1
|
Xiong S, Li S, Li Z, Song Y, Yang L, Yang H, Xiong J, Pan W, Guo J, Fu B, Xu S. A noncanonical E3 ubiquitin ligase RNF41-mediated MYO1C stability promotes prostate cancer metastasis by inducing actin remodeling. Oncogene 2024; 43:2696-2707. [PMID: 39112516 DOI: 10.1038/s41388-024-03120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Prostate cancer bone metastasis is a predominant cause of death for prostate cancer (PCa) patients. However, the underlying mechanisms are poorly understood. Here, we report that high levels of RNF41 are associated with metastatic human prostate cancer. RNF41 silencing inhibits prostate cancer cell growth, cell migration and invasion in vitro and in vivo. Mechanistically, we identify that RNF41 induces K27- and K63-linked noncanonical polyubiquitination of MYO1C to enhance its stability and induce actin remodeling, which promotes PCa bone metastasis. RNF41 was significantly upregulated in metastatic prostate cancer tissues and positively associated with MYO1C expression. Furthermore, we show in intraarterial injected-bone metastasis xenograft model that targeting MYO1C stability by inhibition of RNF41 markedly suppressed PCa bone metastasis. Collectively, our findings identify RNF41 is an important regulator of prostate cancer cell growth and metastasis and targeting RNF41/MYO1C could be a valuable strategy to ameliorate prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Situ Xiong
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Li
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongqi Li
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanping Song
- Department of Quality Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Yang
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hailang Yang
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Xiong
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wang Pan
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Ju Guo
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Bin Fu
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Songhui Xu
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Yuan Y, Fang A, Wang Z, Chen H, Fu ZF, Zhou M, Zhao L. The matrix protein of lyssavirus hijacks autophagosome for efficient egress by recruiting NEDD4 through its PPxY motif. Autophagy 2024; 20:1723-1740. [PMID: 38566321 PMCID: PMC11262214 DOI: 10.1080/15548627.2024.2338575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; μm: micrometer; μM: micromole.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
4
|
Gutierrez-Ruiz OL, Johnson KM, Krueger EW, Nooren RE, Cruz-Reyes N, Heppelmann CJ, Hogenson TL, Fernandez-Zapico ME, McNiven MA, Razidlo GL. Ectopic expression of DOCK8 regulates lysosome-mediated pancreatic tumor cell invasion. Cell Rep 2023; 42:113042. [PMID: 37651233 PMCID: PMC10591794 DOI: 10.1016/j.celrep.2023.113042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Amplified lysosome activity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) orchestrated by oncogenic KRAS that mediates tumor growth and metastasis, though the mechanisms underlying this phenomenon remain unclear. Using comparative proteomics, we found that oncogenic KRAS significantly enriches levels of the guanine nucleotide exchange factor (GEF) dedicator of cytokinesis 8 (DOCK8) on lysosomes. Surprisingly, DOCK8 is aberrantly expressed in a subset of PDAC, where it promotes cell invasion in vitro and in vivo. DOCK8 associates with lysosomes and regulates lysosomal morphology and motility, with loss of DOCK8 leading to increased lysosome size. DOCK8 promotes actin polymerization at the surface of lysosomes while also increasing the proteolytic activity of the lysosomal protease cathepsin B. Critically, depletion of DOCK8 significantly reduces cathepsin-dependent extracellular matrix degradation and impairs the invasive capacity of PDAC cells. These findings implicate ectopic expression of DOCK8 as a key driver of KRAS-driven lysosomal regulation and invasion in pancreatic cancer cells.
Collapse
Affiliation(s)
- Omar L Gutierrez-Ruiz
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine M Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugene W Krueger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roseanne E Nooren
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole Cruz-Reyes
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tara L Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules 2023; 28:5019. [PMID: 37446681 DOI: 10.3390/molecules28135019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.
Collapse
Affiliation(s)
- Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yecheng You
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Enzyme Replacement Therapy for FABRY Disease: Possible Strategies to Improve Its Efficacy. Int J Mol Sci 2023; 24:ijms24054548. [PMID: 36901983 PMCID: PMC10003632 DOI: 10.3390/ijms24054548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.
Collapse
|
7
|
SMOC2 promotes aggressive behavior of fibroblast-like synoviocytes in rheumatoid arthritis through transcriptional and post-transcriptional regulating MYO1C. Cell Death Dis 2022; 13:1035. [PMID: 36513634 PMCID: PMC9747908 DOI: 10.1038/s41419-022-05479-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Fibroblast-like synoviocytes (FLSs), play a key role in perpetuating synovial inflammation and bone erosion in rheumatoid arthritis (RA), however, the underlying mechanism(s) of RA FLSs activation and aggression remain unclear. Identifying endogenous proteins that selectively target FLSs is urgently needed. Here, we systematically identified that secreted modular calcium-binding protein 2 (SMOC2), was significantly increased in RA FLSs and synovial tissues. SMOC2 knockdown specifically regulated cytoskeleton remodeling and decreased the migration and invasion of RA FLSs. Mechanistically, cytoskeleton-related genes were significantly downregulated in RA FLSs with reduced SMOC2 expression, especially the motor protein myosin1c (MYO1C). SMOC2 controlled MYO1C expression by SRY-related high-mobility group box 4 (SOX4) and AlkB homolog 5 (ALKHB5) mediated-m6A modification through transcriptional and post-transcriptional regulation. Furthermore, intra-articular Ad-shRNA-SMOC2 treatment attenuated synovial inflammation as well as bone and cartilage erosion in rats with collagen-induced arthritis (CIA). Our findings suggest that increased SMOC2 expression in FLSs may contribute to synovial aggression and joint destruction in RA. SMOC2 may serve as a potential target against RA. SMOC2-mediated regulation of the synovial migration and invasion in RA FLSs. In RA FLSs, SMOC2 is significantly increased, leading to the increased level of MYO1C via SOX4-mediated transcriptional regulation and ALKBH5-mediated m6A modification, thereby causing cytoskeleton remodeling and promoting RA FLSs migration and invasion. The Figure was drawn by Figdraw.
Collapse
|
8
|
Feng F, Pan L, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int J Biol Sci 2021; 17:4340-4352. [PMID: 34803502 PMCID: PMC8579440 DOI: 10.7150/ijbs.64675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cepharanthine (CEP), a natural compound extracted from Stephania cepharantha Hayata, has been found to have the potential to treat a variety of tumors in recent years. This study aims to evaluate the anti-hepatocellular carcinoma (HCC) effect of CEP and determine its in-depth mechanism. In this study, Hep3B and HCCLM3 cells were selected to evaluate the antitumor effects of CEP in vitro, whereas tumor xenograft in nude mice was performed to make in vivo anti-tumor assessment. RNA-sequence (RNA-seq) was used to identify possible molecular targets and pathways. Further, gas chromatography mass spectrometry (GC-MS) was performed to assess the differential metabolites involved in mediating the effect of CEP on the HCC cell line. Our results showed that CEP treatment resulted in the dose-dependent inhibition of cell viability, migration, and proliferation and could also induce apoptosis in HCC cells. RNA-seq following CEP treatment identified 168 differentially expressed genes (DEGs), which were highly enriched in metabolism-associated pathways. In addition, CEP down-regulated many metabolites through the amino acid metabolism pathway. In vivo experiment showed that CEP significantly suppressed tumor growth. Our results indicate that CEP has significant antitumor effects and has the potential to be a candidate drug for HCC treatment.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lianhong Pan
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li Yang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chunli Wang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
9
|
Singh DP, Begum R, Kaur G, Bagam P, Kambiranda D, Singh R, Batra S. E-cig vapor condensate alters proteome and lipid profiles of membrane rafts: impact on inflammatory responses in A549 cells. Cell Biol Toxicol 2021; 37:773-793. [PMID: 33469865 DOI: 10.1007/s10565-020-09573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/12/2020] [Indexed: 01/14/2023]
Abstract
Electronic cigarettes (e-cigs) are battery-operated heating devices that aerosolize e-liquid, typically containing nicotine and several other chemicals, which is then inhaled by a user. Over the past decade, e-cigs have gained immense popularity among both smokers and non-smokers. One reason for this is that they are advertised as a safe alternative to conventional cigarettes. However, the recent reports of e-cig use associated lung injury have ignited a considerable debate about the relative harm and benefits of e-cigs. The number of reports about e-cig-induced inflammation and pulmonary health is increasing as researchers seek to better understand the effects of vaping on human health. In line with this, we investigated the molecular events responsible for the e-cig vapor condensate (ECVC)-mediated inflammation in human lung adenocarcinoma type II epithelial cells (A549). In an attempt to limit the variables caused by longer ingredient lists of flavored e-cigs, tobacco-flavored ECVC (TF-ECVC±nicotine) was employed for this study. Interestingly, we observed significant upregulation of cytokines and chemokines (IL-6, IL-8, and MCP-1) in A549 cells following a 48 h TF-ECVC challenge. Furthermore, there was a significant increase in the expression of pattern recognition receptors TLR-4 and NOD-1, lipid raft-associated protein caveolin-1, and transcription factor NF-кB in TF-ECVC with and/or without nicotine-challenged lung epithelial cells. Our results further demonstrate the harboring of TLR-4 and NOD-1 in the caveolae of TF-ECVC-challenged A549 cells. Proteomic and lipidomic analyses of lipid raft fractions from control and challenged cells revealed a distinct protein and lipid profile in TF-ECVC (w/wo nicotine)-exposed A549 cells. Interestingly, the inflammatory effects of TF-ECVC (w/wo nicotine) were inhibited following the caveolin-1 knockdown, thus demonstrating a critical role of caveolae raft-mediated signaling in eliciting inflammatory responses upon TF-ECVC challenge. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Dhirendra Pratap Singh
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Devaiah Kambiranda
- Southern University Agriculture Research and Extension Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rakesh Singh
- Translational Science Laboratory, FSU College of Medicine, Tallahassee, FL, 32309, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, 129 Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
10
|
Shi Z, Liu J, Wang F, Li Y. Integrated analysis of Solute carrier family-2 members reveals SLC2A4 as an independent favorable prognostic biomarker for breast cancer. Channels (Austin) 2021; 15:555-568. [PMID: 34488531 PMCID: PMC8425726 DOI: 10.1080/19336950.2021.1973788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Most of Solute carrier family-2 (SLC2) members play a key role of facilitative transporters, and glucose transporter (GLUT) proteins encoded by SLC2s can transport hexoses or polyols. However, the function and mechanism of SLC2s remain unclear in human cancers. Here, we explored the dysregulated expression, prognostic values, epigenetic, genetic alterations, and biomolecular network of SLC2s in human cancers. According to the data from public-omicsrepository, SLC2A4 (GLUT4) was found to be significantly downregulated in most cancers, and higher messenger RNA (mRNA) expression of SLC2A4 significantly associated with better prognosis of breast cancer (BRCA) patients. Moreover, DNA hypermethylation in the promoter of SLC2A4 may affect the regulation of its mRNA expression, and SLC2A4 was strongly correlated with pathways, including the translocation of SLC2A4 to the plasma membrane and PID INSULIN PATHWAY. In conclusion, these results provide insight into SLC2s in human cancers and suggest that SLC2A4 could be an unfavorable prognostic biomarker for the survival of BRCA patients.
Collapse
Affiliation(s)
- Zhenyu Shi
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Jiahao Liu
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Fei Wang
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Yongqiang Li
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| |
Collapse
|
11
|
Li S, Liu W, Chen Y, Wang L, An W, An X, Song L, Tong Y, Fan H, Lu C. Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief Bioinform 2021; 22:1378-1386. [PMID: 33423067 PMCID: PMC7929461 DOI: 10.1093/bib/bbaa387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core. CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shasha Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Wenli Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Yangzhen Chen
- College of Life Science and Technology, Beijing University of Chemical Technology
| | - Liqin Wang
- College of Life Science and Technology, Beijing University of Chemical Technology
| | - Wenlin An
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Xiaoping An
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Lihua Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University
| |
Collapse
|
12
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|