1
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
2
|
Galant N, Grenda A, Krawczyk P, Pięt M, Milanowski J. Liquid biopsy in diagnosis and monitoring of treatment efficacy in patients with small cell lung cancer. Mol Biol Rep 2025; 52:455. [PMID: 40358752 PMCID: PMC12075280 DOI: 10.1007/s11033-025-10569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Small-cell lung cancer (SCLC) remains one of the deadliest cancers worldwide. Patients' survival remains poor due to its rapid growth, high metastatic rate and limited possibilities of treatment. For many years, SCLC management has been based mostly on chemo and radiotherapy. However, new therapeutic approaches have been proposed in the past few years, including immunotherapy, which is currently implemented in clinical practice. Unfortunately, in many cases, response to therapy, especially chemotherapy, remains poor, or the patient becomes resistant to initially effective treatment. One of the crucial problems during SCLC patient care is a lack of appropriate predictive biomarkers for various therapeutic approaches. Another critical issue is the scarcity of collected tissue during biopsy, which may be insufficient or of too poor quality for analysis. A liquid biopsy might be the key to solving both of those problems as it is collected in a non-invasive way and enables the measurement of various biomarkers, including circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs). In this review, we discuss various approaches to potentially incorporating liquid biopsy into clinical application - as a companion to imaging during SCLC diagnostics, a new approach to molecular subtyping, and a material enabling predictive or prognostic biomarkers assessment. We also summarize ongoing clinical trials encompassing SCLC patients in which liquid biopsy is collected and examined.
Collapse
Affiliation(s)
- Natalia Galant
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Mateusz Pięt
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
WANG JIAHUI, GE HONGCHENG, YU ZHENGYUAN, WU LINGZHI. Non-coding RNAs as potential mediators of resistance to lung cancer immunotherapy and chemotherapy. Oncol Res 2025; 33:1033-1054. [PMID: 40296912 PMCID: PMC12034021 DOI: 10.32604/or.2024.058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 04/30/2025] Open
Abstract
Lung cancer is a common cause of cancer-related death globally. The majority of lung cancer patients initially benefit from chemotherapy and immunotherapy. However, as the treatment cycle progresses and the disease evolves, the emergence of acquired resistance leads to treatment failure. Many researches have shown that non-coding RNAs (ncRNAs) not only influence lung cancer progression but also act as potential mediators of immunotherapy and chemotherapy resistance in lung cancer, mediating drug resistance by regulating multiple targets and pathways. In addition, the regulation of immune response by ncRNAs is dualistic, forming a microenvironment for inhibits/promotes immune escape through changes in the expression of immune checkpoints. The aim of this review is to understand the effects of ncRNAs on the occurrence and development of lung cancer, focusing on the role of ncRNAs in regulating drug resistance of lung cancer.
Collapse
Affiliation(s)
- JIAHUI WANG
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - HONGCHENG GE
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - ZHENGYUAN YU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - LINGZHI WU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
4
|
Zhang X, Fang H, Yang B, Qin C, Hu F, Ruan W, Chen J, Zeng D, Gai Y, Lan X. Phase I study of [ 68Ga]Ga-HX01 for targeting integrin αvβ3 and CD13 in healthy and malignancy subjects. Eur J Nucl Med Mol Imaging 2025; 52:1293-1304. [PMID: 39609274 DOI: 10.1007/s00259-024-07002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE Noninvasive angiogenesis visualization is essential for evaluating tumor proliferation, progression, invasion, and metastasis. This study aimed to translate the heterodimeric PET tracer [68Ga]Ga-HX01, which targets integrin αvβ3 and CD13 in neovascularization, into phase I clinical study. METHODS This study enrolled 12 healthy volunteers (phase Ia) and 10 patients with malignant tumors (phase Ib). The subjects in phase Ia were divided into low-dose (0.05 mCi/kg) and high-dose (0.1 mCi/kg) groups. For phase Ia subjects, PET/CT images, blood and urine samples were collected to analyze the biodistribution, pharmacokinetics, radiation dosimetry, and safety of [68Ga]Ga-HX01. For phase Ib patients, PET/MR scans were performed at 30 ± 5 and 60 ± 5 min after injection. The safety and preliminary diagnostic value of [68Ga]Ga-HX01 were assessed. RESULTS In phase Ia study, [68Ga]Ga-HX01 was distributed and metabolized similarly in two dosage groups as the highest accumulations in kidneys and urine. It possessed quick renal excretion and blood clearance with an elimination half-life (T1/2) of 28.92 ± 3.97 min. The total effective dose was 2.14 × 10- 2 mSv/MBq. In phase Ib study, [68Ga]Ga-HX01 clearly detected the lesions per patient, and found a total of 59 lesions with varying uptake levels. For safety evaluation, no serious adverse events were observed during the examination. CONCLUSION [68Ga]Ga-HX01 has proved to be a translational radiopharmaceutical with reliable security, favorable pharmacokinetics, and the ability to visualize tumors. The preliminary results in malignancy patients warrant further investigation of [68Ga]Ga-HX01 in monitoring antiangiogenic therapy of patients with malignancies. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT06416774. Registered 11 May, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Biao Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, 430022, Wuhan, Hubei, China
| | - Dexing Zeng
- Hexin (Suzhou) Pharmaceutical Technology Co., Ltd, Taicang, 215421, Jiangsu, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
| |
Collapse
|
5
|
Pote MS, Gacche RN. Exosomal signaling in cancer metastasis: Molecular insights and therapeutic opportunities. Arch Biochem Biophys 2025; 764:110277. [PMID: 39709108 DOI: 10.1016/j.abb.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Exosomes are membrane-bound extracellular vesicles that play a role in exchanging biological products across membranes and serve as intermediaries in intercellular communication to maintain normal homeostasis. Numerous molecules, including lipids, proteins, and nucleic acids are enclosed in exosomes. Exosomes are constantly released into the extracellular environment and exhibit distinct characteristics based on the secreted cells that produce them. Exosome-mediated cell-to-cell communication has reportedly been shown to affect multiple cancer hallmarks, such as immune response modulation, pre-metastatic niche formation, angiogenesis, stromal cell reprogramming, extracellular matrix architecture remodeling, or even drug resistance, and eventually the development and metastasis of cancer cells. Exosomes can be used as therapeutic targets and possible diagnostic biomarkers by selectively loading oncogenic molecules into them. We highlight the important roles that exosomes play in cancer development in this review, which may lead to the development of fresh approaches for future clinical uses.
Collapse
Affiliation(s)
- Manasi S Pote
- Tumor Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, (MS), India
| | - Rajesh N Gacche
- Tumor Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, (MS), India.
| |
Collapse
|
6
|
Chee TM, Zahra CJ, Fong KM, Yang IA, Bowman RV. Potential utility of miRNAs derived from pleural fluid extracellular vesicles to differentiate between benign and malignant pleural effusions. Transl Lung Cancer Res 2025; 14:124-138. [PMID: 39958230 PMCID: PMC11826272 DOI: 10.21037/tlcr-24-945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
Background Cytological examination is of suboptimal sensitivity but high specificity for the diagnosis of malignant pleural effusions (MPEs). Pleural fluid extracellular vesicles (PFEVs) are enriched with disease-specific microRNAs (miRNAs) which may improve the diagnostic yield for MPE. Our previous study demonstrated the feasibility of isolating miRNAs from PFEVs and profiling PFEV miRNAs by Nanostring nCounter® Human v3 miRNA expression assay. Here, we interrogated in a small cohort to evaluate the diagnostic potential of PFEV miRNAs to differentiate between benign pleural effusion and MPE. Methods Extracellular vesicles (EVs) from pleural fluids were isolated by two sequential ultracentrifugation steps. PFEVs were extracted and characterised by western blotting analysis, particle analysis by tunable resistive pulse sensing (TRPS) technology, and transmission electron microscopy (TEM). Total RNAs (including miRNAs) were extracted from PFEVs and profiled by the Nanostring nCounter® 827 probe miRNA expression assay. Differential expression analysis of the miRNA expression assays on PFEV samples was performed using the Bioconductor DESeq2 package. Results EVs from pleural fluids were evident by staining of positive EV-associated protein markers, particle size distribution within the expected parameters, and the cup-shaped morphology by TEM. Employing Nanostring nCounter® Human v3 miRNA expression assay, this proof-of-principle study demonstrated PFEV miRNAs were differentially expressed between benign effusions and malignant effusions [malignant pleural mesothelioma (MPM) or lung adenocarcinoma metastatic to pleura (metLUAD)]. The expression of six miRNAs (hsa-miR-1246, hsa-miR-136-5p, hsa-miR-141-3p, hsa-miR-145-5p, hsa-miR-200c-3p, and hsa-miR-9-5p) significantly differed between benign and malignant effusions, or between MPM and metLUAD, at adjusted P<0.05 and log2fold change ≥1.0. Conclusions The miRNAs identified from this study could be interrogated further for their utility as a single biomarker candidate or to be tested simultaneously in a panel to complement pleural effusion diagnostics. PFEV miRNAs represent a novel bioresource with potential to aid in the diagnosis of pleural effusions. Larger prospective studies are needed to confirm their diagnostic utility.
Collapse
Affiliation(s)
- Tian Mun Chee
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Caeli J. Zahra
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Kwun M. Fong
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Ian A. Yang
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Rayleen V. Bowman
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
7
|
Niu Z, Cui M, Fu Y, Zhou L, Wang J, Lei Y, Fan X, Wang Q, Yang J. A bibliometric analysis of exosomes in aging from 2007 to 2023. Front Med (Lausanne) 2025; 11:1488536. [PMID: 39911664 PMCID: PMC11794001 DOI: 10.3389/fmed.2024.1488536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Background Aging is the primary factor contributing to the development of aging-related diseases. As research on exosomes continues to advance, its relationship with aging and aging-related diseases has become a hot topic This article analyzes the research hotspots of exosomes in aging and aging-related diseases, aiming to fill the gap in bibliometric research in this field and help researchers better understand the current status and future trends of both fundamental and clinical research in this field. Methods The articles were retrieved and exported from WoSCC on December 18, 2023. The visual analysis of countries and regions, institutions, authors, references, and keywords in exosomes of aging was conducted using VOSviewer 1.6.18, CiteSpace 6.2.R7, and Bibliometrix. Results The bibliometric analysis included 1628 articles. China and the United States emerged as the top two leading countries in this field. A total of 2,321 research institutions from 78 countries and regions were primarily led by China and the United States. Both Kapogiannis D and Goetzl E were active authors in this field. Thery C, Valadi H, and Raposo G were the important promoters in this field. Thery C proposed the method of differential centrifugation and density gradient centrifugation to extract exosomes. Valadi H discovered cells could send RNA-messages to each other by loading them into exosome-vesicles. The journal with the highest number of articles was International Journal of Molecular Sciences, while PLoS One was the most frequently cited journal. The keyword analysis revealed that future research on exosomes in aging will possibly focus on "inflammation, cellular senescence, angiogenesis, insulin resistance, and Alzheimer's disease." Conclusion We identified the research trends of exosomes in the field of aging through this bibliometric analysis. The present study provides valuable new perspectives on the history and current status of exosomes in the field of aging and aging-related diseases, and also offering guidance for future research directions.
Collapse
Affiliation(s)
- Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Fu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingfeng Zhou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinrong Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Vasu S, Johnson V, M A, Reddy KA, Sukumar UK. Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer. ACS Biomater Sci Eng 2025; 11:95-134. [PMID: 39636879 DOI: 10.1021/acsbiomaterials.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Archana M
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Uday Kumar Sukumar
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| |
Collapse
|
9
|
Han J, Kang X, Su Y, Wang J, Cui X, Bian Y, Wu C. Plasma exosomes from patients with coronary artery disease promote atherosclerosis via impairing vascular endothelial junctions. Sci Rep 2024; 14:29813. [PMID: 39616226 PMCID: PMC11608243 DOI: 10.1038/s41598-024-81352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
The underlying mechanism of vascular endothelial hyperpermeability caused by decrease of endothelial junctions occurring in atherosclerosis remains elusive. Our findings identified that plasma exosomes from patients with stable coronary artery disease (ExoSCAD) contain differentially expressed miRNAs that are clustered with genes related to cell junctions, prompting us to investigate the role of ExoSCAD in regulating vascular endothelial junctions and to elucidate the underlying mechanisms. Here, we show that ExoSCAD markedly impair vascular endothelial junctions via suppressing VE-Cadherin and ZO-1 in endothelial cells in vitro and in vivo, consequently increases endothelial permeability. Critically, exosomal miR-140-3p plays a crucial role in ExoSCAD-induced inhibition of ZO-1, and may be an important causative factor in the development of endothelial hyperpermeability during atherosclerosis. Additionally, exosomal miR-140-3p level coordinates with severity of SCAD. Targeting miR-140-3p in circulating exosomes might open novel options for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jian Han
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Xiaoyan Kang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Jing Wang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
10
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
11
|
Huang G, Zheng W, Zhou Y, Wan M, Hu T. Recent advances to address challenges in extracellular vesicle-based applications for lung cancer. Acta Pharm Sin B 2024; 14:3855-3875. [PMID: 39309489 PMCID: PMC11413688 DOI: 10.1016/j.apsb.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Lung cancer, highly prevalent and the leading cause of cancer-related death globally, persists as a significant challenge due to the lack of definitive tumor markers for early diagnosis and personalized therapeutic interventions. Recently, extracellular vesicles (EVs), functioning as natural carriers for intercellular communication, have received increasing attention due to their ability to traverse biological barriers and deliver diverse biological cargoes, including cytosolic proteins, cell surface proteins, microRNA, lncRNA, circRNA, DNA, and lipids. EVs are increasingly recognized as a valuable resource for non-invasive liquid biopsy, as well as drug delivery platforms, and anticancer vaccines for precision medicine in lung cancer. Herein, given the diagnostic and therapeutic potential of tumor-associated EVs for lung cancer, we discuss this topic from a translational standpoint. We delve into the specific roles that EVs play in lung cancer carcinogenesis and offer a particular perspective on how advanced engineering technologies can overcome the current challenges and expedite and/or enhance the translation of EVs from laboratory research to clinical settings.
Collapse
Affiliation(s)
- Gaigai Huang
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yu Zhou
- Department of Clinical Laboratory, the First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610200, China
- The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Zhang H, Zheng Y, Wang Z, Dong L, Xue L, Tian X, Deng H, Xue Q, Gao S, Gao Y, Li C, He J. KLF12 interacts with TRIM27 to affect cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma by regulating L1CAM expression. Drug Resist Updat 2024; 76:101096. [PMID: 38924996 DOI: 10.1016/j.drup.2024.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Krüppel-like factor 12 (KLF12) has been characterized as a transcriptional repressor, and previous studies have unveiled its roles in angiogenesis, neural tube defect, and natural killer (NK) cell proliferation. However, the contribution of KLF12 to cancer treatment remains undefined. Here, we show that KLF12 is downregulated in various cancer types, and KLF12 downregulation promotes cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma (ESCC). Mechanistically, KLF12 binds to the promoters of L1 Cell Adhesion Molecule (L1CAM) and represses its expression. Depletion of L1CAM abrogates cisplatin resistance and cancer metastasis caused by KLF12 loss. Moreover, the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) binds to the N-terminal region of KLF12 and ubiquitinates KLF12 at K326 via K33-linked polyubiquitination. Notably, TRIM27 depletion enhances the transcriptional activity of KLF12 and consequently inhibits L1CAM expression. Overall, our study elucidated a novel regulatory mechanism involving TRIM27, KLF12 and L1CAM, which plays a substantial role in cisplatin resistance and cancer metastasis in ESCC. Targeting these genes could be a promising approach for ESCC treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China.
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Mu X, Yu C, Zhao Y, Hu X, Wang H, He Y, Wu H. Exosomal miR-1228-5p down-regulates DUSP22 to promotes cell proliferation and migration in small cell lung cancer. Life Sci 2024; 351:122787. [PMID: 38851418 DOI: 10.1016/j.lfs.2024.122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Exosomes play a crucial role in promoting tumor progression, dissemination, and resistance to treatment. These extracellular vesicles hold promise as valuable indicators for cancer detection. Our investigation focuses on exploring the significance and clinical relevance of exosomal miRNAs in small cell lung cancer (SCLC). METHODS Serum exosomes were isolated from both SCLC patients and healthy controls, and subjected to exosomal miRNA sequencing analysis. Mimics and inhibitors were employed to investigate the function of exosomal miR-1128-5p in cell migration and proliferation, both in vitro and in vivo. Western blot and luciferase assay were utilized to identify the interaction between miR-1228-5p and dual specificity phosphatase 22 (DUSP22). RESULTS Exosomal miRNA sequencing analysis revealed enrichment of specific miRNAs in SCLC compared to healthy controls. Circulating miR-1228-5p was upregulated in SCLC patients, associated with advanced stages, suggesting its potential oncogenic role. In vitro, miR-1228-5p expression was significantly higher in SCLC cells than in normal cells. SCLC cell-derived exosomes contained elevated levels of miR-1228-5p, facilitating its entry into co-cultured cells. Notably, migration and proliferation induced by SCLC exosomes were mainly mediated by miR-1228-5p. In vivo experiments confirmed these findings. Western blot analysis demonstrated miR-1228-5p's regulation of DUSP22 expression, and luciferase reporter assay validated DUSP22 as a direct target gene. Overexpressing DUSP22 counteracted miR-1228-5p's promotion of SCLC cell proliferation and migration. CONCLUSIONS Collectively, our results suggest that exosomes play a role in facilitating cancer growth and metastasis by delivering miR-1228-5p. Moreover, circulating exosomal miR-1228-5p may serve as a potential marker for SCLC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xiaoqian Mu
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Chaonan Yu
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yanqiu Zhao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiufeng Hu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - He Wang
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yongqiang He
- Department of Respiratory Medicine, Hami Second People's, Hospital Hami Cancer Hospital, Hami, China
| | - Hongbo Wu
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
14
|
Zhou Y, Zhang Y, Xu J, Wang Y, Yang Y, Wang W, Gu A, Han B, Shurin GV, Zhong R, Shurin MR, Zhong H. Schwann cell-derived exosomes promote lung cancer progression via miRNA-21-5p. Glia 2024; 72:692-707. [PMID: 38192185 DOI: 10.1002/glia.24497] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianlin Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiqin Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
16
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
17
|
Peng L, Li P, Peng Z. miR-141-3p Enhanced Radiosensitivity of CRC Cells. Comb Chem High Throughput Screen 2024; 27:118-126. [PMID: 37143278 DOI: 10.2174/1386207326666230504144758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is recognized as one of the frequently diagnosed malignancies, and numerous microRNAs (miRs) are identified to be active in CRC. OBJECTIVE This work aimed to clarify the effect of miR-141-3p on the radiosensitivity of CRC cells. METHODS Firstly, CRC cell lines were cultured and applied to construct radiation-resistant CRC cells via X-ray treatment. The expression levels of miR-141-3p and long non-coding RNA DLX6 antisense RNA 1 (lncRNA DLX6-AS1) in CRC cells were measured using real-time quantitative polymerase chain reaction. After transfection with miR-141-3p mimics and 24 h treatment with 6- MV X-ray (0, 2, 4, 6 Gy), the survival fraction (SF) and the colony formation ability of CRC cells were determined using the cell counting kit-8 and colony formation methods. The interactions between miR-141-3p and DLX6-AS1 were analyzed using the dual-luciferase assay. The impact of miR-141-3p on DLX6-AS1 stability was detected after adding actinomycin-D. The role of DLX6- AS1 in the radiosensitivity of CRC cells was explored by transfecting oe-DLX6-AS1 into radiation- resistant CRC cells overexpressing miR-141-3p. RESULTS The relative expression levels of miR-141-3p were downregulated in CRC cells and further declined in radiation-resistant cells. Upregulation of miR-141-3p relative expression reduced SF and the colony formation ability while amplifying the radiosensitivity of radiation-resistant CRC cells. miR-141-3p directly bound to DLX6-AS1 to reduce DLX6-AS1 stability, and therefore downregulated DLX6-AS1 expression. DLX6-AS1 overexpression counteracted the role of miR- 141-3p overexpression in amplifying the radiosensitivity of radiation-resistant CRC cells. CONCLUSION miR-141-3p binding to DLX6-AS1 significantly decreased DLX6-AS1 stability and expression, promoting the radiosensitivity of CRC cells.
Collapse
Affiliation(s)
- Lizhong Peng
- Department of Surgery, Hubei Hospital of Chinese Medicine, Wuhan, 430074, China
- The Hubei University of Chinese Medicine Affiliated Hospital, Wuhan, 430061, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Pan Li
- Department of Surgery, Hubei Hospital of Chinese Medicine, Wuhan, 430074, China
- The Hubei University of Chinese Medicine Affiliated Hospital, Wuhan, 430061, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Zexu Peng
- Department of Surgery, Hubei Hospital of Chinese Medicine, Wuhan, 430074, China
- The Hubei University of Chinese Medicine Affiliated Hospital, Wuhan, 430061, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
18
|
Gilyazova I, Gimalova G, Nizamova A, Galimova E, Ishbulatova E, Pavlov V, Khusnutdinova E. Non-Coding RNAs as Key Regulators in Lung Cancer. Int J Mol Sci 2023; 25:560. [PMID: 38203731 PMCID: PMC10778604 DOI: 10.3390/ijms25010560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
For several decades, most lung cancer investigations have focused on the search for mutations in candidate genes; however, in the last decade, due to the fact that most of the human genome is occupied by sequences that do not code for proteins, much attention has been paid to non-coding RNAs (ncRNAs) that perform regulatory functions. In this review, we principally focused on recent studies of the function, regulatory mechanisms, and therapeutic potential of ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA) in different types of lung cancer.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Aigul Nizamova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
| | - Elmira Galimova
- Department of Pathological Physiology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina Ishbulatova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
19
|
Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. The Role of Exosome-Derived microRNA on Lung Cancer Metastasis Progression. Biomolecules 2023; 13:1574. [PMID: 38002256 PMCID: PMC10669807 DOI: 10.3390/biom13111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The high mortality from lung cancer is mainly attributed to the presence of metastases at the time of diagnosis. Despite being the leading cause of lung cancer death, the underlying molecular mechanisms driving metastasis progression are still not fully understood. Recent studies suggest that tumor cell exosomes play a significant role in tumor progression through intercellular communication between tumor cells, the microenvironment, and distant organs. Furthermore, evidence shows that exosomes release biologically active components to distant sites and organs, which direct metastasis by preparing metastatic pre-niche and stimulating tumorigenesis. As a result, identifying the active components of exosome cargo has become a critical area of research in recent years. Among these components are microRNAs, which are associated with tumor progression and metastasis in lung cancer. Although research into exosome-derived microRNA (exosomal miRNAs) is still in its early stages, it holds promise as a potential target for lung cancer therapy. Understanding how exosomal microRNAs promote metastasis will provide evidence for developing new targeted treatments. This review summarizes current research on exosomal miRNAs' role in metastasis progression mechanisms, focusing on lung cancer.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City CP 14080, Mexico; (I.M.-E.); (J.A.S.)
| |
Collapse
|
20
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Duan SL, Fu WJ, Jiang YK, Peng LS, Ousmane D, Zhang ZJ, Wang JP. Emerging role of exosome-derived non-coding RNAs in tumor-associated angiogenesis of tumor microenvironment. Front Mol Biosci 2023; 10:1220193. [PMID: 37602326 PMCID: PMC10436220 DOI: 10.3389/fmolb.2023.1220193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate ecosystem that is actively involved in various stages of cancer occurrence and development. Some characteristics of tumor biological behavior, such as proliferation, migration, invasion, inhibition of apoptosis, immune escape, angiogenesis, and metabolic reprogramming, are affected by TME. Studies have shown that non-coding RNAs, especially long-chain non-coding RNAs and microRNAs in cancer-derived exosomes, facilitate intercellular communication as a mechanism for regulating angiogenesis. They stimulate tumor growth, as well as angiogenesis, metastasis, and reprogramming of the TME. Exploring the relationship between exogenous non-coding RNAs and tumor-associated endothelial cells, as well as their role in angiogenesis, clinicians will gain new insights into treatment as a result.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei-Jie Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying-Ke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lu-Shan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Diabate Ousmane
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jun-Pu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Zheng Y, Zhang H, Xiao C, Deng Z, Fan T, Zheng B, Li C, He J. KLF12 overcomes anti-PD-1 resistance by reducing galectin-1 in cancer cells. J Immunother Cancer 2023; 11:e007286. [PMID: 37586772 PMCID: PMC10432659 DOI: 10.1136/jitc-2023-007286] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUNDS Immune checkpoint blockade has revolutionized cancer treatment and has improved the survival of a subset of patients with cancer. However, numerous patients do not benefit from immunotherapy, and treatment resistance is a major challenge. Krüppel-like factor 12 (KLF12) is a transcriptional inhibitor whose role in tumor immunity is unclear. METHODS We demonstrated a relationship between KLF12 and CD8+ T cells in vivo and in vitro by flow cytometry. The role and underlying mechanism that KLF12 regulates CD8+ T cells were investigated using reverse transcription and quantitative PCR, western blot FACS, chromatin immunoprecipitation-PCR and Dual-Luciferase reporter assays, etc, and employing small interfering RNA (siRNA) and inhibitors. In vivo efficacy studies were conducted with multiple mouse tumor models, employing anti-programmed cell death protein 1 combined with KLF12 or galectin-1 (Gal-1) inhibitor. RESULTS Here, we found that the expression of tumor KLF12 correlates with immunotherapy resistance. KLF12 suppresses CD8+ T cells infiltration and function in vitro and in vivo. Mechanistically, KLF12 inhibits the expression of Gal-1 by binding with its promoter, thereby improving the infiltration and function of CD8+ T cells, which plays a vital role in cancer immunotherapy. CONCLUSIONS This work identifies a novel pathway regulating CD8+ T-cell intratumoral infiltration, and targeting the KLF12/Gal-1 axis may serve as a novel therapeutic target for patients with immunotherapy resistance.
Collapse
Affiliation(s)
- Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Gu Y, Becker MA, Müller L, Reuss K, Umlauf F, Tang T, Menger MD, Laschke MW. MicroRNAs in Tumor Endothelial Cells: Regulation, Function and Therapeutic Applications. Cells 2023; 12:1692. [PMID: 37443725 PMCID: PMC10340284 DOI: 10.3390/cells12131692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Tumor endothelial cells (TECs) are key stromal components of the tumor microenvironment, and are essential for tumor angiogenesis, growth and metastasis. Accumulating evidence has shown that small single-stranded non-coding microRNAs (miRNAs) act as powerful endogenous regulators of TEC function and blood vessel formation. This systematic review provides an up-to-date overview of these endothelial miRNAs. Their expression is mainly regulated by hypoxia, pro-angiogenic factors, gap junctions and extracellular vesicles, as well as long non-coding RNAs and circular RNAs. In preclinical studies, they have been shown to modulate diverse fundamental angiogenesis-related signaling pathways and proteins, including the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway; the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway; the phosphoinositide 3-kinase (PI3K)/AKT pathway; and the transforming growth factor (TGF)-β/TGF-β receptor (TGFBR) pathway, as well as krüppel-like factors (KLFs), suppressor of cytokine signaling (SOCS) and metalloproteinases (MMPs). Accordingly, endothelial miRNAs represent promising targets for future anti-angiogenic cancer therapy. To achieve this, it will be necessary to further unravel the regulatory and functional networks of endothelial miRNAs and to develop safe and efficient TEC-specific miRNA delivery technologies.
Collapse
Affiliation(s)
- Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Saar, Germany; (M.A.B.); (L.M.); (K.R.); (F.U.); (T.T.); (M.D.M.); (M.W.L.)
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Afridi W, Strachan S, Kasetsirikul S, Pannu AS, Soda N, Gough D, Nguyen NT, Shiddiky MJA. Potential Avenues for Exosomal Isolation and Detection Methods to Enhance Small-Cell Lung Cancer Analysis. ACS MEASUREMENT SCIENCE AU 2023; 3:143-161. [PMID: 37360040 PMCID: PMC10288614 DOI: 10.1021/acsmeasuresciau.2c00068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
Around the world, lung cancer has long been the main factor in cancer-related deaths, with small-cell lung cancer (SCLC) being the deadliest form of lung cancer. Cancer cell-derived exosomes and exosomal miRNAs are considered promising biomarkers for diagnosing and prognosis of various diseases, including SCLC. Due to the rapidity of SCLC metastasis, early detection and diagnosis can offer better diagnosis and prognosis and therefore increase the patient's chances of survival. Over the past several years, many methodologies have been developed for analyzing non-SCLC-derived exosomes. However, minimal advances have been made in SCLC-derived exosome analysis methodologies. This Review discusses the epidemiology and prominent biomarkers of SCLC. Followed by a discussion about the effective strategies for isolating and detecting SCLC-derived exosomes and exosomal miRNA, highlighting the critical challenges and limitations of current methodologies. Finally, an overview is provided detailing future perspectives for exosome-based SCLC research.
Collapse
Affiliation(s)
- Waqar
Ahmed Afridi
- School
of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Simon Strachan
- School
of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Surasak Kasetsirikul
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Amandeep Singh Pannu
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Daniel Gough
- Centre
for Cancer Research, Hudson Institute of
Medical Research, Clayton, Vic 3168, Australia
- Department
of Molecular and Translational Science, Monash University, Clayton, Vic 3168, Australia
| | - Nam-Trung Nguyen
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J. A. Shiddiky
- School
of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Nathan Campus, Nathan, QLD 4111, Australia
| |
Collapse
|
25
|
Salimi L, Seyedaghamiri F, Karimipour M, Mobarak H, Mardi N, Taghavi M, Rahbarghazi R. Physiological and pathological consequences of exosomes at the blood-brain-barrier interface. Cell Commun Signal 2023; 21:118. [PMID: 37208741 DOI: 10.1186/s12964-023-01142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Blood-brain barrier (BBB) interface with multicellular structure controls strictly the entry of varied circulating macromolecules from the blood-facing surface into the brain parenchyma. Under several pathological conditions within the central nervous system, the integrity of the BBB interface is disrupted due to the abnormal crosstalk between the cellular constituents and the recruitment of inflammatory cells. Exosomes (Exos) are nano-sized extracellular vesicles with diverse therapeutic outcomes. These particles transfer a plethora of signaling molecules with the potential to modulate target cell behavior in a paracrine manner. Here, in the current review article, the therapeutic properties of Exos and their potential in the alleviation of compromised BBB structure were discussed. Video Abstract.
Collapse
Affiliation(s)
- Leila Salimi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Pan Y, Liu Y, Wei W, Yang X, Wang Z, Xin W. Extracellular Vesicles as Delivery Shippers for Noncoding RNA-Based Modulation of Angiogenesis: Insights from Ischemic Stroke and Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205739. [PMID: 36592424 DOI: 10.1002/smll.202205739] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke and systemic cancer are two of the leading causes of mortality. Hypoxia is a central pathophysiological component in ischemic stroke and cancer, representing a joint medical function. This function includes angiogenesis regulation. Vascular remodeling coupled with axonal outgrowth following cerebral ischemia is critical in improving poststroke neurological functional recovery. Antiangiogenic strategies can inhibit cancer vascularization and play a vital role in impeding cancer growth, invasion, and metastasis. Although there are significant differences in the cause of angiogenesis across both pathophysiological conditions, emerging evidence states that common signaling structures, such as extracellular vesicles (EVs) and noncoding RNAs (ncRNAs), are involved in this context. EVs, heterogeneous membrane vesicles encapsulating proteomic genetic information from parental cells, act as multifunctional regulators of intercellular communication. Among the multifaceted roles in modulating biological responses, exhaustive evidence shows that ncRNAs are selectively sorted into EVs, modulating common specific aspects of cancer development and stroke prognosis, namely, angiogenesis. This review will discuss recent advancements in the EV-facilitated/inhibited progression of specific elements of angiogenesis with a particular concern about ncRNAs within these vesicles. The review is concluded by underlining the clinical opportunities of EV-derived ncRNAs as diagnostic, prognostic, and therapeutic agents.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wei Wei
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
27
|
Zhang K, Zhang C, Wang K, Teng X, Chen M. Identifying diagnostic markers and constructing a prognostic model for small-cell lung cancer based on blood exosome-related genes and machine-learning methods. Front Oncol 2022; 12:1077118. [PMID: 36620585 PMCID: PMC9814973 DOI: 10.3389/fonc.2022.1077118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Small-cell lung cancer (SCLC) usually presents as an extensive disease with a poor prognosis at the time of diagnosis. Exosomes are rich in biological information and have a powerful impact on tumor progression and metastasis. Therefore, this study aimed to screen for diagnostic markers of blood exosomes in SCLC patients and to build a prognostic model. Methods We identified blood exosome differentially expressed (DE) RNAs in the exoRBase cohort and identified feature RNAs by the LASSO, Random Forest, and SVM-REF three algorithms. Then, we identified DE genes (DEGs) between SCLC tissues and normal lung tissues in the GEO cohort and obtained exosome-associated DEGs (EDEGs) by intersection with exosomal DEmRNAs. Finally, we performed univariate Cox, LASSO, and multivariate Cox regression analyses on EDEGs to construct the model. We then compared the patients' overall survival (OS) between the two risk groups and assessed the independent prognostic value of the model using receiver operating characteristic (ROC) curve analysis. Results We identified 952 DEmRNAs, 210 DElncRNAs, and 190 DEcircRNAs in exosomes and identified 13 feature RNAs with good diagnostic value. Then, we obtained 274 EDEGs and constructed a risk model containing 7 genes (TBX21, ZFHX2, HIST2H2BE, LTBP1, SIAE, HIST1H2AL, and TSPAN9). Low-risk patients had a longer OS time than high-risk patients. The risk model can independently predict the prognosis of SCLC patients with the areas under the ROC curve (AUCs) of 0.820 at 1 year, 0.952 at 3 years, and 0.989 at 5 years. Conclusions We identified 13 valuable diagnostic markers in the exosomes of SCLC patients and constructed a new promising prognostic model for SCLC.
Collapse
|
28
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
29
|
Yang Y, Li Y, Yuan H, Liu X, Ren Y, Gao C, Jiao T, Cai Y, Zhao S. Characterization of circRNA–miRNA–mRNA networks regulating oxygen utilization in type II alveolar epithelial cells of Tibetan pigs. Front Mol Biosci 2022; 9:854250. [PMID: 36213124 PMCID: PMC9532862 DOI: 10.3389/fmolb.2022.854250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the signaling pathway regulatory mechanisms in type II alveolar epithelial (ATII) cells, the progenitor cells responsible for proliferating and regenerating type I alveolar epithelial (ATI) and ATII cells, in Tibetan pigs is beneficial for exploring methods of preventing and repairing cellular damage during hypoxia. We simulated a hypoxic environment (2% O2) for culture ATII cells of Tibetan pigs and Landrace pigs, with cells cultured under normoxic conditions (21% O2) as a control group, and performed integrated analysis of circular RNA (circRNA)–microRNA (miRNA)–messenger RNA (mRNA) regulatory axes by whole-transcriptome sequencing. Functional enrichment analysis indicated that the source genes of the differential expressed circRNAs (DEcircRNAs) were primarily involved in cell proliferation, cellular processes, and cell killing. A series of DEcircRNAs were derived from inhibitors of apoptosis proteins and led to a key autonomous effect as modulators of cell repair in Tibetan pigs under hypoxia. The significant higher expression of COL5A1 in TL groups may inhibited apoptosis of ATII cells in Tibetan pigs under lower oxygen concentration, and may lead their better survive in the hypoxia environment. In addition, a competing endogenous RNA (ceRNA) network of functional interactions was constructed that included novel_circ_000898-ssc-miR-199a-5p-CAV1 and novel_circ_000898-ssc-miR-378-BMP2, based on the node genes ssc-miR-199a-5p and ssc-miR-378, which may regulate multiple miRNAs and mRNAs that mediate endoplasmic reticulum (ER) stress-induced apoptosis and inflammation and attenuate hypoxia-induced injury in ATII cells under hypoxic conditions. These results broaden our knowledge of circRNAs, miRNAs, and mRNAs associated with hypoxia and provide new insights into the hypoxic response of ATII cells in Tibetan pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongqing Li
- Xinjiang Academy of Animal Sciences, Ürümqi, Xinjiang, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuanbo Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ren
- Academy of Agriculture and Animal Husbandry Sciences, Institute of Animal Husbandry and Veterinary Medicine, Lhasa, China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Jiao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Shengguo Zhao,
| |
Collapse
|
30
|
Liu K, Du Y, Li H, Lin X. Identification of super-enhancer-associated transcription factors regulating glucose metabolism in poorly differentiated thyroid carcinoma. Genet Mol Biol 2022; 45:e20210370. [PMID: 36121916 PMCID: PMC9495016 DOI: 10.1590/1678-4685-gmb-2021-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to uncover transcription factors that regulate super-enhancers involved in glucose metabolism reprogramming in poorly differentiated thyroid carcinoma (PDTC). TCA cycle and pyruvate metabolism were significantly enriched in PDTC. Differentially expressed genes in PDTC vs. normal control tissues were located in key steps in TCA cycle and pyruvate metabolism. A total of 23 upregulated genes localized in TCA cycle and pyruvate metabolism were identified as super-enhancer-controlled genes. Transcription factor analysis of these 23 super-enhancer-controlled genes related to glucose metabolism was performed, and 20 transcription factors were obtained, of which KLF12, ZNF281 and RELA had a significant prognostic impact. Regulatory network of KLF12, ZNF281 and RELA controlled the expression of these four prognostic target genes (LDHA, ACLY, ME2 and IDH2). In vitro validation showed that silencing of KLF12, ZNF281 and RELA suppressed proliferation, glucose uptake, lactate production and ATP level, but increased ADP/ATP ratio in PDTC cells. In conclusion, KLF12, ZNF281 and RELA were identified as the key transcription factors that regulate super-enhancer-controlled genes related to glucose metabolism in PDTC. Our findings contribute to a deeper understanding of the regulatory mechanisms associated with glucose metabolism in PDTC, and advance the theoretical development of PDTC-targeted therapies.
Collapse
Affiliation(s)
- Kun Liu
- Tianjin Hospital, Endocrinology Department, Tianjin, P. R. China
| | - Yongrui Du
- 80th Group Military Hospital, Chinese Peoples Liberation Army, Endocrinology Department, Weifang, Shandong, P. R. China
| | - Hui Li
- XingTai Medical College, Basic Experiment Center, Xingtai, Hebei, P. R. China
| | - Xuexia Lin
- XingTai Medical College, Basic Experiment Center, Xingtai, Hebei, P. R. China
| |
Collapse
|
31
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
32
|
[Research Progress on the Application of Liquid Biopsy in the Diagnosis
and Treatment of Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:609-614. [PMID: 36002198 PMCID: PMC9411954 DOI: 10.3779/j.issn.1009-3419.2022.101.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small cell lung cancer (SCLC) is a malignant tumor with strong invasiveness and high mortality. It has the characteristics of easy metastasis, fast growth, high degree of malignancy and strong invasiveness. The prognosis of patients is generally poor. The current clinical diagnosis of SCLC is mainly based on tissue biopsy, which is invasive, long cycle time and high cost. In recent years, liquid biopsy has been gradually applied because of its non-invasive, comprehensive and real-time characteristics that traditional tissue biopsy does not have. The main detection objects of liquid biopsy include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs) and exosomes in peripheral blood. The application of liquid biopsy in the clinical treatment of SCLC will help clinicians to improve the detailed diagnosis of SCLC patients, as well as the timely control and response to the treatment response of patients.
.
Collapse
|
33
|
Majood M, Rawat S, Mohanty S. Delineating the role of extracellular vesicles in cancer metastasis: A comprehensive review. Front Immunol 2022; 13:966661. [PMID: 36059497 PMCID: PMC9439583 DOI: 10.3389/fimmu.2022.966661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are subcellular messengers that aid in the formation and spread of cancer by enabling tumor-stroma communication. EVs develop from the very porous structure of late endosomes and hold information on both the intrinsic “status” of the cell and the extracellular signals absorbed by the cells from their surroundings. These EVs contain physiologically useful components, including as nucleic acids, lipids, and proteins, which have been found to activate important signaling pathways in tumor and tumor microenvironment (TME) cells, aggravating tumor growth. We highlight critical cell biology mechanisms that link EVS formation to cargo sorting in cancer cells in this review.Sorting out the signals that control EVs creation, cargo, and delivery will aid our understanding of carcinogenesis. Furthermore, we reviewed how cancer development and spreading behaviors are affected by coordinated communication between malignant and non-malignant cells. Herein, we studied the reciprocal exchanges via EVs in various cancer types. Further research into the pathophysiological functions of various EVs in tumor growth is likely to lead to the discovery of new biomarkers in liquid biopsy and the development of tumor-specific therapies.
Collapse
|
34
|
Liao Y, Wu X, Wu M, Fang Y, Li J, Tang W. Non-coding RNAs in lung cancer: emerging regulators of angiogenesis. J Transl Med 2022; 20:349. [PMID: 35918758 PMCID: PMC9344752 DOI: 10.1186/s12967-022-03553-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the second cancer and the leading cause of tumor-related mortality worldwide. Angiogenesis is a crucial hallmark of cancer development and a promising target in lung cancer. However, the anti-angiogenic drugs currently used in the clinic do not achieve long-term efficacy and are accompanied by severe adverse reactions. Therefore, the development of novel anti-angiogenic therapeutic approaches for lung cancer is urgently needed. Non-coding RNAs (ncRNAs) participate in multiple biological processes in cancers, including tumor angiogenesis. Many studies have demonstrated that ncRNAs play crucial roles in tumor angiogenesis. This review discusses the regulatory functions of different ncRNAs in lung cancer angiogenesis, focusing on the downstream targets and signaling pathways regulated by these ncRNAs. Additionally, given the recent trend towards utilizing ncRNAs as cancer therapeutics, we also discuss the tremendous potential applications of ncRNAs as biomarkers or novel anti-angiogenic tools in lung cancer.
Collapse
Affiliation(s)
- Yajie Liao
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xudong Wu
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410035, People's Republic of China
| | - Mengyu Wu
- School of Medicine, Jianghan University, Wuhan, 430056, People's Republic of China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Jie Li
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, People's Republic of China.
| | - Weiqiang Tang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
35
|
Myc manipulates the miRNA content and biologic functions of small cell lung cancer cell-derived small extracellular vesicles. Mol Biol Rep 2022; 49:7953-7965. [PMID: 35690961 DOI: 10.1007/s11033-022-07632-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MYC genes are amplified/overexpressed in 20% of SCLCs, showing that Myc and Myc-dependent cellular mechanisms are strong candidates as therapeutic targets in SCLC. Small extracellular vesicles support the carcinogenesis process by acting as messengers delivering nucleic acids and proteins-moreover, no reports associate Myc and the functional effect of small extracellular vesicles in small cell lung cancer. METHODS AND RESULTS After the effects of small extracellular vesicles (sEVs) obtained from H82 and H209 cells on HUVEC and MRC-5 cells were observed, the Myc-dependent effect of the sEVs on oncogenic potentials was further evaluated by manipulating Myc expression via lentiviral vectors in H82 and H209 cells. Then, small extracellular vesicles of Myc-manipulated SCLC cells were isolated using sEVs isolation reagents. Finally, HUVEC and MRC5 cells were treated with SCLC-derived small extracellular vesicles. Cellular activity of recipient normal lung cells was investigated by cell growth assay, wound healing assay, and transwell assay. miRNA composition changes in small extracellular vesicles and SCLC cells were investigated using miRNA microarray and QRT-PCR assay. Our results indicated that normal lung cells treated with SCLC-derived small extracellular vesicles had higher proliferation, migration capability than non-treated counterparts. Additionally, after investigating the potential effects of small extracellular vesicles derived from Myc-dysregulated SCLC cell lines, we further evaluated the Myc-dependent miRNA composition in the small extracellular vesicles. The present study revealed that Myc regulates hsa-miR-7, hsa-miR-9, hsa-miR-125b, hsa-miR-181a_2, hsa-miR-455, hsa-miR-642, and hsa-miR-4417 expressions in SCLC cell lines, not only in cellular but also in exosomal content. CONCLUSIONS Small extracellular vesicles and MYC are essential targets for therapeutic strategy in SCLC. Our study revealed that the expression level of MYC can affect the function of sEVs and encapsulate the miRNA composition in SCLC. Besides, small extracellular vesicles derived from SCLC cells can modulate normal lung cells.
Collapse
|
36
|
Tang J, He J, Feng C, Tu C. Exosomal MiRNAs in Osteosarcoma: Biogenesis and Biological Functions. Front Pharmacol 2022; 13:902049. [PMID: 35592419 PMCID: PMC9110813 DOI: 10.3389/fphar.2022.902049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
MiRNAs are a group of non-coding RNA molecules that function in mRNA translational inhibition via base-pairing with complementary sequences in target mRNA. In oncology, miRNAs have raised great attention due to their aberrant expression and pivotal roles in the pathogenesis of multiple malignancies including osteosarcoma. MiRNAs can be transported by exosome, the nano-extracellular vesicle with a diameter of 30–150 nm. Recently, a growing number of studies have demonstrated that exosomal miRNAs play a critical role in tumor initiation and progression, by exerting multiple biological functions including metastasis, angiogenesis, drug resistance and immunosuppression. In this review, we aim to depict the biogenesis of exosomal miRNAs and summarize the potential diagnostic and therapeutic functions of exosomal miRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Liu Y, Shi M, He X, Cao Y, Liu P, Li F, Zou S, Wen C, Zhan Q, Xu Z, Wang J, Sun B, Shen B. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol 2022; 15:52. [PMID: 35526050 PMCID: PMC9077921 DOI: 10.1186/s13045-022-01272-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND LncRNA-PACERR plays critical role in the polarization of tissue-associated macrophages (TAMs). In this study, we found the function and molecular mechanism of PACERR in TAMs to regulate pancreatic ductal adenocarcinoma (PDAC) progression. METHODS We used qPCR to analyse the expression of PACERR in TAMs and M1-tissue-resident macrophages (M1-NTRMs) which were isolated from 46 PDAC tissues. The function of PACERR on macrophages polarization and PDAC proliferation, migration and invasion were confirmed through in vivo and in vitro assays. The molecular mechanism of PACERR was discussed via fluorescence in situ hybridization (FISH), RNA pull-down, ChIP-qPCR, RIP-qPCR and luciferase assays. RESULTS LncRNA-PACERR was high expression in TAMs and associated with poor prognosis in PDAC patients. Our finding validated that LncRNA-PACERR increased the number of M2-polarized cells and facilized cell proliferation, invasion and migration in vitro and in vivo. Mechanistically, LncRNA-PACERR activate KLF12/p-AKT/c-myc pathway by binding to miR-671-3p. And LncRNA-PACERR which bound to IGF2BP2 acts as an m6A-dependent manner to enhance the stability of KLF12 and c-myc in cytoplasm. In addition, the promoter of LncRNA-PACERR was a target of KLF12 and LncRNA-PACERR recruited EP300 to increase the acetylation of histone by interacting with KLF12 in nucleus. CONCLUSIONS This study found that LncRNA-PACERR functions as key regulator of TAMs in PDAC microenvironment and revealed the novel mechanisms in cytoplasm and in nucleus.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Zoology, College of Life Science, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xingfeng He
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiancheng Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baofa Sun
- Department of Zoology, College of Life Science, Nankai University, Tianjin, 300071, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
38
|
Shi L, Sun HJ, Zeng JJ, Liang ZQ, Lin YH, Huang SN, Zeng JH, Yang L, Chen H, Luo J, Wei KL. Evaluation of miR-141-3p over-expression in ovarian cancer. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
39
|
Li Y, Lin M, Wang S, Cao B, Li C, Li G. Novel Angiogenic Regulators and Anti-Angiogenesis Drugs Targeting Angiogenesis Signaling Pathways: Perspectives for Targeting Angiogenesis in Lung Cancer. Front Oncol 2022; 12:842960. [PMID: 35372042 PMCID: PMC8965887 DOI: 10.3389/fonc.2022.842960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer growth is dependent on angiogenesis. In recent years, angiogenesis inhibitors have attracted more and more attention as potential lung cancer treatments. Current anti-angiogenic drugs targeting VEGF or receptor tyrosine kinases mainly inhibit tumor growth by reducing angiogenesis and blocking the energy supply of lung cancer cells. However, these drugs have limited efficiency, raising concerns about limited scope of action and mechanisms of patient resistance to existing drugs. Therefore, current basic research on angiogenic regulators has focused more on screening carcinogenic/anticancer genes, miRNAs, lncRNAs, proteins and other biomolecules capable of regulating the expression of specific targets in angiogenesis signaling pathways. In addition, new uses for existing drugs and new drug delivery systems have received increasing attention. In our article, we analyze the application status and research hotspots of angiogenesis inhibitors in lung cancer treatment as a reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Cao
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Shahverdi M, Hajiasgharzadeh K, Sorkhabi AD, Jafarlou M, Shojaee M, Jalili Tabrizi N, Alizadeh N, Santarpia M, Brunetti O, Safarpour H, Silvestris N, Baradaran B. The regulatory role of autophagy-related miRNAs in lung cancer drug resistance. Biomed Pharmacother 2022; 148:112735. [DOI: 10.1016/j.biopha.2022.112735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
|
41
|
Yang W, Tan S, Yang L, Chen X, Yang R, Oyang L, Lin J, Xia L, Wu N, Han Y, Tang Y, Su M, Luo X, Yang Y, Huang L, Hu Z, Tao Y, Liu L, Jin Y, Wang H, Liao Q, Zhou Y. Exosomal miR-205-5p enhances angiogenesis and nasopharyngeal carcinoma metastasis by targeting desmocollin-2. Mol Ther Oncolytics 2022; 24:612-623. [PMID: 35284624 PMCID: PMC8892032 DOI: 10.1016/j.omto.2022.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate whether and how exosomal miR-205-5p regulated angiogenesis and nasopharyngeal carcinoma (NPC) metastasis. We found that up-regulated serum exosomal miR-205-5p levels were associated with NPC progression and worse overall survival of NPC patients. miR-205-5p over-expression significantly increased tube formation, wound healing, migration and invasion of NPC cells, and lung metastasis of NPC tumors, whereas miR-205-5p inhibition had opposite effects. Exosomal miR-205-5p from NPC cells promoted the migration, tube formation, and microvessel density (MVD) of HUVECs in vitro and in vivo. Furthermore, bioinformatics-, luciferase reporter-, and biotinylated miR-205-5p-based pull-down assays indicated that miR-205-5p directly bound to the 3′ UTR of desmocollin-2 (DSC2). Exosomal miR-205-5p targeted DSC2 to enhance the EGFR/ERK signaling and MMP2/MMP9 expression, promoting angiogenesis and NPC metastasis, which was abrogated by DSC2 over-expression. Finally, the levels of miR-205-5p transcripts were positively correlated with MVD but negatively with DSC2 expression in NPC tissues, and patients with miR-205high/DSC2low NPC had worse overall survival. In conclusion, exosomal miR-205-5p promotes angiogenesis and NPC metastasis by targeting DSC2 to enhance EGFR/ERK signaling and MMP expression. This exosomal/miR-205-5p/EGFR/ERK axis may be a new therapeutic target for intervention of NPC metastasis.
Collapse
Affiliation(s)
- Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Lixia Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xiaohui Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, West Changsheng Road, Hengyang 421001, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, West Changsheng Road, Hengyang 421001, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yi Jin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
42
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Kumar VS, Anjali K. Tumour generated exosomal miRNAs: A major player in tumour angiogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166383. [DOI: 10.1016/j.bbadis.2022.166383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
44
|
Tong W, Wang G, Zhu L, Bai Y, Liu Z, Yang L, Wu H, Cui T, Zhang Y. Pan-Cancer Analysis Identified CD93 as a Valuable Biomarker for Predicting Patient Prognosis and Immunotherapy Response. Front Mol Biosci 2022; 8:793445. [PMID: 35265666 PMCID: PMC8900912 DOI: 10.3389/fmolb.2021.793445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The rapid development of immunotherapy has significantly improved patient outcomes in recent years. CD93, a novel biomarker expressed on vascular endothelial cells, is essential for tumor angiogenesis. Recent studies have shown that CD93 is closely related to immune cell infiltration and immunotherapy. However, its role in pan-cancer has not been reported. Methods: The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), cbioportal, Gene Expression Omnibus (GEO), Tumor Immune Estimation Resource (TIMER2.0), and the Tumor–Immune System Interactions and Drug Bank (TISIDB) databases were used to analyze CD93 in pan-cancers. R software was used for statistical analysis and mapping. Results: There were significant differences in the expression of CD93 between tumor tissues and adjacent normal tissues in pan-cancer. The high expression of CD93 was associated with poor prognosis and high TNM stage in multiple tumor types. However, a high expression of CD93 was a protective factor in kidney renal clear cell carcinoma (KIRC). In addition, CD93 was closely related to immune cell infiltration in tumor tissues. Moreover, CD93 presented a robust correlation with immune modulators and immunotherapeutic markers [e.g., tumor mutation burden (TMB) and microsatellite instability (MSI)]. The results of gene set enrichment analysis (GSEA) showed that CD93 was correlated with tumor angiogenesis. Importantly, patients with a low expression of CD93 were more sensitive to immunotherapy in urothelial cancer. Conclusion: CD93, which is involved in various immune responses, controls immune cell infiltration and impacts on the malignant properties of various cancer types. Therefore, CD93 has potential value to be biomarker for determining the prognosis and immune infiltration in multiple cancers.
Collapse
Affiliation(s)
- Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Guangyu Wang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Liuyang Zhu
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Hao Wu
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Tao Cui
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Yamin Zhang,
| |
Collapse
|
45
|
Cao M, Tian K, Sun W, Xu J, Tang Y, Wu S. MicroRNA-141-3p inhibits the progression of oral squamous cell carcinoma via targeting PBX1 through the JAK2/STAT3 pathway. Exp Ther Med 2022; 23:97. [PMID: 34976139 PMCID: PMC8674974 DOI: 10.3892/etm.2021.11020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), which is the most common epithelial malignant neoplasm in the head and neck, is characterized by local infiltration and metastasis of lymph nodes. The five-year survival rate of OSCC remains low despite the advances in clinical methods. miR-141-3p has been shown to activate or inhibit tumorigenesis. However, the effects of miR-141-3p on invasion and migration of OSCC remain unclear. The present study aimed to evaluate the effects of miR-141-3p on invasion, proliferation, and migration in oral squamous cell carcinoma (OSCC). Reverse transcription quantitative PCR, western blotting and immunohistochemistry were used to detect microRNA(miR)-141-3p and pre-B-cell leukaemia homeobox-1 (PBX1) expression in OSCC tissues and cell lines. The luciferase reporter assay was used to detect targets of miR-141-3p in OSCC. MTT, Transwell and wound healing assays were used to determine the cell proliferation and invasive and migratory abilities, respectively. Expression of constitutive phosphorylated (p)-Janus kinase 2 (JAK2) and p-signal transducer and activator of transcription 3 (STAT3) was detected using western blotting in tissues and cells. miR-141-3p expression was decreased in OSCC tissues and cells, while PBX1 protein expression was increased compared with non-cancerous controls. The result from the dual-luciferase reporter assay revealed that PBX1 was the direct target of miR-141-3p in OSCC tissues. Furthermore, miR-141-3p overexpression and PBX1 knockdown could reduce cell invasion, proliferation and migration, and inhibit the JAK2/STAT3 pathway; however, miR-141-3p downregulation had the opposite effects. In addition, silencing of PBX1 using small interfering RNA could weaken the effects of miR-141-3p inhibitor on JAK2/STAT3 pathway and cell progression in CAL27 cells. In summary, the findings from this study indicated that miR-141-3p upregulation could inhibit OSCC cell invasion, proliferation and migration, by targeting PBX1 via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Mingguo Cao
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Kebin Tian
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Weifeng Sun
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Jun Xu
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Yu Tang
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Shilian Wu
- School of Medicine and Health Sciences, Lishui University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
46
|
Huang M, Lei Y, Zhong Y, Chung C, Wang M, Hu M, Deng L. New Insights Into the Regulatory Roles of Extracellular Vesicles in Tumor Angiogenesis and Their Clinical Implications. Front Cell Dev Biol 2021; 9:791882. [PMID: 34966744 PMCID: PMC8710745 DOI: 10.3389/fcell.2021.791882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is required for tumor growth and development. Extracellular vesicles (EVs) are important signaling entities that mediate communication between diverse types of cells and regulate various cell biological processes, including angiogenesis. Recently, emerging evidence has suggested that tumor-derived EVs play essential roles in tumor progression by regulating angiogenesis. Thousands of molecules are carried by EVs, and the two major types of biomolecules, noncoding RNAs (ncRNAs) and proteins, are transported between cells and regulate physiological and pathological functions in recipient cells. Understanding the regulation of EVs and their cargoes in tumor angiogenesis has become increasingly important. In this review, we summarize the effects of tumor-derived EVs and their cargoes, especially ncRNAs and proteins, on tumor angiogenesis and their mechanisms, and we highlight the clinical implications of EVs in bodily fluids as biomarkers and as diagnostic, prognostic, and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Maohua Huang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chiwing Chung
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Mei Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
47
|
Zhao J, Yu H, Han T, Zhu X. Prognosis Value of microRNA-3677-3p in Lung Adenocarcinoma and Its Regulatory Effect on Tumor Progression. Cancer Manag Res 2021; 13:9261-9270. [PMID: 34955656 PMCID: PMC8694712 DOI: 10.2147/cmar.s330357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Lung adenocarcinomas (LUAD) was the most common subtype of lung cancer, and may result in a poor prognosis. This study was designed to explore the role of miR-3677-3p in LUAD and discuss in what way it functions in LUAD. Materials and Methods We used RT-qPCR method to detect the expression levels of miR-3677-3p in 105 pairs of LUAD tissues and noncancerous tissues, as also as in LUAD cells. We used χ 2 test to analyze the correlation between miR-3677-3p level and the clinical data. The prognosis significance of miR-3677-3p was inferred with Kaplan-Meier and multivariate Cox regression assays. Biological functions of LUAD cells were accessed by cell counting kit-8, transwell migration and invasion assay. The target gene of miR-3677-3p was investigated by luciferase activity assay. Results miR-3677-3p represented an ascendant expression in LUAD tissue specimens and cells. miR-3677-3p expression was associated with the TNM stage and with solitary metastasis. Over-expression of miR-3677-3p can shorten the overall survival period of LUAD patients when compared with low expression. Knockdown of miR-3677-3p suppressed the biology function of NSCLC cells including proliferation, migration, and invasion. KLF12 was a target gene of miR-3677-3p. Conclusion miR-3677-3p represents as a potential prognostic biomarker for LUAD. miR-3677-3p can promote LUAD progression by targeting KLF12.
Collapse
Affiliation(s)
- Jian Zhao
- Third Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Hanbing Yu
- Third Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Tianci Han
- Third Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Xiangyu Zhu
- Department of General Medicine, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
48
|
Xu X, Han Z, Ruan Y, Liu M, Cao G, Li C, Li F. HPV16-LINC00393 Integration Alters Local 3D Genome Architecture in Cervical Cancer Cells. Front Cell Infect Microbiol 2021; 11:785169. [PMID: 34950609 PMCID: PMC8691139 DOI: 10.3389/fcimb.2021.785169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
High-risk human papillomavirus (hrHPV) infection and integration were considered as essential onset factors for the development of cervical cancer. However, the mechanism on how hrHPV integration influences the host genome structure remains not fully understood. In this study, we performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing, chromatin immunoprecipitation and sequencing (ChIP-seq), and RNA-sequencing (RNA-seq) in two cervical cells, 1) NHEK normal human epidermal keratinocyte; and 2) HPV16-integrated SiHa tumorigenic cervical cancer cells. Our results reveal that the HPV-LINC00393 integrated chromosome 13 exhibited significant genomic variation and differential gene expression, which was verified by calibrated CTCF and H3K27ac ChIP-Seq chromatin restructuring. Importantly, HPV16 integration led to differential responses in topologically associated domain (TAD) boundaries, with a decrease in the tumor suppressor KLF12 expression downstream of LINC00393. Overall, this study provides significant insight into the understanding of HPV16 integration induced 3D structural changes and their contributions on tumorigenesis, which supplements the theory basis for the cervical carcinogenic mechanism of HPV16 integration.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yetian Ruan
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxu Cao
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Li
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Sanders K, Veldhuizen A, Kooistra HS, Slob A, Timmermans-Sprang EPM, Riemers FM, Daminet S, Fracassi F, van Nimwegen SA, Meij BP, Galac S. Circulating MicroRNAs as Non-invasive Biomarkers for Canine Cushing's Syndrome. Front Vet Sci 2021; 8:760487. [PMID: 34869733 PMCID: PMC8635510 DOI: 10.3389/fvets.2021.760487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 01/20/2023] Open
Abstract
Canine Cushing's syndrome (hypercortisolism) can be caused by a pituitary tumor (pituitary-dependent hypercortisolism; PDH) or a cortisol-secreting adrenocortical tumor (csACT). For both cases, non-invasive biomarkers that could pre-operatively predict the risk of recurrence after surgery would greatly impact clinical decision making. The aim of this study was to determine whether circulating microRNAs (miRNAs) can be used as diagnostic (presence of PDH or csACT) and/or prognostic (disease recurrence, histological grade) non-invasive biomarkers for canine Cushing's syndrome. After a pilot study with 40 miRNAs in blood samples of healthy dogs (n = 3), dogs with PDH (n = 3) and dogs with a csACT (n = 4), we selected a total of 20 miRNAs for the definitive study. In the definitive study, these 20 miRNAs were analyzed in blood samples of healthy dogs (n = 6), dogs with PDH (n = 19, pre- and post-operative samples) and dogs with a csACT (n = 26, pre-operative samples). In dogs with PDH, six miRNAs (miR-122-5p, miR-126-5p, miR-141-3p, miR-222-3p, miR-375-3p and miR-483-3p) were differentially expressed compared to healthy dogs. Of one miRNA, miR-122-5p, the expression levels did not overlap between healthy dogs and dogs with PDH (p = 2.9x10-4), significantly decreased after hypophysectomy (p = 0.013), and were significantly higher (p = 0.017) in dogs with recurrence (n = 3) than in dogs without recurrence for at least one year after hypophysectomy (n = 7). In dogs with csACTs, two miRNAs (miR-483-3p and miR-223-3p) were differentially expressed compared to healthy dogs. Additionally, miR-141-3p was expressed significantly lower (p = 0.009) in dogs with csACTs that had a histopathological Utrecht score of ≥ 11 compared to those with a score of <11. These results indicate that circulating miRNAs have the potential to be non-invasive biomarkers in dogs with Cushing's syndrome that may contribute to clinical decision making.
Collapse
Affiliation(s)
- Karin Sanders
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anouk Veldhuizen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Adri Slob
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Federico Fracassi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Sebastiaan A. van Nimwegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sara Galac
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
50
|
Wang Z, Mai S, Lv P, Xu L, Wang Y. Etoposide plus cisplatin chemotherapy improves the efficacy and safety of small cell lung cancer. Am J Transl Res 2021; 13:12825-12833. [PMID: 34956497 PMCID: PMC8661205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND According to the statistical data of GLOBOCAN in 2020, the incidence of lung cancer ranks third worldwide. Approximately 60%-70% of newly diagnosed patients with small cell lung cancer (SCLC) has already progressed to extensive-stage SCLC (ES-SCLC). SCLC is sensitive to chemotherapy and radiotherapy, but prone to secondary drug resistance. At present, chemotherapy is the mainstay of treatment for ES-SCLC. This study is designed to evaluate the efficacy and safety of etoposide plus platinum in the treatment of SCLC. METHODS A retrospective analysis was performed on 112 patients with SCLC admitted to the China-Japan Union Hospital of Jilin University from 2016 to 2018. According to treatment methods, the patients were divided into an EL group (etoposide plus lobaplatin, n = 53) and an EP group (etoposide plus cisplatin, n = 59). The short-term efficacy (objective response rates and disease control rates) and 2-year survival rates were observed. The two groups were compared in terms of serum levels of pro-gastrin-releasing peptide (ProGRP), neuron-specific enolase (NSE), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) before and after treatment. The incidence of adverse reactions was also compared. The quality of life (QOL) of patients was compared by measuring the Karnofsky Performance Status (KPS) scale. The risk factors affecting treatment efficacy were analyzed by multivariate Logistics analysis. RESULTS Patients in the EL group had similar objective response rate (ORR) and disease control rate (DCR) to those in the EP group. The 2-year survival prognosis (median survival time) between the two groups was not significantly different. After treatment, serum levels of ProGRP, NSE, VEGF and MMP-9 in both groups decreased remarkably, with no remarkable differences between the two groups. The EL group had a remarkably lower incidence of adverse reactions than the EP group. In the EP group, the KPS scores after 6 cycles of treatment were remarkably higher than those after 2 cycles of treatment. ProGRP, NSE, VEGF and MMP-9 were independent risk factors affecting the efficacy of patients with SCLC. CONCLUSION With equivalent efficacy, EP regimen is safer than EL regimen in the treatment of SCLC, which suggests that etoposide plus platinum has better clinical application value for SCLC.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Shixiong Mai
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Peiyun Lv
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Li Xu
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Yue Wang
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| |
Collapse
|