1
|
Zhang S, Zang L, Li Y, Pang Y, Xin Y, Zhang Y, Li R, Xiong X. Numb and NumbL inhibit melanoma tumor growth by influencing the immune microenvironment. BMC Cancer 2024; 24:1419. [PMID: 39558287 PMCID: PMC11571900 DOI: 10.1186/s12885-024-13191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE Many investigation have sought to identify therapeutic targets and treatment strategies for skin cutaneous melanoma (SKCM). Numb, an endocytic adaptor protein, is known to act as a tumor suppressor in various human cancers. However, the roles of Numb and its homolog NumbL in immune microenvironment, and their effect on melanoma remain largely unexplored. METHODS We analyzed the expression levels of Numb and NumbL, as well as immune signatures of SKCM patients by UCSCXenaShiny v1 database. We also constructed animal model using Numb and NumbL conditional knockout (cKO) mice. Distribution analysis of immune cells in tumors was performed by flow cytometry and pathology staining. RESULTS Numb and NumbL were found to be consistently expressed at low levels in SKCM patients. In addition, alterations in tumor immune microenvironment were identified. The CD8+ T, CD19+ B, and NK1.1+ CD49+ cells were decreased in tumors of Numb and NumbL cKO mice, confirming previous bioinformatics analysis of immune signatures. Additionally, we observed CD68+ macrophages to be increased as judged by tumor pathology staining. CONCLUSION Numb and NumbL were found to inhibit melanoma cell growth by modulating immune cell activity. These results suggested that Numb and NumbL may be potential therapeutic targets for SKCM patient immunotherapy.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Tumor and Immunology in Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Lulu Zang
- Department of Tumor and Immunology in Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yingnan Li
- Department of Tumor and Immunology in Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yixin Pang
- Department of Tumor and Immunology in Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Yanlong Xin
- Department of Tumor and Immunology in Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yan Zhang
- Department of Tumor and Immunology in Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, P.R. China
| | - Xiaofan Xiong
- Department of Tumor and Immunology in Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, P. R. China.
| |
Collapse
|
2
|
Zeng S, Wang Q, Zhou R, Wang D. KIF4A functions as a diagnostic and prognostic biomarker and regulates tumor immune microenvironment in skin cutaneous melanoma. Pathol Res Pract 2024; 254:155166. [PMID: 38286055 DOI: 10.1016/j.prp.2024.155166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND KIF4A is upregulated in various malignancies and serves as an independent risk factor. However, its function in skin cutaneous melanoma (SKCM) and the regulation of the immunological environment remains unknown. METHODS We first explored the mRNA and protein levels of KIF4A in SKCM through public databases. Then, the co-expressed genes with KIF4A in SKCM and their functional enrichment analysis were performed. Moreover, the clinical value, relationship with immune infiltration and tumor microenvironment (TME), as well as the correlation between KIF4A and immunomodulators were evaluated. In addition, we validated the function of KIF4A by in vitro experiments such as CCK-8 assay, clone formation and wound healing assay. RESULTS Our data reveal that the mRNA and protein levels of KIF4A are highly expressed in SKCM. Moreover, functional enrichment analysis of the top 50 co-expressed genes with KIF4A showed significant association with organelle fission, tubulin binding and immune processes. KIF4A can distinguish SKCM from normal tissue and predict a poorer prognosis. A negative association was observed between KIF4A and TME, and KIF4A exhibited a negative correlation with most immunomodulators. Additionally, the knockdown of KIF4A inhibited the proliferation and migration ability of A375 cells. CONCLUSIONS Our findings suggest that KIF4A promotes the progression of SKCM and is negatively associated with immune infiltration and immunomodulators, which indicates a poor prognosis.
Collapse
Affiliation(s)
- Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| |
Collapse
|
3
|
Guo L, Kruglyak L. Genetics and biology of coloration in reptiles: the curious case of the Lemon Frost geckos. Physiol Genomics 2023; 55:479-486. [PMID: 37642275 DOI: 10.1152/physiolgenomics.00015.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Although there are more than 10,000 reptile species, and reptiles have historically contributed to our understanding of biology, genetics research into class Reptilia has lagged compared with other animals. Here, we summarize recent progress in genetics of coloration in reptiles, with a focus on the leopard gecko, Eublepharis macularius. We highlight genetic approaches that have been used to examine variation in color and pattern formation in this species as well as to provide insights into mechanisms underlying skin cancer. We propose that their long breeding history in captivity makes leopard geckos one of the most promising emerging reptilian models for genetic studies. More broadly, technological advances in genetics, genomics, and gene editing may herald a golden era for studies of reptile biology.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, California, United States
- Department of Biological Chemistry, University of California, Los Angeles, California, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| |
Collapse
|
4
|
Yang E, Ding Q, Fan X, Ye H, Xuan C, Zhao S, Ji Q, Yu W, Liu Y, Cao J, Fang M, Ding X. Machine learning modeling and prognostic value analysis of invasion-related genes in cutaneous melanoma. Comput Biol Med 2023; 162:107089. [PMID: 37267825 DOI: 10.1016/j.compbiomed.2023.107089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
In this study, we aimed to develop an invasion-related risk signature and prognostic model for personalized treatment and prognosis prediction in skin cutaneous melanoma (SKCM), as invasion plays a crucial role in this disease. We identified 124 differentially expressed invasion-associated genes (DE-IAGs) and selected 20 prognostic genes (TTYH3, NME1, ORC1, PLK1, MYO10, SPINT1, NUPR1, SERPINE2, HLA-DQB2, METTL7B, TIMP1, NOX4, DBI, ARL15, APOBEC3G, ARRB2, DRAM1, RNF213, C14orf28, and CPEB3) using Cox and LASSO regression to establish a risk score. Gene expression was validated through single-cell sequencing, protein expression, and transcriptome analysis. Negative correlations were discovered between risk score, immune score, and stromal score using ESTIMATE and CIBERSORT algorithms. High- and low-risk groups exhibited significant differences in immune cell infiltration and checkpoint molecule expression. The 20 prognostic genes effectively differentiated between SKCM and normal samples (AUCs >0.7). We identified 234 drugs targeting 6 genes from the DGIdb database. Our study provides potential biomarkers and a risk signature for personalized treatment and prognosis prediction in SKCM patients. We developed a nomogram and machine-learning prognostic model to predict 1-, 3-, and 5-year overall survival (OS) using risk signature and clinical factors. The best model, Extra Trees Classifier (AUC = 0.88), was derived from pycaret's comparison of 15 classifiers. The pipeline and app are accessible at https://github.com/EnyuY/IAGs-in-SKCM.
Collapse
Affiliation(s)
- Enyu Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| | - Xiaowei Fan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Haihan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Shuo Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Weihua Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China.
| | - Yongfu Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China.
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
5
|
Lucianò AM, Di Martile M, Pérez-Oliva AB, Di Caprio M, Foddai ML, Buglioni S, Mulero V, Del Bufalo D. Exploring association of melanoma-specific Bcl-xL with tumor immune microenvironment. J Exp Clin Cancer Res 2023; 42:178. [PMID: 37488586 PMCID: PMC10364435 DOI: 10.1186/s13046-023-02735-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Macrophages take center stage in the tumor microenvironment, a niche composed of extracellular matrix and a heterogeneous group of cells, including immune ones. They can evolve during tumor progression and acquire Tumor-Associated Macrophage (TAMs) phenotype. The release of cytokines by tumor and stromal cells, influence the secretion of cytokines by TAMs, which can guarantee tumor progression and influence the response to therapy. Among all factors able to recruit and polarize macrophages, we focused our attention on Bcl-xL, a multifaceted member of the Bcl-2 family, whose expression is deregulated in melanoma. It acts not only as a canonical pro-survival and anti-apoptotic protein, but also as a promoter of tumor progression. METHODS Human melanoma cells silencing or overexpressing Bcl-xL protein, THP-1 monocytic cells and monocyte-derived macrophages were used in this study. Protein array and specific neutralizing antibodies were used to analyze cytokines and chemokines secreted by melanoma cells. qRT-PCR, ELISA and Western Blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Transwell chambers were used to evaluate migration of THP-1 and monocyte-derived macrophages. Mouse and zebrafish models were used to evaluate the ability of melanoma cells to recruit and polarize macrophages in vivo. RESULTS We demonstrated that melanoma cells overexpressing Bcl-xL recruit macrophages at the tumor site and induce a M2 phenotype. In addition, we identified that interleukin-8 and interleukin-1β cytokines are involved in macrophage polarization, and the chemokine CCL5/RANTES in the macrophages recruitment at the tumor site. We also found that all these Bcl-xL-induced factors are regulated in a NF-kB dependent manner in human and zebrafish melanoma models. CONCLUSIONS Our findings confirmed the pro-tumoral function of Bcl-xL in melanoma through its effects on macrophage phenotype.
Collapse
Affiliation(s)
- Anna Maria Lucianò
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, 30100, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Murcia, 30120, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Ana B Pérez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Murcia, 30120, Spain
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Foddai
- Immunohematology and Transfusional Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, 30100, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Murcia, 30120, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
6
|
Shen X, Shang L, Han J, Zhang Y, Niu W, Liu H, Shi H. Immune-related gene signature associates with immune landscape and predicts prognosis accurately in patients with skin cutaneous melanoma. Front Genet 2023; 13:1095867. [PMID: 36685954 PMCID: PMC9845246 DOI: 10.3389/fgene.2022.1095867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) is the skin cancer that causes the highest number of deaths worldwide. There is growing evidence that the tumour immune microenvironment is associated with cancer prognosis, however, there is little research on the role of immune status in melanoma prognosis. In this study, data on patients with Skin cutaneous melanoma were downloaded from the GEO, TCGA, and GTEx databases. Genes associated with the immune pathway were screened from published papers and lncRNAs associated with them were identified. We performed immune microenvironment and functional enrichment analyses. The analysis was followed by applying univariate/multivariate Cox regression algorithms to finally identify three lncRNAs associated with the immune pathway for the construction of prognostic prediction models (CXCL10, RXRG, and SCG2). This stepwise downscaling method, which finally screens out prognostic factors and key genes and then uses them to build a risk model, has excellent predictive power. According to analyses of the model's reliability, it was able to differentiate the prognostic value and continued existence of Skin cutaneous melanoma patient populations more effectively. This study is an analysis of the immune pathway that leads lncRNAs in Skin cutaneous melanoma in an effort to open up new treatment avenues for Skin cutaneous melanoma.
Collapse
|
7
|
Li X, Li M. The application of zebrafish patient-derived xenograft tumor models in the development of antitumor agents. Med Res Rev 2023; 43:212-236. [PMID: 36029178 DOI: 10.1002/med.21924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The cost of antitumor drug development is enormous, yet the clinical outcomes are less than satisfactory. Therefore, it is of great importance to develop effective drug screening methods that enable accurate, rapid, and high-throughput discovery of lead compounds in the process of preclinical antitumor drug research. An effective solution is to use the patient-derived xenograft (PDX) tumor animal models, which are applicable for the elucidation of tumor pathogenesis and the preclinical testing of novel antitumor compounds. As a promising screening model organism, zebrafish has been widely applied in the construction of the PDX tumor model and the discovery of antineoplastic agents. Herein, we systematically survey the recent cutting-edge advances in zebrafish PDX models (zPDX) for studies of pathogenesis mechanisms and drug screening. In addition, the techniques used in the construction of zPDX are summarized. The advantages and limitations of the zPDX are also discussed in detail. Finally, the prospects of zPDX in drug discovery, translational medicine, and clinical precision medicine treatment are well presented.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Sun S, Zhi Z, Su Y, Sun J, Li Q. A CD8+ T cell-associated immune gene panel for prediction of the prognosis and immunotherapeutic effect of melanoma. Front Immunol 2022; 13:1039565. [PMID: 36341357 PMCID: PMC9633226 DOI: 10.3389/fimmu.2022.1039565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the most frequently encountered tumor of the skin. Immunotherapy has opened a new horizon in melanoma treatment. We aimed to construct a CD8+ T cell-associated immune gene prognostic model (CDIGPM) for SKCM and unravel the immunologic features and the benefits of immunotherapy in CDIGPM-defined SKCM groups. Method Single-cell SKCM transcriptomes were utilized in conjunction with immune genes for the screening of CD8+ T cell-associated immune genes (CDIGs) for succeeding assessment. Thereafter, through protein-protein interaction (PPI) networks analysis, univariate COX analysis, and multivariate Cox analysis, six genes (MX1, RSAD2, IRF2, GBP2, IFITM1, and OAS2) were identified to construct a CDIGPM. We detected cell proliferation of SKCM cells transfected with IRF2 siRNA. Then, we analyzed the immunologic features and the benefits of immunotherapy in CDIGPM-defined groups. Results The overall survival (OS) was much better in low-CDIGPM group versus high CDIGPM group in TCGA dataset and GSE65904 dataset. On the whole, the results unfolded that a low CDIGPM showed relevance to immune response-correlated pathways, high expressions of CTLA4 and PD-L1, a high infiltration rate of CD8+ T cells, and more benefits from immunotherapy. Conclusion CDIGPM is an good model to predict the prognosis, the potential immune escape from immunotherapy for SKCM, and define immunologic and molecular features.
Collapse
Affiliation(s)
- Shanwen Sun
- Department of Medical Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Su
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingxian Sun
- Hypertension Research Institute of Geriatric Hospital of Nanjing Medical University, Jiangsu Province Official Hospital, Nanjing, China
- *Correspondence: Qianjun Li, ; Jingxian Sun,
| | - Qianjun Li
- Department of Gastroenterology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- *Correspondence: Qianjun Li, ; Jingxian Sun,
| |
Collapse
|
9
|
Yang X, Wang X, Sun X, Xiao M, Fan L, Su Y, Xue L, Luo S, Hou S, Wang H. Construction of five cuproptosis-related lncRNA signature for predicting prognosis and immune activity in skin cutaneous melanoma. Front Genet 2022; 13:972899. [PMID: 36160015 PMCID: PMC9490379 DOI: 10.3389/fgene.2022.972899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cuproptosis is a newly discovered new mechanism of programmed cell death, and its unique pathway to regulate cell death is thought to have a unique role in understanding cancer progression and guiding cancer therapy. However, this regulation has not been studied in SKCM at present. In this study, data on Skin Cutaneous Melanoma (SKCM) patients were downloaded from the TCGA database. We screened the genes related to cuproptosis from the published papers and confirmed the lncRNAs related to them. We applied Univariate/multivariate and LASSO Cox regression algorithms, and finally identified 5 cuproptosis-related lncRNAs for constructing prognosis prediction models (VIM-AS1, AC012443.2, MALINC1, AL354696.2, HSD11B1-AS1). The reliability and validity test of the model indicated that the model could well distinguish the prognosis and survival of SKCM patients. Next, immune microenvironment, immunotherapy analysis, and functional enrichment analysis were also performed. In conclusion, this study is the first analysis based on cuproptosis-related lncRNAs in SKCM and aims to open up new directions for SKCM therapy.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xiaojing Yang, ; Huiping Wang,
| | - Xing Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Xiao
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Liyun Fan
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunwei Su
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Xue
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Suju Luo
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xiaojing Yang, ; Huiping Wang,
| |
Collapse
|
10
|
Pardo-Sánchez I, García-Moreno D, Mulero V. Zebrafish Models to Study the Crosstalk between Inflammation and NADPH Oxidase-Derived Oxidative Stress in Melanoma. Antioxidants (Basel) 2022; 11:1277. [PMID: 35883768 PMCID: PMC9311651 DOI: 10.3390/antiox11071277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its incidence continues to increase. In the early stages of melanoma, when the malignant cells have not spread to lymph nodes, they can be removed by simple surgery and there is usually low recurrence. Melanoma has a high mortality rate due to its ability to metastasize; once melanoma has spread, it becomes a major health complication. For these reasons, it is important to study how healthy melanocytes transform into melanoma cells, how they interact with the immune system, which mechanisms they use to escape immunosurveillance, and, finally, how they spread and colonize other tissues, metastasizing. Inflammation and oxidative stress play important roles in the development of several types of cancer, including melanoma, but it is not yet clear under which conditions they are beneficial or detrimental. Models capable of studying the relevance of inflammation and oxidative stress in the early steps of melanocyte transformation are urgently needed, as they are expected to help recognize premetastatic lesions in patients by improving both early detection and the development of new therapies.
Collapse
Affiliation(s)
- Irene Pardo-Sánchez
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
12
|
Monahan CF, Garner MM, Kiupel M. Chromatophoromas in Reptiles. Vet Sci 2022; 9:vetsci9030115. [PMID: 35324843 PMCID: PMC8955407 DOI: 10.3390/vetsci9030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
Chromatophoromas are neoplasms that arise from pigment cells of reptiles, amphibians, and fish. They include melanophoromas (melanomas), iridophoromas, and xanthophoromas. Most chromatophoromas develop spontaneously, but genetic and environmental factors may also play a role in their oncogenesis. The diagnosis is typically through histologic examination. Immunohistochemistry and electron microscopy can be helpful for diagnosing poorly differentiated and/or poorly pigmented neoplasms. Aggressive surgical excision is the current treatment of choice. This review describes the clinical presentation, gross appearance, diagnostic applications, clinical behavior, and treatment of chromatophoromas in reptiles.
Collapse
Affiliation(s)
- Colleen F. Monahan
- New Hampshire Veterinary Diagnostic Laboratory, University of New Hampshire, Durham, NH 03824, USA
- Correspondence:
| | | | - Matti Kiupel
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI 48910, USA;
| |
Collapse
|
13
|
Stress Reactivity, Susceptibility to Hypertension, and Differential Expression of Genes in Hypertensive Compared to Normotensive Patients. Int J Mol Sci 2022; 23:ijms23052835. [PMID: 35269977 PMCID: PMC8911431 DOI: 10.3390/ijms23052835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Although half of hypertensive patients have hypertensive parents, known hypertension-related human loci identified by genome-wide analysis explain only 3% of hypertension heredity. Therefore, mainstream transcriptome profiling of hypertensive subjects addresses differentially expressed genes (DEGs) specific to gender, age, and comorbidities in accordance with predictive preventive personalized participatory medicine treating patients according to their symptoms, individual lifestyle, and genetic background. Within this mainstream paradigm, here, we determined whether, among the known hypertension-related DEGs that we could find, there is any genome-wide hypertension theranostic molecular marker applicable to everyone, everywhere, anytime. Therefore, we sequenced the hippocampal transcriptome of tame and aggressive rats, corresponding to low and high stress reactivity, an increase of which raises hypertensive risk; we identified stress-reactivity-related rat DEGs and compared them with their known homologous hypertension-related animal DEGs. This yielded significant correlations between stress reactivity-related and hypertension-related fold changes (log2 values) of these DEG homologs. We found principal components, PC1 and PC2, corresponding to a half-difference and half-sum of these log2 values. Using the DEGs of hypertensive versus normotensive patients (as the control), we verified the correlations and principal components. This analysis highlighted downregulation of β-protocadherins and hemoglobin as whole-genome hypertension theranostic molecular markers associated with a wide vascular inner diameter and low blood viscosity, respectively.
Collapse
|
14
|
Abstract
Microenvironment of cancer stem cells (CSCs) consists of a variety of cells and inter-cellular matrix and communications of the components. The microenvironment of CSCs maintains the stemness feature of the CSCs. Several cell types which communicate each other via signaling molecules surrounding CSCs are main factors of the CSC microenvironment. A key question is "What kind of information the cells exchange in the CSC microenvironment?" to reveal the microenvironment and CSC features. Components and molecular markers of CSC microenvironment, signaling cross-talks in CSC microenvironment, and targeting CSC microenvironment are focused in this review.
Collapse
|
15
|
Kotula-Balak M, Duliban M, Gurgul A, Krakowska I, Grzmil P, Bilinska B, Wolski JK. Transcriptome analysis of human Leydig cell tumours reveals potential mechanisms underlying its development. Andrologia 2021; 53:e14222. [PMID: 34494678 DOI: 10.1111/and.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 11/27/2022] Open
Abstract
Leydig cell tumours are the most common sex cord-stromal tumours. In the last years, apparent increased incidence is noted while aetiology of the tumour is still unknown. Therefore, here, we focused on the genetics of Leydig cell tumours using the next-generation sequencing. Leydig cell micronodules were revealed in patients with azoospermia who were qualified for testicular biopsy. Complete gene set of Leydig cell tumours was compared with transcriptome of healthy Leydig cells obtained from donors. Bioinformatic analysis of the obtained sequencing data revealed alterations in expression of 219 transcripts. We showed, for the first time, that a significant proportion of differentially expressed genes is directly involved in regulation of apoptotic process, which downregulation might be important to Leydig cell tumour development. Additionally, we found a significant upregulation of heat shock protein genes that might be a unique feature of Leydig cell tumours when compared to other tumour types. Our study offers fundamental transcriptomic data for future studies on human Leydig cell tumour that are crucial to determine its causes. Moreover, presented here the in-depth analysis and discussion of alterations observed in tumour transcriptome may be important for the diagnosis and therapy of this pathology.
Collapse
Affiliation(s)
- Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Artur Gurgul
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Izabela Krakowska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Pawel Grzmil
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | | |
Collapse
|
16
|
Tian F, Wang P, Lin D, Dai J, Liu Q, Guan Y, Zhan Y, Yang Y, Wang W, Wang J, Liu J, Zheng L, Zhuang Y, Hu J, Wang J, Kong D, Zhu K. Exosome-delivered miR-221/222 exacerbates tumor liver metastasis by targeting SPINT1 in colorectal cancer. Cancer Sci 2021; 112:3744-3755. [PMID: 34125460 PMCID: PMC8409403 DOI: 10.1111/cas.15028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the progression of many cancers through largely unelucidated mechanisms. The results of our present study identified a gene cluster, miR-221/222, that is constitutively upregulated in serum exosome samples of patients with colorectal carcinoma (CRC) with liver metastasis (LM); this upregulation predicts a poor overall survival rate. Using an in vitro cell coculture model, we demonstrated that CRC exosomes harboring miR-221/222 activate liver hepatocyte growth factor (HGF) by suppressing SPINT1 expression. Importantly, miR-221/222 plays a key role in forming a favorable premetastatic niche (PMN) that leads to the aggressive nature of CRC, which was further shown through in vivo studies. Overall, our results show that exosomal miR-221/222 promotes CRC progression and may serve as a novel prognostic marker and therapeutic target for CRC with LM.
Collapse
Affiliation(s)
- Fei Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Peiyun Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Dan Lin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Jiajia Dai
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qibing Liu
- Hainan Provincial Research Center for Innovative Drugs Clinical Evaluation, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yu Guan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Zhan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yichen Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Wenpeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Jia Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Lei Zheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yan Zhuang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Jun Hu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Junfeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Dalu Kong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Kegan Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Guo L, Bloom J, Sykes S, Huang E, Kashif Z, Pham E, Ho K, Alcaraz A, Xiao XG, Duarte-Vogel S, Kruglyak L. Genetics of white color and iridophoroma in "Lemon Frost" leopard geckos. PLoS Genet 2021; 17:e1009580. [PMID: 34166378 PMCID: PMC8224956 DOI: 10.1371/journal.pgen.1009580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The squamates (lizards and snakes) are close relatives of birds and mammals, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration, venom production, and regeneration. Due to a lack of genomic tools, few genetic studies in squamates have been carried out. The leopard gecko, Eublepharis macularius, is a popular companion animal, and displays a variety of coloration patterns. We took advantage of a large breeding colony and used linkage analysis, synteny, and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tractable genetic system and suggests that a tumor suppressor in melanocytes in humans can also suppress tumor development in iridophores in lizards. The squamates (lizards and snakes) comprise a diverse group of reptiles, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration. In this manuscript, we used quantitative genetics and genomics to map the mutation underlying white coloration in the Lemon Frost morph of the common leopard gecko, Eublepharis macularius. Lemon Frost geckos have increased white body coloration with brightened yellow and orange areas. This morph also displays a high incidence of iridophoroma, a tumor of white-colored cells. We obtained phenotype information and DNA samples from geckos in a large breeding colony and used genome sequencing and genetic linkage analysis to localize the Lemon Frost mutation to a single locus. This locus contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma. Together with other recent advances, our work brings reptiles into the modern genetics era.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| | - Joshua Bloom
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Steve Sykes
- Geckos Etc. Herpetoculture, Rocklin, California, United States of America
| | - Elaine Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Zain Kashif
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Elise Pham
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Katarina Ho
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Ana Alcaraz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Xinshu Grace Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| |
Collapse
|
18
|
The Research on the Treatment of Metastatic Skin Cutaneous Melanoma by Huanglian Jiedu Decoction Based on the Analysis of Immune Infiltration Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9952060. [PMID: 34239596 PMCID: PMC8241506 DOI: 10.1155/2021/9952060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Objective To explore the potential mechanism of Huanglian Jiedu Decoction (HJD) treatment and prevention of metastatic Cutaneous Melanoma (CM) occurrence and metastasis based on network pharmacological methods and immune infiltration analysis. Methods The GEO database was used to obtain metastatic CM disease targets, the TCMSP database and the HERB database were used to obtain HJD action targets, core genes were screened by protein interaction network, and the potential mechanism of HJD in the treatment of metastatic CM was explored by enrichment analysis, prognostic analysis and immune infiltration analysis. Results HJD treatment of metastatic CM involved 60 targets, enrichment analysis showed that HJD treatment of metastatic CM involved Chemokine signaling pathway, NF-kappa B signaling pathway, and Fluid shear stress and atherosclerosis, etc. Prognostic analysis revealed that HJD had a certain ability to improve the prognosis of metastatic CM patients. Immune infiltration analysis showed that HJD could inhibit the immune cell infiltration of metastatic CM patients by acting on related targets. Conclusions Our study identified the potential mechanism of HJD in the treatment of metastatic CM through network pharmacology, and revealed the mechanism of HJD in the prevention of Skin Cutaneous Melanoma metastasis through immune infiltration analysis and prognostic analysis.
Collapse
|
19
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Wu TM, Liu JB, Liu Y, Shi Y, Li W, Wang GR, Ma YS, Fu D. Power and Promise of Next-Generation Sequencing in Liquid Biopsies and Cancer Control. Cancer Control 2021; 27:1073274820934805. [PMID: 32806937 PMCID: PMC7791471 DOI: 10.1177/1073274820934805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional methods of cancer treatment are usually based on the morphological
and histological diagnosis of tumors, and they are not optimized according to
the specific situation. Precision medicine adjusts the existing treatment
regimen based on the patient’s genomic information to make it most suitable for
patients. Detection of genetic mutations in tumors is the basis of precise
cancer medicine. Through the analysis of genetic mutations in patients with
cancer, we can tailor the treatment plan for each patient with cancer to
maximize the curative effect, minimize damage to healthy tissues, and optimize
resources. In recent years, next-generation sequencing technology has developed
rapidly and has become the core technology of precise targeted therapy and
immunotherapy for cancer. From early cancer screening to treatment guidance for
patients with advanced cancer, liquid biopsy is increasingly used in cancer
management. This is as a result of the development of better noninvasive,
repeatable, sensitive, and accurate tools used in early screening, diagnosis,
evaluation, and monitoring of patients. Cell-free DNA, which is a new
noninvasive molecular pathological detection method, often carries
tumor-specific gene changes. It plays an important role in optimizing treatment
and evaluating the efficacy of different treatment options in clinical trials,
and it has broad clinical applications.
Collapse
Affiliation(s)
- Ting-Miao Wu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Yi Shi
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Gao-Ren Wang
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Da Fu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B. Application of Animal Models in Cancer Research: Recent Progress and Future Prospects. Cancer Manag Res 2021; 13:2455-2475. [PMID: 33758544 PMCID: PMC7979343 DOI: 10.2147/cmar.s302565] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Animal models refers to the animal experimental objects and related materials that can simulate human body established in medical research. As the second-largest disease in terms of morbidity and mortality after cardiovascular disease, cancer has always been the focus of human attention all over the world, which makes it a research hotspot in the medical field. At the same time, more and more animal models have been constructed and used in cancer research. With the deepening of research, the construction methods of cancer animal models are becoming more and more diverse, including chemical induction, xenotransplantation, gene programming, and so on. In recent years, patient-derived xenotransplantation (PDX) model has become a research hotspot because it can retain the microenvironment of the primary tumor and the basic characteristics of cells. Animal models can be used not only to study the biochemical and physiological processes of the occurrence and development of cancer in objects but also for the screening of cancer drugs and the exploration of gene therapy. In this paper, several main tumor animal models and the application progress of animal models in tumor research are systematically reviewed. Finally, combined with the latest progress and development trend in this field, the future research of tumor animal model was prospected.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
23
|
Loveless R, Shay C, Teng Y. Unveiling Tumor Microenvironment Interactions Using Zebrafish Models. Front Mol Biosci 2021; 7:611847. [PMID: 33521055 PMCID: PMC7841114 DOI: 10.3389/fmolb.2020.611847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a rich and active arena that is strategically evolved overtime by tumors to promote their survival and dissemination. Over the years, attention has been focused to characterize and identify the tumor-supporting roles and subsequent targeting potentials of TME components. Nevertheless, recapitulating the human TME has proved inherently challenging, leaving much to be explored. In this regard, in vivo model systems like zebrafish, with its optical clarity, ease of genetic manipulation, and high engraftment, have proven to be indispensable for TME modeling and investigation. In this review, we discuss the recent ways by which zebrafish models have lent their utility to provide new insights into the various cellular and molecular mechanisms driving TME dynamics and tumor support. Specifically, we report on innate immune cell interactions, cytokine signaling, metastatic plasticity, and other processes within the metastatic cascade. In addition, we reflect on the arrival of adult zebrafish models and the potential of patient-derived xenografts.
Collapse
Affiliation(s)
- Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, United States
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, United States
| |
Collapse
|
24
|
Abstract
The tumor microenvironment contains many cellular components influencing tumor behaviors, such as metastasis, angiogenesis and chemo-resistance. Tumor-associated macrophages (TAMs) are one of such components that can also manipulate the overall prognosis and patient survival. Analysis of tumor-macrophage crosstalk is crucial as tumor cells can polarize circulatory monocytes into TAMs. Such trans-polarization of macrophages support tumor mediated evasion and suppression of immune response. Additionally, such TAMs significantly influence tumor growth and proliferation, making them a potential candidate for precision therapeutics. However, the failure of macrophage-dependent therapies at clinical trials emphasizes the fault in current perception and research modality. This review discussed this field's progress regarding emerging model systems with a focused view on the in vitro platforms. The inadequacy of currently available models and their implications on existing studies also analyzed. The need for a conceptual and experimental leap toward a human-relevant in vitro custom-built platform for studying tumor-macrophage crosstalk is acknowledged.
Collapse
Affiliation(s)
- Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
25
|
Li D, Liu Y, Hao S, Chen B, Li A. Mining database for the clinical significance and prognostic value of CBX family in skin cutaneous melanoma. J Clin Lab Anal 2020; 34:e23537. [PMID: 32860274 PMCID: PMC7755763 DOI: 10.1002/jcla.23537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive malignancies with high invasiveness. Chromobox (CBX) family are involved in the regulation of the tumorigenesis, progression, invasion, and apoptosis of many malignancies. METHODS The clinical significance and prognostic value of CBX family in SKCM were analyzed via a series of databases, including ONCOMINE, GEPIA, UALCAN, TIMER, GSCALite, DAVID 6.8, GeneMANIA, and LinkedOmics. RESULTS We found that the level of CBX2, CBX3, CBX5, and CBX6 was upregulated while the level of CBX7 and CBX8 was downregulated in tumor tissues in SKCM. Moreover, the mRNA expression of CBX1 and CBX2 was significantly associated with the pathological stage in SKCM. Prognosis analysis revealed that SKCM patients with high CBX5 level and low CBX7 level had a poor prognosis. Immune infiltrations analysis revealed that the expression of CBX family was associated with the abundance of certain immune cells in SKCM. We also found that CBX family were associated with the activation of cell cycle pathway and DNA damage response, and the inhibition of apoptosis pathway. Moreover, enrichment analysis revealed that CBX family and correlated genes were enriched in chromatin modification, PcG protein complex, transcription coactivator activity, protein binding, and RNA splicing. Several Kinase targets (ATM, CDK1, and PLK1) and miRNA targets (MIR-331, MIR-296, and MIR-496) of CBX family were also identified. CONCLUSION Our study may uncover CBX family-associated molecular mechanisms involved in the tumorigenesis and progression of SKCM and provide additional choice for the prognosis and therapy biomarker for SKCM.
Collapse
Affiliation(s)
- Ding Li
- Integrated Chinese and Western Medicine Center, Qingdao University Medical College, Qingdao, China
| | - YiRan Liu
- The Third Institute of Clinical Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Shuai Hao
- Department of Traditional Chinese Medicine, Qingdao Huangdao District Central Hospital, Qingdao, China
| | - Bo Chen
- Department of Traditional Chinese Medicine, Qingdao Huangdao District Central Hospital, Qingdao, China
| | - AnHai Li
- Department of Dermatology, Qingdao Huangdao District Central Hospital, Qingdao, China
| |
Collapse
|
26
|
Zhang W, Zhao H, Chen J, Zhong X, Zeng W, Li Z, Zhou J, He Z, Tang S. Mining database for the expression and gene regulation network of JAK2 in skin cutaneous melanoma. Life Sci 2020; 253:117600. [PMID: 32234492 DOI: 10.1016/j.lfs.2020.117600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most common subtype of skin malignancy, with ever-increasing incidence, mortality, and disease burden. Dysregulation of JAK-STATs signaling pathway is involved in the pathogenesis and progression of cancers, thus affecting the prognosis of cancer patients. The function of JAKs in SKCM is still not clarified. METHODS A total of five online portal (GEPIA, TIMER, GeneMANIA, LinkedOmics, and GSCALite) is used to mine the expression and gene regulation network JAK2 in SKCM. RESULTS JAK2 expression was downregulated in SKCM and significantly associated with pathological stage and the prognosis of patients. The functions of JAK2 and associated genes were primarily involved in the DNA recombination, cell cycle checkpoint, metabolic process, NOD-like receptor signaling pathways, p53 signaling pathway and apoptosis. JAK2 level was significantly correlated with the abundance of immune cells and the level of immune biomarkers. Low expression of JAK2 were resistant to QL-VIII-58, TL-1-85, Ruxolitinib, TG101348 and Sunitinib. CONCLUSIONS Our results reveal the expression and gene regulation network of JAK2 in skin cutaneous melanoma, providing more evidences about the role of JAK2 in carcinogenesis.
Collapse
Affiliation(s)
- Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hanxing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiasheng Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoping Zhong
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiping Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhonglei Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Zhihao He
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
27
|
Ma J, Liu M, Wang Y, Xin C, Zhang H, Chen S, Zheng X, Zhang X, Xiao F, Yang S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging (Albany NY) 2020; 12:13529-13554. [PMID: 32602849 PMCID: PMC7377841 DOI: 10.18632/aging.103461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis. We also found that GAPDH, which was downregulated in aged skin samples, was the top hub gene in a protein-protein interaction network analysis. Some of the DEPs identified herein had been previously correlated with aging of the skin and other organs, while others may represent novel age-related entities. Our non-invasive proteomics analysis of human epidermal proteins may guide future research on skin aging to help develop treatments for age-related skin conditions and rejuvenation.
Collapse
Affiliation(s)
- Jing Ma
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Mengting Liu
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yaochi Wang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Cong Xin
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Shirui Chen
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xuejun Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Fengli Xiao
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.,The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
28
|
Frantz WT, Ceol CJ. From Tank to Treatment: Modeling Melanoma in Zebrafish. Cells 2020; 9:cells9051289. [PMID: 32455885 PMCID: PMC7290816 DOI: 10.3390/cells9051289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and one of few cancers with a growing incidence. A thorough understanding of its pathogenesis is fundamental to developing new strategies to combat mortality and morbidity. Zebrafish—due in large part to their tractable genetics, conserved pathways, and optical properties—have emerged as an excellent system to model melanoma. Zebrafish have been used to study melanoma from a single tumor initiating cell, through metastasis, remission, and finally into relapse. In this review, we examine seminal zebrafish studies that have advanced our understanding of melanoma.
Collapse
Affiliation(s)
- William Tyler Frantz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence:
| |
Collapse
|