
| | - Baosheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China..
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. Nanjing, China.; Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China..
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China..
| |
Collapse
|
15
|
Basu J, Madhulika S, Murmu KC, Mohanty S, Samal P, Das A, Mahapatra S, Saha S, Sinha I, Prasad P. Molecular and epigenetic alterations in normal and malignant myelopoiesis in human leukemia 60 (HL60) promyelocytic cell line model. Front Cell Dev Biol 2023; 11:1060537. [PMID: 36819104 PMCID: PMC9932920 DOI: 10.3389/fcell.2023.1060537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
In vitro cell line model systems are essential in supporting the research community due to their low cost, uniform culturing conditions, homogeneous biological resources, and easy experimental design to study the cause and effect of a gene or a molecule. Human leukemia 60 (HL60) is an in-vitro hematopoietic model system that has been used for decades to study normal myeloid differentiation and leukemia biology. Here, we show that IMDM supplemented with 20% FBS is an optimal culturing condition and induces effective myeloid differentiation compared with RPMI supplemented with 10% FBS when HL60 is induced with 1α,25-dihydroxyvitamin D3 (Vit D3) and all-trans retinoic acid (ATRA). The chromatin organization is compacted, and the repressive epigenetic mark H3K27me3 is enhanced upon HL60-mediated terminal differentiation. Differential gene expression analysis obtained from RNA sequencing in HL60 cells during myeloid differentiation showed the induction of pathways involved in epigenetic regulation, myeloid differentiation, and immune regulation. Using high-throughput transcriptomic data (GSE74246), we show the similarities (genes that did not satisfy |log2FC|>1 and FDR<0.05) and differences (FDR <0.05 and |log2FC|>1) between granulocyte-monocyte progenitor vs HL60 cells, Vit D3 induced monocytes (vMono) in HL60 cells vs primary monocytes (pMono), and HL60 cells vs leukemic blasts at the transcriptomic level. We found striking similarities in biological pathways between these comparisons, suggesting that the HL60 model system can be effectively used for studying myeloid differentiation and leukemic aberrations. The differences obtained could be attributed to the fact that the cellular programs of the leukemic cell line and primary cells are different. We validated several gene expression patterns for different comparisons with CD34+ cells derived from cord blood for myeloid differentiation and AML patients. In addition to the current knowledge, our study further reveals the significance of using HL60 cells as in vitro model system under optimal conditions to understand its potential as normal myeloid differentiation model as well as leukemic model at the molecular level.
Collapse
Affiliation(s)
- Jhinuk Basu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Swati Madhulika
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Krushna Chandra Murmu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Smrutishree Mohanty
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Samal
- IMS and SUM Hospital, Siksha ‘O' Anusandhan University, Bhubaneswar, India
| | - Asima Das
- Department of Obstetrics and Gynecology, KIMS, Bhubaneswar, India
| | - Soumendu Mahapatra
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,Kalinga Institute of Industrial Technology (KIIT), School of Biotechnology, Bhubaneswar, India
| | - Subha Saha
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Punit Prasad
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,*Correspondence: Punit Prasad,
| |
Collapse
|
16
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
17
|
Xu L, Zhang J, Sun J, Hou K, Yang C, Guo Y, Liu X, Kalvakolanu DV, Zhang L, Guo B. Epigenetic regulation of cancer stem cells: Shedding light on the refractory/relapsed cancers. Biochem Pharmacol 2022; 202:115110. [PMID: 35640714 DOI: 10.1016/j.bcp.2022.115110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
The resistance to drugs, ability to enter quiescence and generate heterogeneous cancer cells, and enhancement of aggressiveness, make cancer stem cells (CSCs) integral part of tumor progression, metastasis and recurrence after treatment. The epigenetic modification machinery is crucial for the viability of CSCs and evolution of aggressive forms of a tumor. These mechanisms can also be targeted by specific drugs, providing a promising approach for blocking CSCs. In this review, we summarize the epigenetic regulatory mechanisms in CSCs which contribute to drug resistance, quiescence and tumor heterogeneity. We also discuss the drugs that can potentially target these processes and data from experimental and clinical studies.
Collapse
Affiliation(s)
- Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jinghua Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jicheng Sun
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Kunlin Hou
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Chenxin Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Ying Guo
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Ling Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
18
|
Hou S, Xu H, Liu S, Yang B, Li L, Zhao H, Jiang C. Integrated Bioinformatics Analysis Identifies a New Stemness Index-Related Survival Model for Prognostic Prediction in Lung Adenocarcinoma. Front Genet 2022; 13:860268. [PMID: 35464867 PMCID: PMC9026767 DOI: 10.3389/fgene.2022.860268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most lethal malignancies and is currently lacking in effective biomarkers to assist in diagnosis and therapy. The aim of this study is to investigate hub genes and develop a risk signature for predicting prognosis of LUAD patients. METHODS RNA-sequencing data and relevant clinical data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to identify hub genes associated with mRNA expression-based stemness indices (mRNAsi) in TCGA. We utilized LASSO Cox regression to assemble our predictive model. To validate our predictive model, me applied it to an external cohort. RESULTS mRNAsi index was significantly associated with the tissue type of LUAD, and high mRNAsi scores may have a protective influence on survival outcomes seen in LUAD patients. WGCNA indicated that the turquoise module was significantly correlated with the mRNAsi. We identified a 9-gene signature (CENPW, MCM2, STIL, RACGAP1, ASPM, KIF14, ANLN, CDCA8, and PLK1) from the turquoise module that could effectively identify a high-risk subset of these patients. Using the Kaplan-Meier survival curve, as well as the time-dependent receiver operating characteristic (tdROC) analysis, we determined that this gene signature had a strong predictive ability (AUC = 0.716). By combining the 9-gene signature with clinicopathological features, we were able to design a predictive nomogram. Finally, we additionally validated the 9-gene signature using two external cohorts from GEO and the model proved to be of high value. CONCLUSION Our study shows that the 9-gene mRNAsi-related signature can predict the prognosis of LUAD patient and contribute to decisions in the treatment and prevention of LUAD patients.
Collapse
Affiliation(s)
- Shaohui Hou
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Hongrui Xu
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shuzhong Liu
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Li Li
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Hui Zhao
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Chidamide Suppresses the Growth of Cholangiocarcinoma by Inhibiting HDAC3 and Promoting FOXO1 Acetylation. Stem Cells Int 2022; 2022:3632549. [PMID: 35126526 PMCID: PMC8816583 DOI: 10.1155/2022/3632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibitors for histone deacetylases (HDACs) have been identified as epigenetic drug targets to treat a variety of malignancies through several molecular mechanisms. The present study is aimed at investigating the mechanism underlying the possible antitumor effect of the HDAC inhibitor chidamide (CDM) on cholangiocarcinoma (CCA). Microarray-based gene expression profiling was conducted to predict the expression of HDACs in CCA, which was validated in clinical tissue samples from CCA patients. Next, the proliferation, migration, invasion, autophagy, and apoptosis of human CCA QBC939 and SNU308 cells were measured following treatment with CDM at different concentrations. The acetylation level of FOXO1 in the nucleus and cytoplasm of QBC939 and SNU308 cells was determined after overexpression and suppression of HDAC3. A QBC939-implanted xenograft nude mouse model was established for further exploration of CDM roles in vitro. HDAC3 was prominently expressed in CCA tissues and indicated a poor prognosis for patients with CCA. CDM significantly inhibited cell proliferation, migration, and invasion of QBC939 and SNU308 cells, while inducing their autophagy and apoptosis by reducing the expression of HDAC3. CDM promoted FOXO1 acetylation by inhibiting HDAC3, thereby inducing cell autophagy. Additionally, CDM inhibited tumor growth in vivo via HDAC3 downregulation and FOXO1 acetylation induction. Overall, this study reveals that CDM can exhibit antitumor effects against CCA by promoting HDAC3-mediated FOXO1 acetylation, thus identifying a new therapeutic avenue for the treatment of CCA.
Collapse
|
20
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Zhang W, Wei L, Weng J, Yu F, Qin H, Wang D, Zeng H. Advances in the Research of Osteosarcoma Stem Cells and its Related Genes. Cell Biol Int 2021; 46:336-343. [PMID: 34941001 DOI: 10.1002/cbin.11752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is a malignant tumor that often occurs in adolescents. There is an urgent need of new treatment options for osteosarcoma due to its poor prognosis after metastasis. Cancer stem cell theory states that cancer stem cells represent a small proportion of cancer cells. These cancer stem cells have self-renewal ability and are closely associated with cancer growth and metastasis as well as chemotherapy resistance. Similarly, osteosarcoma stem cells (OSCs) play an important role in the growth, metastasis, and chemotherapy resistance of osteosarcoma cells. Targeting OSCs may represent a future treatment of osteosarcoma. Furthermore, some genes have shown to regulate the growth, metastasis, and chemotherapy resistance of osteosarcoma cells by altering the stemness of OSCs. Targeting these genes may help in the treatment of osteosarcoma. This review mainly discusses recent advances in the research of OSCs and its related genes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Liangchen Wei
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| |
Collapse
|
22
|
lncRNA TUG1 Facilitates Colorectal Cancer Stem Cell Characteristics and Chemoresistance by Enhancing GATA6 Protein Stability. Stem Cells Int 2021; 2021:1075481. [PMID: 34858502 PMCID: PMC8632465 DOI: 10.1155/2021/1075481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Chemoresistance and tumor recurrence lead to high deaths in colorectal cancer (CRC) patients. Cancer stem cells (CSCs) contribute to these pathologic properties, but the exact mechanisms are still poorly understood. This study identified that long noncoding RNA (lncRNA) TUG1 was highly expressed in CRC stem cells and investigated its mechanism. Methods After the CD133+/CD44+ cells with cancer stem cell (CSC) characteristics were isolated and identified by flow cytometry, lncRNA TUG1 expression was quantified by quantitative real-time PCR. The lncRNA TUG1 function was further investigated using gain- and loss-of-function assays, sphere formation, Western blot, Cell Counting Kit-8 assay, and cell apoptosis detection. Moreover, the mechanism was explored by RNA pull-down assay, RNA immunoprecipitation, and cycloheximide- (CHX-) chase assays. Results lncRNA TUG1 was elevated in CD133+/CD44+ cells with CSC characteristics. Functionally, lncRNA TUG1 increased the characteristics and oxaliplatin resistance of CRC stem cells. Mechanically, lncRNA TUG1 interacted with GATA6 and positively regulated its protein level and the rescue assays corroborated that lncRNA TUG1 knockdown repressed the characteristics and oxaliplatin resistance of CRC stem cells by decreasing GATA6 and functioned in CRC by targeting the GATA6-BMP signaling pathway. Furthermore, the in vivo assay verified the lncRNA TUG1 function in facilitating the characteristics and oxaliplatin resistance of CRC stem cells. Conclusion lncRNA TUG1 facilitated CRC stem cell characteristics and chemoresistance by enhancing GATA6 protein stability.
Collapse
|
23
|
Fatma H, Siddique HR, Maurya SK. The multiple faces of NANOG in cancer: a therapeutic target to chemosensitize therapy-resistant cancers. Epigenomics 2021; 13:1885-1900. [PMID: 34693722 DOI: 10.2217/epi-2021-0228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NANOG regulates self-renewal and pluripotency in embryonic cells, and its downregulation leads to cell differentiation. Recent studies have linked upregulation of NANOG in various cancers and the regulation of expression of different molecules, and vice versa, to induce proliferation, metastasis, invasion and chemoresistance. Thus NANOG is an oncogene that functions by inducing stem cells' circuitries and heterogeneity in cancers. Understanding NANOG's role in various cancers may lead to it becoming a therapeutic target to halt cancer progression. The NANOG network can also be targeted to resensitize resistant cancer cells to conventional therapies. The current review focuses on NANOG regulation in the various signaling networks leading to cancer progression and chemoresistance, and highlights the therapeutic aspect of targeting NANOG in various cancers.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Santosh K Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
24
|
A Novel Cancer Stemness-Related Signature for Predicting Prognosis in Patients with Colon Adenocarcinoma. Stem Cells Int 2021; 2021:7036059. [PMID: 34691191 PMCID: PMC8536464 DOI: 10.1155/2021/7036059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Objective To explore the cancer stemness features and develop a novel cancer stemness-related prognostic signature for colon adenocarcinoma (COAD). Methods We downloaded the mRNA expression data and clinical data of COAD from TCGA database and GEO database. Stemness index, mRNAsi, was utilized to investigate cancer stemness features. Weighted gene coexpression network analysis (WGCNA) was used to identify cancer stemness-related genes. Univariate and multivariate Cox regression analyses were applied to construct a prognostic risk cancer stemness-related signature. We then performed internal and external validation. The relationship between cancer stemness and COAD immune microenvironment was investigated. Results COAD patients with higher mRNAsi score or EREG-mRNAsi score have significant longer overall survival (OS). We identified 483 differently expressed genes (DEGs) between the high and low mRNAsi score groups. We developed a cancer stemness-related signature using fifteen genes (including RAB31, COL6A3, COL5A2, CCDC80, ADAM12, VGLL3, ECM2, POSTN, DPYSL3, PCDH7, CRISPLD2, COLEC12, NRP2, ISLR, and CCDC8) for prognosis prediction of COAD. Low-risk score was associated with significantly preferable OS in comparison with high-risk score, and the area under the ROC curve (AUC) for OS prediction was 0.705. The prognostic signature was an independent predictor for OS of COAD. Macrophages, mast cells, and T helper cells were the vital infiltration immune cells, and APC costimulation and type II IFN response were the vital immune pathways in COAD. Conclusions We developed and validated a novel cancer stemness-related prognostic signature for COAD, which would contribute to understanding of molecular mechanism in COAD.
Collapse
|
25
|
Torres HM, VanCleave AM, Vollmer M, Callahan DL, Smithback A, Conn JM, Rodezno-Antunes T, Gao Z, Cao Y, Afeworki Y, Tao J. Selective Targeting of Class I Histone Deacetylases in a Model of Human Osteosarcoma. Cancers (Basel) 2021; 13:4199. [PMID: 34439353 PMCID: PMC8394112 DOI: 10.3390/cancers13164199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing cell function in vitro, we show that the anti-tumor effect of 4SC-202 involves the combined induction of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion and migration capabilities. We also found that 4SC-202 has little capacity to promote osteogenic differentiation. Remarkably, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression in vitro. Moreover, 4SC-202 decreased tumor growth of established human tumor xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 4SC-202 that contribute to tumor cell growth and survival, and canonical signaling pathways associated with progression and metastasis of osteosarcoma. Our study suggests that 4SC-202 may be exploited as a valuable drug to promote more effective treatment of patients with osteosarcoma and provide molecular insights into the mechanism of action of class I HDAC inhibitors.
Collapse
Affiliation(s)
- Haydee M. Torres
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Ashley M. VanCleave
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Mykayla Vollmer
- Medical Student Research Program, University of South Dakota, Vermillion, SD 57069, USA;
| | - Dakota L. Callahan
- Sanford Program for Undergraduate Research, University of Sioux Falls, Sioux Falls, SD 57104, USA;
| | - Austyn Smithback
- Sanford PROMISE Scholar Program, Harrisburg High School, Sioux Falls, SD 57104, USA;
| | - Josephine M. Conn
- Sanford Program for Undergraduate Research, Carleton College, Northfield, MN 55057, USA;
| | - Tania Rodezno-Antunes
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Zili Gao
- Flow Cytometry Core at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Yuxia Cao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
26
|
Esperança-Martins M, Fernandes I, Soares do Brito J, Macedo D, Vasques H, Serafim T, Costa L, Dias S. Sarcoma Metabolomics: Current Horizons and Future Perspectives. Cells 2021; 10:1432. [PMID: 34201149 PMCID: PMC8226523 DOI: 10.3390/cells10061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The vast array of metabolic adaptations that cancer cells are capable of assuming, not only support their biosynthetic activity, but also fulfill their bioenergetic demands and keep their intracellular reduction-oxidation (redox) balance. Spotlight has recently been placed on the energy metabolism reprogramming strategies employed by cancer cells to proliferate. Knowledge regarding soft tissue and bone sarcomas metabolome is relatively sparse. Further characterization of sarcoma metabolic landscape may pave the way for diagnostic refinement and new therapeutic target identification, with benefit to sarcoma patients. This review covers the state-of-the-art knowledge on cancer metabolomics and explores in detail the most recent evidence on soft tissue and bone sarcoma metabolomics.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Isabel Fernandes
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| | - Joaquim Soares do Brito
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
- Centro Hospitalar Universitário Lisboa Norte, Orthopedics and Traumatology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal
| | - Daniela Macedo
- Medical Oncology Department, Hospital Lusíadas Lisboa, 1500-458 Lisboa, Portugal;
| | - Hugo Vasques
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
- General Surgery Department, Instituto Português de Oncologia de Lisboa Francisco Gentil, 1099-023 Lisboa, Portugal
| | - Teresa Serafim
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
| | - Luís Costa
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| | - Sérgio Dias
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| |
Collapse
|
27
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
28
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
29
|
Ye L, Yin G, Jiang M, Tu B, Li Z, Wang Y. Dihydromyricetin Exhibits Antitumor Activity in Nasopharyngeal Cancer Cell Through Antagonizing Wnt/β-catenin Signaling. Integr Cancer Ther 2021; 20:1534735421991217. [PMID: 33724059 PMCID: PMC7975991 DOI: 10.1177/1534735421991217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been demonstrated to play a vital role in a diversity of biological processes in cancers. With the emergence of new evidence, the important function of CSCs in the formation of multidrug resistance of nasopharyngeal cancer has been demonstrated. Dysregulated Wnt/β-catenin signaling pathway is an important contributor to chemoresistance and maintenance of CSCs-like characteristics. This research aims to investigate comprehensively the function of dihydromyricetin (DMY), a natural flavonoid drug, on the cisplatin (cis) resistance and stem cell properties of nasopharyngeal cancer. METHODS In this study, the functional role of DMY in nasopharyngeal cancer progression was comprehensively investigated in vitro and in vivo, and then its relationship with CSCs-like phenotypes and multiple oncogenes was analyzed. RESULTS In parallel assays, the growth inhibitory action of cis was enhanced by the addition of DMY in cis-resistant nasopharyngeal cancer cell lines (Hone1/cis and CNE1/cis). Functional assays showed that DMY markedly diminished the stem cell properties of nasopharyngeal cells, such as colony and tumor-sphere formation. In vivo data showed that the growth of Hone1 CSCs formed tumor xenograft was inhibited significantly by the administration of DMY. Additionally, DMY could impair the Wnt/β-catenin signaling pathway and regulate the expression of downstream proteins in nasopharyngeal cancer cells. CONCLUSIONS Our study clarified the anti-tumor activity of DMY through blocking the Wnt/β-catenin signaling pathway in nasopharyngeal cancer. Therefore, DMY could be a novel therapeutic agent for nasopharyngeal cancer treatment.
Collapse
Affiliation(s)
- Ling Ye
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Gendi Yin
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miaohua Jiang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bo Tu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhicheng Li
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Jin Q, Hu H, Yan S, Jin L, Pan Y, Li X, Peng Y, Cao P. lncRNA MIR22HG-Derived miR-22-5p Enhances the Radiosensitivity of Hepatocellular Carcinoma by Increasing Histone Acetylation Through the Inhibition of HDAC2 Activity. Front Oncol 2021; 11:572585. [PMID: 33718133 PMCID: PMC7943860 DOI: 10.3389/fonc.2021.572585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background With the development of radiotherapy technology, radiotherapy has been increasingly used to treat primary hepatocellular carcinoma (HCC). However, due to radioresistance and the intolerance of the adjacent organs to radiation, the effects of radiotherapy are often unsatisfactory. Therefore, it is necessary to study radiosensitization in HCC. Method A microarray was used to analyze the genes that were significantly associated with radiosensitivity. HCC cells, HepG2 and MHCC97H, were subjected to radiation in vitro. Real-time PCR was performed to determine MIR22HG (microRNA22 host gene) and miR-22-5p expression levels. Western blotting was performed to determine histone expression levels. A histone deacetylase (HDAC) whole cell assay was used to determine the activity of HDAC2. MTT, colony formation, 5-ethynyl-2′-deoxyuridine, and wound healing assays were performed to examine the function of MIR22HG and miR-22-5p in cellular radiosensitivity. Chromatin immunoprecipitation-PCR was used to confirm that HDAC2 affects the acetylation level of the MIR22HG promoter region. Finally, animal experiments were performed to demonstrate the in vivo effect of MIR22HG on the radiosensitivity of hepatoma. Results Irradiation can up-regulate MIR22HG expression and down-regulate HDAC2 expression. Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region and up-regulates MIR22HG expression. MIR22HG can increase radiosensitivity via miR-22-5p in HCC. Conclusion Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region, thereby up-regulating the expression of MIR22HG and promoting the production of miR-22-5p, and ultimately increasing the sensitivity of liver cancer radiotherapy.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Siqi Yan
- Department of Oncological Radiotherapy, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangjun Li
- Department of Oncology, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yayi Peng
- Department of Oncology, The Second People's Hospital of Hunan Province, Changsha, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Kong FC, Ma CL, Zhong MK. Epigenetic Effects Mediated by Antiepileptic Drugs and their Potential Application. Curr Neuropharmacol 2020; 18:153-166. [PMID: 31660836 PMCID: PMC7324883 DOI: 10.2174/1570159x17666191010094849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
An epigenetic effect mainly refers to a heritable modulation in gene expression in the short term but does not involve alterations in the DNA itself. Epigenetic molecular mechanisms include DNA methylation, histone modification, and untranslated RNA regulation. Antiepileptic drugs have drawn attention to biological and translational medicine because their impact on epigenetic mechanisms will lead to the identification of novel biomarkers and possible therapeutic strategies for the prevention and treatment of various diseases ranging from neuropsychological disorders to cancers and other chronic conditions. However, these transcriptional and posttranscriptional alterations can also result in adverse reactions and toxicity in vitro and in vivo. Hence, in this review, we focus on recent findings showing epigenetic processes mediated by antiepileptic drugs to elucidate their application in medical experiments and shed light on epigenetic research for medicinal purposes.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Hou X, Jiang J, Tian Z, Wei L. Autophagy and Tumour Chemotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:351-374. [PMID: 32671759 DOI: 10.1007/978-981-15-4272-5_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy is an important means of treating malignant tumours. The main role of chemotherapy drugs is to induce cell death. However, the apoptotic pathways of many tumour cells are often severely impaired, leading to failure of chemotherapy-induced apoptosis. With the in-depth study of autophagy in recent years, this process has been found to play an important role in the chemoresistance of tumours. Autophagy may have different effects on tumour cells depending on the specific environment. In addition, tumour stem cells and the tumour microenvironment are closely related to tumour recurrence and metastasis. It is also important to study the role of autophagy in tumour stem cells and the microenvironment to investigate chemotherapy resistance.
Collapse
Affiliation(s)
- Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhiqiang Tian
- Department of General Surgery, Wuxi People's Hospital Affiliated Nanjing Medical University, Wuxi, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
33
|
Zhu L, Yuan C, Wang M, Liu Y, Wang Z, Seif MM. Bisphenol A-associated alterations in DNA and histone methylation affects semen quality in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105580. [PMID: 32712368 DOI: 10.1016/j.aquatox.2020.105580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known estrogenic endocrine disruptor, is ubiquitously present in the environment, possessing the potential to interfere with the reproductive endocrine system in male mammals. However, there are limited studies on the reproductive toxicity in male aquatic animals associated with epigenetic modifications. In order to evaluate the potential effects of BPA on reproduction and better understand the underlying mechanism, adult male rare minnow (Gobiocypris rarus) were exposed to 15 μg L-1 BPA over a period of 63 d. Results showed that BPA induced congestion of blood vessels and infiltration of inflammatory cells after 21 d exposure, and decreased sperm fertilization after 63 d exposure. The genome DNA methylation levels were significantly increased throughout the treatment, and a strong positive stain were found in the spermatocyte, spermatid and sperm. The H3K4me3 level in all types of germ cell were increased by 21 d exposure while decreased following 63 d exposure. The positive stain of H3K9me3 was decreased in sperms while increased in spermatids by 21 d exposure. In addition, the H3K9me3 level was significantly increased after 63 d exposure, and a strong positive stain were found in spermatocytes, spermatids, and sperms. Our result also revealed that the transcripts of DNA methyltransferase genes (dnmt1 and dnmt3-8) and histone methyltransferase genes (mll2-5, setdb1-2 and ezh2) were also markedly changed under BPA exposure for 21-63 d. These findings indicated that BPA had toxicity in male reproductive, and DNA/histone methylation might play a vital role in the regulation of BPA-triggered the decreased of sperm quality.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingrong Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China.
| | - Mohamed M Seif
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China; Toxicology and Food Contaminants Department, National Research Centre, Cairo 11435, Egypt
| |
Collapse
|
34
|
Papaccio F. Circulating cancer stem cells: an interesting niche to explore. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:253-258. [PMID: 36046778 PMCID: PMC9400729 DOI: 10.37349/etat.2020.00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| |
Collapse
|
35
|
Mastoraki A, Schizas D, Vlachou P, Melissaridou NM, Charalampakis N, Fioretzaki R, Kole C, Savvidou O, Vassiliu P, Pikoulis E. Assessment of Synergistic Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Sarcoma. Mol Diagn Ther 2020; 24:557-569. [PMID: 32696211 DOI: 10.1007/s40291-020-00487-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sarcomas are a rare group of neoplasms with a mesenchymal origin that are mainly characterized by the abnormal growth of connective tissue cells. The standard treatment for local control of sarcomas includes surgery and radiation, while for adjuvant and palliative therapy, chemotherapy has been strongly recommended. Despite the availability of multimodal therapies, the survival rate for patients with sarcoma is still not satisfactory. In recent decades, there has been a considerable effort to overcome chemotherapy resistance in sarcoma cells. This has led to the investigation of more cellular compounds implicated in gene expression and transcription processes. Furthermore, it has been discovered that histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to a modified chromatin structure and therefore changes in gene expression. In addition, histone deacetylase inhibition is found to play a key role in limiting the tumor burden in sarcomas, as histone deacetylase inhibitors act on well-described oncogenic signaling pathways. Histone deacetylase inhibitors disrupt the increased cell motility and invasiveness of sarcoma cells, undermining their metastatic potential. Moreover, their activity on evoking cell arrest has been extensively described, with histone deacetylase inhibitors regulating the reactivation of tumor suppressor genes and induction of apoptosis. Promoting autophagy and increasing cellular reactive oxygen species are also included in the antitumor activity of histone deacetylase inhibitors. It should be noted that many studies revealed the synergy between histone deacetylase inhibitors and other drugs, leading to the enhancement of an antitumor effect in sarcomas. Therefore, there is an urgent need for therapeutic interventions modulated according to the distinct clinical and molecular characteristics of each sarcoma subtype. It is concluded that a better understanding of histone deacetylase and histone deacetylase inhibitors could provide patients with sarcoma with more targeted and efficient therapies, which may contribute to significant improvement of their survival potential.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece.
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pigi Vlachou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | - Nikoleta Maria Melissaridou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | | | | | - Christo Kole
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Savvidou
- First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Pikoulis
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| |
Collapse
|
36
|
Sun D, Li T, Xin H, An J, Yang J, Lin J, Meng X, Wang B, Ozaki T, Yu M, Zhu Y. miR-489-3p inhibits proliferation and migration of bladder cancer cells through downregulation of histone deacetylase 2. Oncol Lett 2020; 20:8. [PMID: 32774482 PMCID: PMC7405606 DOI: 10.3892/ol.2020.11869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Since human bladder cancer (BC) is a common malignancy of the urinary system with poor prognosis, it is crucial to clarify the molecular mechanisms of BC development and progression. To the best of our knowledge, the current study demonstrated for the first time that miR-489-3p suppressed BC cell-derived tumor growth in vivo via the downregulation of histone deacetylase 2 (HDAC2). According to the results, expression levels of miR-489-3p were lower in BC tissues compared with corresponding normal tissues. Expression of miR-489-3p mimics in BC-derived T24 and 5637 cells resulted in a significant reduction in proliferation and migration rates. Furthermore, bioinformatics analyses indicated that HDAC2 may be a potential downstream target of miR-489-3p. In contrast to miR-489-3p, HDAC2 was expressed at higher levels in BC tissues compared with corresponding normal tissues. Additionally, small interfering RNA-mediated knockdown of HDAC2 caused a marked decrease in the proliferation and migration rates of T24 and 5637 cells. Consistent with these observations, expression of miR-489-3p mimics attenuated the growth of xenograft tumors arising from T24 cells and resulted in HDAC2 downregulation. In conclusion, the results of the current study indicated that the miR-489-3p/HDAC2 axis serves a role in the development and/or the progression of BC and may be a potential molecular target for the development of a novel strategy to treat patients with BC.
Collapse
Affiliation(s)
- Dan Sun
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianren Li
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haotian Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun An
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jieping Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiaxing Lin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Toshinori Ozaki
- Department of DNA Damage Signaling, Research Center, The 5th Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Meng Yu
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
37
|
McGuire JJ, Nerlakanti N, Lo CH, Tauro M, Utset-Ward TJ, Reed DR, Lynch CC. Histone deacetylase inhibition prevents the growth of primary and metastatic osteosarcoma. Int J Cancer 2020; 147:2811-2823. [PMID: 32599665 DOI: 10.1002/ijc.33046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Overall survival rates for patients with advanced osteosarcoma have remained static for over three decades. An in vitro analysis of osteosarcoma cell lines for sensitivity to an array of approved cancer therapies revealed that panobinostat, a broad spectrum histone deacetalyase (HDAC) inhibitor, is highly effective at triggering osteosarcoma cell death. Using in vivo models of orthotopic and metastatic osteosarcoma, here we report that panobinostat impairs the growth of primary osteosarcoma in bone and spontaneous metastasis to the lung, the most common site of metastasis for this disease. Further, pretreatment of mice with panobinostat prior to tail vein inoculation of osteosarcoma prevents the seeding and growth of lung metastases. Additionally, panobinostat impaired the growth of established lung metastases and improved overall survival, and these effects were also manifest in the lung metastatic SAOS2-LM7 model. Mechanistically, the efficacy of panobinostat was linked to high expression of HDAC1 and HDAC2 in osteosarcoma, and silencing of HDAC1 and 2 greatly reduced osteosarcoma growth in vitro. In accordance with these findings, treatment with the HDAC1/2 selective inhibitor romidepsin compromised the growth of osteosarcoma in vitro and in vivo. Analysis of patient-derived xenograft osteosarcoma cell lines further demonstrated the sensitivity of the disease to panobinostat or romidepsin. Collectively, these studies provide rationale for clinical trials in osteosarcoma patients using the approved therapies panobinostat or romidepsin.
Collapse
Affiliation(s)
- Jeremy J McGuire
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Niveditha Nerlakanti
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Chen Hao Lo
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marilena Tauro
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Thomas J Utset-Ward
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Damon R Reed
- Sarcoma Department & Department of Interdisciplinary Cancer Management (DICaM), H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
38
|
Kadler S, Vural Ö, Rosowski J, Reiners-Schramm L, Lauster R, Rosowski M. Effects of 5-aza-2´-deoxycytidine on primary human chondrocytes from osteoarthritic patients. PLoS One 2020; 15:e0234641. [PMID: 32574164 PMCID: PMC7310740 DOI: 10.1371/journal.pone.0234641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Chondrocytes, comparable to many cells from the connective tissue, dedifferentiate and end up in a similar fibroblastoid cell type, marked by the loss of the specific expression pattern. Here, chondrocytes isolated from osteoarthritic (OA) patients were investigated. The OA chondrocytes used in this work were not affected by the loss of specific gene expression upon cell culture. The mRNA levels of known cartilage markers, such as SOX5, SOX6, SOX9, aggrecan and proteoglycan 4, remained unchanged. Since chondrocytes from OA and healthy tissue show different DNA methylation patterns, the underlying mechanisms of cartilage marker maintenance were investigated with a focus on the epigenetic modification by DNA methylation. The treatment of dedifferentiated chondrocytes with the DNA methyltransferase inhibitor 5-aza-2´-deoxycytidine (5-aza-dC) displayed no considerable impact on the maintenance of marker gene expression observed in the dedifferentiated state, while the chondrogenic differentiation capacity was compromised. On the other hand, the pre-cultivation with 5-aza-dC improved the osteogenesis and adipogenesis of OA chondrocytes. Contradictory to these effects, the DNA methylation levels were not reduced after treatment for four weeks with 1 μM 5-aza-dC. In conclusion, 5-aza-dC affects the differentiation capacity of OA chondrocytes, while the global DNA methylation level remains stable. Furthermore, dedifferentiated chondrocytes isolated from late-stage OA patients represent a reliable cell source for in vitro studies and disease models without the need for additional alterations.
Collapse
Affiliation(s)
- Shirin Kadler
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| | - Özlem Vural
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jennifer Rosowski
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Luzia Reiners-Schramm
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Roland Lauster
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Mark Rosowski
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
39
|
Chen Y, Wang T, Huang M, Liu Q, Hu C, Wang B, Han D, Chen C, Zhang J, Li Z, Liu C, Lei W, Chang Y, Wu M, Xiang D, Chen Y, Wang R, Huang W, Lei Z, Chu X. MAFB Promotes Cancer Stemness and Tumorigenesis in Osteosarcoma through a Sox9-Mediated Positive Feedback Loop. Cancer Res 2020; 80:2472-2483. [PMID: 32234710 DOI: 10.1158/0008-5472.can-19-1764] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/06/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Despite the fact that osteosarcoma is one of the most common primary bone malignancies with poor prognosis, the mechanism behind the pathogenesis of osteosarcoma is only partially known. Here we characterized differentially expressed genes by extensive analysis of several publicly available gene expression profile datasets and identified musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) as a key transcriptional regulator in osteosarcoma progression. MAFB was highly expressed in tumor tissues and required for proliferation and tumorigenicity of osteosarcoma cells. MAFB expression was elevated in osteosarcoma stem cells to maintain their self-renewal potential in vitro and in vivo through upregulation of stem cell regulator Sox9 at the transcriptional level. Sox9 in turn activated MAFB expression via direct recognition of its sequence binding enrichment motif on the MAFB locus, thereby forming a positive feedback regulatory loop. Sox9-mediated feedback activation of MAFB was pivotal to tumorsphere-forming and tumor-initiating capacities of osteosarcoma stem cells. Moreover, expression of MAFB and Sox9 was highly correlated in osteosarcoma and associated with disease progression. Combined detection of both MAFB and Sox9 represented a promising prognostic biomarker that stratified a subset of patients with osteosarcoma with shortest overall survival. Taken together, these findings reveal a MAFB-Sox9 reciprocal regulatory axis driving cancer stemness and malignancy in osteosarcoma and identify novel molecular targets that might be therapeutically applicable in clinical settings. SIGNIFICANCE: Transcription factors MAFB and Sox9 form a positive feedback loop to maintain cell stemness and tumor growth in vitro and in vivo, revealing a potential target pathway for therapeutic intervention in osteosarcoma.
Collapse
Affiliation(s)
- Yanyan Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Mengxi Huang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Qin Liu
- Department of Gastroenterology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Chao Hu
- Department of Orthopedics, 904 Hospital of PLA, North Xingyuan Road, Beitang District, Wuxi, Jiangsu, P.R. China
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Dong Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Cheng Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Junliang Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Zhiping Li
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Chao Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Wenbin Lei
- Department of Orthopedics, Tianshui Cooperation of Chinese and Western Medicine Hospital, Tianshui, Gansu Province, P.R. China
| | - Yue Chang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Meijuan Wu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Dan Xiang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Yitian Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Weiqian Huang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Zengjie Lei
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China.
| |
Collapse
|
40
|
Yin R, Liu J, Zhao D, Wang F. Long Non-Coding RNA ASB16-AS1 Functions as a miR-760 Sponge to Facilitate the Malignant Phenotype of Osteosarcoma by Increasing HDGF Expression. Onco Targets Ther 2020; 13:2261-2274. [PMID: 32214826 PMCID: PMC7081065 DOI: 10.2147/ott.s240022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose ASB16 antisense RNA 1 (ASB16-AS1) is a cancer-associated long non-coding RNA that contributes to tumorigenesis and tumor development. Nevertheless, to the best of our knowledge, whether and how ASB16-AS1 is implicated in osteosarcoma (OS) malignancy remains unclear and therefore warrants exploration. Our current study focused on making in-depth investigation of ASB16-AS1 in OS. In the present study, the expression pattern of ASB16-AS1 in OS tissues and cell lines was analyzed. In addition, we examined the clinical value of ASB16-AS1 for OS patients. Furthermore, we explored the impacts of ASB16-AS1 on the malignant phenotype of OS cells in vitro and in vivo as well as the underlying mechanism. Methods ASB16-AS1, microRNA-760 (miR-760) and hepatoma-derived growth factor (HDGF) expressions were measured using reverse transcription-quantitative PCR. Cell proliferation and apoptosis were evaluated using CCK-8 and flow cytometry analyses, respectively, and cell migration and invasion were determined via cell migration and invasion assays. Results ASB16-AS1 expression was significantly elevated in OS tissues and cell lines, and increased ASB16-AS1 expression was related to patients' tumor size, TNM stage, and distant metastasis. The overall survival rate of OS patients presenting high ASB16-AS1 expression was shorter than that of patients presenting low ASB16-AS1 expression. Reduced ASB16-AS1 expression inhibited OS cell proliferation, migration, and invasion; promoted cell apoptosis; and impaired tumor growth in vivo. Mechanistically, ASB16-AS1 served as a sponge for miR-760 and positively modulated the expression of its target HDGF. Finally, inhibiting miR-760 and restoring HDGF expression abolished the impacts of ASB16-AS1 knockdown on the malignant characteristics of OS cells. Conclusion ASB16-AS1 is a novel oncogenic lncRNA in OS cells. ASB16-AS1 increased HDGF expression by sponging miR-760, thereby conferring cancer-promoting roles in OS. ASB16-AS1 is a potential early diagnostic and therapeutic target in OS.
Collapse
Affiliation(s)
- Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Junzhi Liu
- Department of Quality Control, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Dongxu Zhao
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Fei Wang
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
41
|
Milazzo FM, Vesci L, Anastasi AM, Chiapparino C, Rosi A, Giannini G, Taddei M, Cini E, Faltoni V, Petricci E, Battistuzzi G, Salvini L, Carollo V, De Santis R. ErbB2 Targeted Epigenetic Modulation: Anti-tumor Efficacy of the ADC Trastuzumab-HDACi ST8176AA1. Front Oncol 2020; 9:1534. [PMID: 32039017 PMCID: PMC6989603 DOI: 10.3389/fonc.2019.01534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Targeted therapy using monoclonal antibodies conjugated to toxins is gaining space in the treatment of cancer. Here, we report the anti-tumor effect of a new antibody drug conjugate (ADC) delivering a HDAC inhibitor to ErbB2+ solid tumors. Trastuzumab was partially reduced with tris [2-carboxyethyl] phosphine (TCEP) and conjugated to ST7464AA1, the active form of the prodrug HDAC inhibitor ST7612AA1, through a maleimide-thiol linker to obtain the Antibody Drug Conjugate (ADC) ST8176AA1. The average drug/antibody ratio (DAR) was 4.5 as measured by hydrophobic interaction chromatography (HIC). Binding of ST8176AA1 to ErbB2 receptor and internalization in tumor cells were investigated by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), cytofluorimetry, and High Content Screening (HCS) Imaging. The biological activity of the ADC was evaluated in vitro and in vivo by measuring cell proliferation/cell cycle, apoptosis/DNA damage, tubulin, and histone acetylation and modulation of Epithelial/Mesenchymal Transition (EMT) markers. Receptor binding and internalization of ST8176AA1 were confirmed to be similar to trastuzumab. Higher anti-tumor activity of ST8176AA1 compared to trastuzumab was observed in vitro in tumor cell lines. Such higher activity correlated with increased acetylation of histones and alfa-tubulin as a consequence of HDAC inhibitor-mediated epigenetic modulation that also induced increased expression of ErbB2 and estrogen receptor in triple negative breast cancer cells. Consistently with in vitro data, ST8176AA1 exhibited higher tumor growth inhibition than trastuzumab in xenograft models of ovary and colon carcinoma and in two patient-derived xenograft (PDX) models of pancreatic carcinoma. Immunohistochemistry analysis of tumor masses showed lower expression of the proliferation marker Ki67 and higher expression of cleaved caspase-3 in mice treated with the ADC compared to those treated with trastuzumab and results correlated with increased acetylation of both histones and tubulin. Collectively, present data indicate that ADC ST8176AA1 can target epigenetic modulation to ErbB2+ tumors. Interestingly, the amount of HDACi estimated to be delivered at the ST8176AA1 effective dose would correspond to ~1/1,000 of ST7612AA1 effective dose. Therefore, ST8176AA1 is an attractive new therapeutic candidate because it exhibits increased anti-tumor potency compared to trastuzumab by exerting epigenetic modulation at a much safer dose compared to standard HDACi-based therapeutic protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maurizio Taddei
- Dipartimento di Biotecnologia, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Elena Cini
- Dipartimento di Biotecnologia, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | - Elena Petricci
- Dipartimento di Biotecnologia, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
42
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
43
|
Radiation and Stemness Phenotype May Influence Individual Breast Cancer Outcomes: The Crucial Role of MMPs and Microenvironment. Cancers (Basel) 2019; 11:cancers11111781. [PMID: 31726667 PMCID: PMC6896076 DOI: 10.3390/cancers11111781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most common cancer in women. Radiotherapy (RT) is one of the mainstay treatments for cancer but in some cases is not effective. Cancer stem cells (CSCs) within the tumor can be responsible for recurrence and metastasis after RT. Matrix metalloproteases (MMPs), regulated mainly by tissue inhibitors of metalloproteinases (TIMPs) and histone deacetylases (HDACs), may also contribute to tumor development by modifying its activity after RT. The aim of this work was to study the effects of RT on the expression of MMPs, TIMPs and HDACs on different cell subpopulations in MCF-7, MDA-MB-231 and SK-BR-3 cell lines. We assessed the in vitro expression of these genes in different 3D culture models and induced tumors in female NSG mice by orthotopic xenotransplants. Our results showed that gene expression is related to the cell subpopulation studied, the culture model used and the single radiation dose administered. Moreover, the crucial role played by the microenvironment in terms of cell interactions and CSC plasticity in tumor growth and RT outcome is also shown, supporting the use of higher doses (6 Gy) to achieve better control of tumor development.
Collapse
|
44
|
Modi PK, Prabhu A, Bhandary YP, Shenoy P. S, Hegde A, ES SP, Johnson RP, Das SP, Vazirally S, Rekha PD. Effect of calcium glucoheptonate on proliferation and osteogenesis of osteoblast-like cells in vitro. PLoS One 2019; 14:e0222240. [PMID: 31498830 PMCID: PMC6733474 DOI: 10.1371/journal.pone.0222240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Calcium is the key macromineral having a role in skeletal structure and function, muscle contraction, and neurotransmission. Bone remodeling is maintained through a constant balance between calcium resorption and deposition. Calcium deficiency is resolved through calcium supplementation, and among the supplements, water-soluble organic molecules attracted great pharmaceutical interest. Calcium glucoheptonate is a highly water-soluble organic calcium salt having clinical use; however, detailed investigations on its biological effects are limited. We assessed the effects of calcium glucoheptonate on cell viability and proliferation of osteoblast-like MG-63 cells. Calcium uptake and mineralization were evaluated using Alizarin red staining of osteoblast-like MG-63 cells treated with calcium glucoheptonate. Expression of osteogenic markers were monitored by western blotting, immunofluorescence, and qRT-PCR assays. Increased proliferation and calcium uptake were observed in the MG-63 cells treated with calcium glucoheptonate. The treatment also increased the expression of osteopontin and osteogenic genes such as collagen-1, secreted protein acidic and cysteine rich (SPARC), and osteocalcin. Calcium glucoheptonate treatment did not exert any cytotoxicity on colorectal and renal epithelial cells, indicating the safety of the treatment. This is the first report with evidence for its beneficial effect for pharmaceutical use in addressing calcium deficiency conditions.
Collapse
Affiliation(s)
- Prashant Kumar Modi
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Yashodhar P. Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P.
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Aparna Hegde
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sindhu Priya ES
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Renjith P. Johnson
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | | | | |
Collapse
|
45
|
Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer Stem Cells and Targeting Strategies. Cells 2019; 8:cells8080926. [PMID: 31426611 PMCID: PMC6721823 DOI: 10.3390/cells8080926] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is a major problem in cancer therapy as cancer cells develop mechanisms that counteract the effect of chemotherapeutic compounds, leading to relapse and the development of more aggressive cancers that contribute to poor prognosis and survival rates of treated patients. Cancer stem cells (CSCs) play a key role in this event. Apart from their slow proliferative property, CSCs have developed a range of cellular processes that involve drug efflux, drug enzymatic inactivation and other mechanisms. In addition, the microenvironment where CSCs evolve (CSC niche), effectively contributes to their role in cancer initiation, progression and chemoresistance. In the CSC niche, immune cells, mesenchymal stem cells (MSCs), endothelial cells and cancer associated fibroblasts (CAFs) contribute to the maintenance of CSC malignancy via the secretion of factors that promote cancer progression and resistance to chemotherapy. Due to these factors that hinder successful cancer therapies, CSCs are a subject of intense research that aims at better understanding of CSC behaviour and at developing efficient targeting therapies. In this review, we provide an overview of cancer stem cells, their role in cancer initiation, progression and chemoresistance, and discuss the progress that has been made in the development of CSC targeted therapies.
Collapse
Affiliation(s)
- Luisa Barbato
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Marco Bocchetti
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Di Biase
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
46
|
Schiavone K, Garnier D, Heymann MF, Heymann D. The Heterogeneity of Osteosarcoma: The Role Played by Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:187-200. [PMID: 31134502 DOI: 10.1007/978-3-030-14366-4_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common bone sarcoma and is one of the cancer entities characterized by the highest level of heterogeneity in humans. This heterogeneity takes place not only at the macroscopic and microscopic levels, with heterogeneous micro-environmental components, but also at the genomic, transcriptomic and epigenetic levels. Recent investigations have revealed the existence in osteosarcoma of cancer cells with stemness properties. Cancer stem cells are characterized by their specific phenotype and low cycling capacity, and are linked to drug resistance, tumour growth and the metastatic process. In addition, cancer stem cells contribute to the enrichment of tumour heterogeneity. The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity. Their clinical implications will also be briefly addressed.
Collapse
Affiliation(s)
- Kristina Schiavone
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Delphine Garnier
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Marie-Francoise Heymann
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France.
| |
Collapse
|
47
|
Ying H, Ying B, Zhang J, Kong D. Sirt1 modulates H3 phosphorylation and facilitates osteosarcoma cell autophagy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3374-3381. [PMID: 31390921 DOI: 10.1080/21691401.2019.1648280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongliang Ying
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinrui Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Qi G, Lu G, Yu J, Zhao Y, Wang C, Zhang H, Xia Q. Up-regulation of TIF1γ by valproic acid inhibits the epithelial mesenchymal transition in prostate carcinoma through TGF-β/Smad signaling pathway. Eur J Pharmacol 2019; 860:172551. [PMID: 31323225 DOI: 10.1016/j.ejphar.2019.172551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Valproic acid (VPA), one of the histone deacetylase inhibitors, can suppress prostate cancer (PCa) cells epithelial mesenchymal transition (EMT). Transcriptional intermediary factor 1γ (TIF1γ) which is a vital protein molecule that possesses ubiquitination enzyme activity, can mediate TGF-β induced EMT. We aimed to investigate the detailed mechanism between VPA and EMT occurrence in PCa cells to clarify the potential mechanism of TIF1γ involved. In our vitro experiments, we first investigated the effect of VPA on the expression TIF1γ. After TIF1γ was knockdown or overexpressed by related lentivirus, EMT of PCa cells were assessed. When TIF1γ knockdown or overexpress stable cell line were established, cells were treated with additional VPA, EMT index were detected and functional experiments were also conducted to confirm whether VPA inhibited EMT of PCa cells via TIF1γ. The mono-ubiquitination of Smad4 was analyzed simultaneously. In vivo, mice were facilitated with PC3 cells or TIF1γ related knockdown or overexpress virus transfected PC3 cells with or without VPA administration. Results showed that in vitro VPA can increase the expression of TIF1γ and also induce the increase expression of E-cadherin, and the decrease of N-cadherin and vimentin. Knocking down of TIF1γ can effectively block the effect of VPA on EMT and metastasis while overexpression of TIF1γ can strengthen its role. In vivo VPA also showed its anti-growth effect including tumor growth and EMT mediated by TIF1γ coincide with in vitro experiments. In conclusion, VPA inhibits the EMT in PCa cells via up-regulating the expression of TIF1γ and the mono-ubiquitination Smad4. VPA could serve as a promising agent in PCa treatment, with new strategies based on its diverse effects on posttranscriptional regulation.
Collapse
Affiliation(s)
- Guanghui Qi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Department of Urology, The First Hospital of Zibo City, Zibo, China
| | - Guoliang Lu
- Department of Urology, Shandong Provincial Western Hospital, Jinan, China
| | - Jianguo Yu
- Department of Urology, The First Hospital of Zibo City, Zibo, China
| | - Yanfang Zhao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chunhui Wang
- Second Department of Gastroenterology, The First Hospital of Zibo City, Zibo, China
| | - Hongge Zhang
- Third Department of Surgery, Tengzhou Hospital of Traditional Chinese Medicine, Tengzhou, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
49
|
Wang Y, Sun B, Zhang Q, Dong H, Zhang J. p300 Acetylates JHDM1A to inhibit osteosarcoma carcinogenesis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2891-2899. [PMID: 31307234 DOI: 10.1080/21691401.2019.1638790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yongkun Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiao Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hang Dong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingzhe Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Shi X, Fan M. Tip60-dependent acetylation of KDM2B promotes osteosarcoma carcinogenesis. J Cell Mol Med 2019; 23:6154-6163. [PMID: 31218831 PMCID: PMC6714504 DOI: 10.1111/jcmm.14497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/05/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023] Open
Abstract
Overexpression of KDM2B is frequently occurred in various human solid tumours, and the high levels of KDM2B are associated with tumourigenesis. However, whether and how its activities might be modulated to facilitate tumour progression is still unclear. Immunoprecipitation and immunoblotting were carried out to detect the acetylation of KDM2B. Nucleosomes and mononucleosomes were prepared and the demethylation activity of KDM2B was detected in these two substrates. The effects of KDM2B acetylation on the transcription of target genes, as well as tumour growth and metastasis were then studied. KDM2B was acetylated in osteosarcoma cancer cell lines (MG‐63 and HOS). This modification occurred at lysine 758 and catalysed by Tip60. Acetylation of KDM2B decreased the capacity of KDM2B in binding with nucleosomes. KDM2B acetylation diminished its demethylation activity towards nucleosomal substrates rather than towards bulk histone. Besides, acetylation of KDM2B diminished its ability to bind with the promoters of p21 and puma. Moreover, the promoting effects of KDM2B acetylation on tumour cells' proliferation and metastasis, and in vivo tumour growth were dependent on Tip60. KDM2B is acetylated at lysine 758 by Tip60 in human osteosarcoma cells. Acetylation of KDM2B diminishes its association with nucleosomes, and thus increasing methylation of H3K36 at its target genes as well as enhancing its oncogenic effects.
Collapse
Affiliation(s)
- Xin Shi
- Department of Spinal Surgery, Linyi People's Hospital, Beicheng New District Hospital, Linyi, China
| | - Mingfu Fan
- Department of Spinal Surgery, Linyi People's Hospital, Beicheng New District Hospital, Linyi, China
| |
Collapse
|