1
|
Wang XL, Zhang L, Shang Q. Circular RNA hsa_circRNA_101996 modulates gastric cancer cell proliferation and apoptosis through the miR-577/HMGN5 axis. World J Gastrointest Oncol 2025; 17:105933. [DOI: 10.4251/wjgo.v17.i5.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are critical regulators in tumorigenesis, functioning as microRNA sponges or protein decoys. Although numerous circRNAs have been implicated in gastric cancer progression, the role of hsa_circRNA_101996 remains unclear. This study hypothesizes that hsa_circRNA_101996 promotes gastric cancer cell proliferation and apoptosis via the microRNA-577 (miR-577)/high mobility group nucleosome binding domain 5 (HMGN5) axis.
AIM To investigate the role of hsa_circRNA_101996 in gastric cancer proliferation and apoptosis through the miR-577/HMGN5 axis.
METHODS Forty-one paired gastric cancer tissues and adjacent non-cancerous tissues were analyzed. Differential circRNA expression was identified using GSE83521 and GSE89143 datasets. miR-577 and HMGN5 were predicted via CircInteractome and TargetScan. Functional experiments (MTT, colony formation, Western blot) and dual-luciferase reporter assays were performed in gastric cancer cell lines (OCUM-1, HSC-39). In vivo tumorigenesis was validated in nude mice. Statistical analysis included Student’s t-test and one-way ANOVA (P < 0.05).
RESULTS Hsa_circRNA_101996 was significantly upregulated in gastric cancer tissues and cell lines compared to adjacent non-cancerous tissues (P < 0.05). Dual-luciferase reporter assays validated the interactions among hsa_circRNA_101996, miR-577, and HMGN5. In vitro, gastric cancer cells overexpressing hsa_circRNA_101996 showed significantly increased proliferation and decreased apoptosis compared to controls (P < 0.05). Cells transfected with miR-577 mimics exhibited reduced proliferation and increased apoptosis (P < 0.05). Co-transfection with hsa_circRNA_101996 or HMGN5 reversed the effects of miR-577 mimics. In vivo, hsa_circRNA_101996-overexpressing tumors showed increased volume and HMGN5 expression (P < 0.05).
CONCLUSION Hsa_circRNA_101996 promotes gastric cancer progression by sponging miR-577 to upregulate HMGN5, suggesting a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xiao-Lei Wang
- Department of General Surgery, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Lin Zhang
- Department of Oncology, The First People's Hospital of Changshu, Suzhou 215501, Jiangsu Province, China
| | - Qing Shang
- Department of General Surgery, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| |
Collapse
|
2
|
Biswas S, Kanodia R, Seervi S, Kaur R, Shukla S, Singh S, Banerjee J, Banerjee S. Portrayal of the complex molecular landscape of multidrug resistance in gastric cancer: Unveiling the potential targets. Exp Cell Res 2025; 449:114580. [PMID: 40306607 DOI: 10.1016/j.yexcr.2025.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Gastric cancer (GC) is an aggressive malignancy among all Gastrointestinal cancer (GIC) types. Worldwide, among all cancer types, gastric cancer incidence and related mortality remain in fifth position. Multidrug resistance (MDR) in GC presents a major challenge to chemotherapy, and it significantly affects patient survival. A better understanding of the dynamic interaction of cellular factors contributing to MDR phenotype, e.g., the presence and expression of variants of MDR-related genes, including various drug-detoxifying and drug-efflux transporters, and expression of regulatory ncRNAs affecting the expression of MDR-related genes, is required to comprehend the molecular mechanisms for MDR development in GCs. This review article provides a holistic discussion of the cellular factors involved in the MDR development in GC cells, i.e., their roles and cross-talk between specific molecules that give rise to drug-sensitive and drug-resistant phenotypes. Moreover, the pharmacological perspective of drug resistance and the underlying biological processes that allow the escape of GC cells from the cytotoxic effects of drugs have also been discussed. Additionally, this review article provides an in-depth discussion on most potential candidates that can serve as MDR biomarkers in GIC cancer and the growing research interest in non-coding RNAs (ncRNAs) in GC. Notably, the miRNAs, circRNAs, and lncRNAs are not only emerging as crucial prognostic biomarkers of MDR in gastric cancers but also as potential targets for personalized medicine to combat the MDR challenge in GC patients.
Collapse
Affiliation(s)
- Siddhant Biswas
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Riya Kanodia
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Suman Seervi
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Rajinder Kaur
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sakshi Shukla
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Juni Banerjee
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India.
| | - Shuvomoy Banerjee
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
3
|
Hua J, Wang Z, Cheng X, Dai J, Zhao P. Circular RNAs modulate cancer drug resistance: advances and challenges. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:17. [PMID: 40201313 PMCID: PMC11977347 DOI: 10.20517/cdr.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Acquired drug resistance is a main factor contributing to cancer therapy failure and high cancer mortality, highlighting the necessity to develop novel intervention targets. Circular RNAs (circRNAs), an abundant class of RNA molecules with a closed loop structure, possess characteristics including high stability, which provide unique advantages in clinical application. Growing evidence indicates that aberrantly expressed circRNAs are associated with resistance against various cancer treatments, including targeted therapy, chemotherapy, radiotherapy, and immunotherapy. Therefore, targeting these aberrant circRNAs may offer a strategy to improve the efficiency of cancer therapy. Herein, we present a summary of the most recently studied circRNAs and their regulatory roles on cancer drug resistance. With the advances in artificial intelligence (AI)-based bioinformatics algorithms, circRNAs could emerge as promising biomarkers and intervention targets in cancer therapy.
Collapse
Affiliation(s)
- Jinghan Hua
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Xiaoxun Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
- The Second Clinical School of Anhui Medical University, Hefei 230000, Anhui, China
| | - Jiaojiao Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Ping Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
4
|
Jasim SA, Pallathadka H, Sivaprasad GV, Kumar A, Mustafa YF, Mohammed JS, Eldesoqui M, Pramanik A, Abdukarimovna RK, Zwamel AH. New approaches of chimeric antigen receptor (CAR)-immune cell-based therapy in gastric cancer; highlight CAR-T and CAR-NK. Funct Integr Genomics 2025; 25:72. [PMID: 40133688 DOI: 10.1007/s10142-025-01584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
One characteristic that makes gastric cancer (GC) against other cancers is the intricate immune system's reaction, particularly to tenacious inflammation. Consequently, the immunological function is essential to the growth of this malignancy. Tumor immunotherapy has yielded several encouraging outcomes, but despite this, different patients continue to not respond to treatment, and a far larger number become resistant to it. Also, activated CAR-T cells express a majority of immunological checkpoint factors, containing PD1, CTLA4, and LAG3, which counteracts the anti-tumor actions of CAR-T cells. Moreover, cytokine release syndrome is one of the possible adverse responses of CAR-T cell therapy. Therefore, producing universal allogeneic T lymphocytes with potent anti-tumor activity is essential. This study demonstrates current research on this cutting-edge technology, including the composition and mode of action of CAR-NK and CAR-T cells in GC. Also, in this study, we examined recent studies about various specific GC biomarkers that target CAR-T cells and CAR-NK cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ashwani Kumar
- Department of Life Scienzces, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, 13713, DiriyahRiyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Rakhimova Khusnidakhon Abdukarimovna
- Department of Folk Medicine and Pharmacology, Fergana Public Health Medical Institute, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Hossam Abdelmonem B, Kamal LT, Wardy LW, Ragheb M, Hanna MM, Elsharkawy M, Abdelnaser A. Non-coding RNAs: emerging biomarkers and therapeutic targets in cancer and inflammatory diseases. Front Oncol 2025; 15:1534862. [PMID: 40129920 PMCID: PMC11931079 DOI: 10.3389/fonc.2025.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant role in gene regulation, especially in cancer and inflammatory diseases. ncRNAs, such as microRNA, long non-coding RNAs, and circular RNAs, alter the transcriptional, post-transcriptional, and epigenetic gene expression levels. These molecules act as biomarkers and possible therapeutic targets because aberrant ncRNA expression has been directly connected to tumor progression, metastasis, and response to therapy in cancer research. ncRNAs' interactions with multiple cellular pathways, including MAPK, Wnt, and PI3K/AKT/mTOR, impact cellular processes like proliferation, apoptosis, and immune responses. The potential of RNA-based therapeutics, such as anti-microRNA and microRNA mimics, to restore normal gene expression is being actively studied. Additionally, the tissue-specific expression patterns of ncRNAs offer unique opportunities for targeted therapy. Specificity, stability, and immune responses are obstacles to the therapeutic use of ncRNAs; however, novel strategies, such as modified oligonucleotides and targeted delivery systems, are being developed. ncRNA profiling may result in more individualized and successful treatments as precision medicine advances, improving patient outcomes and creating early diagnosis and monitoring opportunities. The current review aims to investigate the roles of ncRNAs as potential biomarkers and therapeutic targets in cancer and inflammatory diseases, focusing on their mechanisms in gene regulation and their implications for non-invasive diagnostics and targeted therapies. A comprehensive literature review was conducted using PubMed and Google Scholar, focusing on research published between 2014 and 2025. Studies were selected based on rigorous inclusion criteria, including peer-reviewed status and relevance to ncRNA roles in cancer and inflammatory diseases. Non-English, non-peer-reviewed, and inconclusive studies were excluded. This approach ensures that the findings presented are based on high-quality and relevant sources.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Lilian Waheed Wardy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Research and Development Department, Eva Pharma for Pharmaceuticals Industries, Cairo, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- School of Medicine, New Giza University (NGU), Giza, Egypt
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Elsharkawy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
6
|
Liu W, Niu J, Huo Y, Zhang L, Han L, Zhang N, Yang M. Role of circular RNAs in cancer therapy resistance. Mol Cancer 2025; 24:55. [PMID: 39994791 PMCID: PMC11854110 DOI: 10.1186/s12943-025-02254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decade, circular RNAs (circRNAs) have gained recognition as a novel class of genetic molecules, many of which are implicated in cancer pathogenesis via different mechanisms, including drug resistance, immune escape, and radio-resistance. ExosomalcircRNAs, in particular, facilitatecommunication between tumour cells and micro-environmental cells, including immune cells, fibroblasts, and other components. Notably, micro-environmental cells can reportedly influence tumour progression and treatment resistance by releasing exosomalcircRNAs. circRNAs often exhibit tissue- and cancer-specific expression patterns, and growing evidence highlights their potential clinical relevance and utility. These molecules show strong promise as potential biomarkers and therapeutic targets for cancer diagnosis and treatment. Therefore, this review aimed to briefly discuss the latest findings on the roles and resistance mechanisms of key circRNAs in the treatment of various malignancies, including lung, breast, liver, colorectal, and gastric cancers, as well as haematological malignancies and neuroblastoma.This review will contribute to the identification of new circRNA biomarkers for the early diagnosis as well as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong Province, China.
| |
Collapse
|
7
|
Li J, Wang X. Functional roles of conserved lncRNAs and circRNAs in eukaryotes. Noncoding RNA Res 2024; 9:1271-1279. [PMID: 39036601 PMCID: PMC11260338 DOI: 10.1016/j.ncrna.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as critical regulators in essentially all biological processes across eukaryotes. They exert their functions through chromatin remodeling, transcriptional regulation, interacting with RNA-binding proteins (RBPs), serving as microRNA sponges, etc. Although non-coding RNAs are typically more species-specific than coding RNAs, a number of well-characterized lncRNA (such as XIST and NEAT1) and circRNA (such as CDR1as and ciRS-7) are evolutionarily conserved. The studies on conserved lncRNA and circRNAs across multiple species could facilitate a comprehensive understanding of their roles and mechanisms, thereby overcoming the limitations of single-species studies. In this review, we provide an overview of conserved lncRNAs and circRNAs, and summarize their conserved roles and mechanisms.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| |
Collapse
|
8
|
Khaleel AQ, Alshahrani MY, Rizaev JA, Malathi H, Devi S, Pramanik A, Mustafa YF, Hjazi A, Muazzamxon I, Husseen B. siRNA-based strategies to combat drug resistance in gastric cancer. Med Oncol 2024; 41:293. [PMID: 39428440 DOI: 10.1007/s12032-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences Jain (Deemed to be University), Bangalore, Karnataka, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ismoilova Muazzamxon
- Department of Propaedeutics of Internal Diseases, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
9
|
Lu L, Gao Z, Jin L, Geng H, Liang Z. Novel role of circRNAs in the drug resistance of gastric cancer: regulatory mechanisms and future for cancer therapy. Front Pharmacol 2024; 15:1435264. [PMID: 39314750 PMCID: PMC11416928 DOI: 10.3389/fphar.2024.1435264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer, including gastric cancer, has become a serious disease that jeopardizes public life. Currently, the main treatment methods are surgery, radiation therapy, and chemotherapy. One of the primary causes of death for patients with gastric cancer is drug resistance. Several mechanisms of anticancer drugs resistance have been reported, including changes in drugs transport and metabolism, mutations in drug targets, changes in DNA repair systems, inhibition of cell apoptosis and autophagy, gastric cancer stem cells, invasion and migration. It is becoming more widely known that non-coding RNAs, like circRNAs, play a critical role in the resistance of drugs used to treat gastric cancer. CircRNAs have a unique structure and function that is related to gastric cancer resistance, cell proliferation, apoptosis, autophagy, DNA repair systems, migration, and invasion. A clear understanding of the molecular mechanism of circRNAs mediated the resistance of gastric cancer drugs will open a new window for the treatment and management of gastric cancer. Therefore, in this review, we will summarize the current mechanism of drug resistance, and finally discuss the molecular mechanism of circRNAs in regulating the development of drug resistance in gastric cancer.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Longtao Jin
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang S, Zhu X, Hao Y, Su TT, Shi W. ALKBH5-mediated m6A modification of circFOXP1 promotes gastric cancer progression by regulating SOX4 expression and sponging miR-338-3p. Commun Biol 2024; 7:565. [PMID: 38745044 PMCID: PMC11094028 DOI: 10.1038/s42003-024-06274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.
Collapse
Affiliation(s)
- Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
| | - Xiang Zhu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
| | - Yuan Hao
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
| | - Ting Ting Su
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
| |
Collapse
|
12
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Ju L, Luo Y, Cui X, Zhang H, Chen L, Yao M. CircGPC3 promotes hepatocellular carcinoma progression and metastasis by sponging miR-578 and regulating RAB7A/PSME3 expression. Sci Rep 2024; 14:7632. [PMID: 38561366 PMCID: PMC10984923 DOI: 10.1038/s41598-024-58004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CircRNAs are a class of highly stable noncoding RNAs that play an important role in the progression of many diseases, especially cancer. In this study, high-throughput sequencing was used to screen for abnormally expressed circRNAs, and we found that circGPC3 was overexpressed in HCC tissues. However, the underlying mechanism of circGPC3 in the development and metastasis of hepatocellular carcinoma (HCC) remains unknown. In our study, we found that circGPC3 was significantly upregulated in HCC tissues and cells and that its overexpression was positively correlated with overall survival, TNM stage and lymph node metastasis. In vivo and in vitro experiments showed that circGPC3 knockdown repressed HCC cell migration, invasion and proliferation and promoted apoptosis. Mechanistically, circGPC3 promoted HCC proliferation and metastasis through the miR-578/RAB7A/PSME3 axis. Our results demonstrate that circGPC3 contributes to the progression of HCC and provides an intervention target for HCC.
Collapse
Affiliation(s)
- Linling Ju
- Medical School of Nantong University, Nantong University, Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital,, 60 Middle Qingnian Road, Nantong, 226000, Jiangsu, China
| | - Yunfeng Luo
- Medical School of Nantong University, Nantong University, Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital,, 60 Middle Qingnian Road, Nantong, 226000, Jiangsu, China
| | - Xiaohui Cui
- Medical School of Nantong University, Nantong University, Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital,, 60 Middle Qingnian Road, Nantong, 226000, Jiangsu, China
| | - Hao Zhang
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, 41 Jianshe Road, Nantong, 226009, Jiangsu, China
| | - Lin Chen
- Medical School of Nantong University, Nantong University, Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital,, 60 Middle Qingnian Road, Nantong, 226000, Jiangsu, China.
| | - Min Yao
- Medical School of Nantong University, Nantong University, Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital,, 60 Middle Qingnian Road, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
14
|
Kamali MJ, Salehi M, Mostafavi M, Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F, Daraei A. Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev Med Virol 2024; 34:e2530. [PMID: 38517354 DOI: 10.1002/rmv.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
A significant portion of human cancers are caused by oncoviruses (12%-25%). Oncoviruses employ various strategies to promote their replication and induce tumourigenesis in host cells, one of which involves modifying the gene expression patterns of the host cells, leading to the rewiring of genes and resulting in significant changes in cellular processes and signalling pathways. In recent studies, a specific mode of gene regulation known as circular RNA (circRNA)-mediated competing endogenous RNA (ceRNA) networks has emerged as a key player in this context. CircRNAs, a class of non-coding RNA molecules, can interact with other RNA molecules, such as mRNAs and microRNAs (miRNAs), through a process known as ceRNA crosstalk. This interaction occurs when circRNAs, acting as sponges, sequester miRNAs, thereby preventing them from binding to their target mRNAs and modulating their expression. By rewiring the host cell genome, oncoviruses have the ability to manipulate the expression and activity of circRNAs, thereby influencing the ceRNA networks that can profoundly impact cellular processes such as cell proliferation, differentiation, apoptosis, and immune responses. This review focuses on a comprehensive evaluation of the latest findings on the involvement of virus-induced reprogramming of host circRNA-mediated ceRNA networks in the development and pathophysiology of human viral cancers, including cervical cancer, gastric cancer, nasopharyngeal carcinoma, Kaposi's sarcoma, hepatocellular carcinoma, and diffuse large B cell lymphoma. Understanding these mechanisms can improve our knowledge of how oncoviruses contribute to human tumourigenesis and identify potential targets for developing optimised therapies and diagnostic tools for viral cancers.
Collapse
Affiliation(s)
- Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrnaz Mostafavi
- Department of Physics, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mitra Akbari
- Eye Department, Eye Research Center, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Omid Barzegari
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Ghadimi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Li J, Wang X, Shi L, Liu B, Sheng Z, Chang S, Cai X, Shan G. A Mammalian Conserved Circular RNA CircLARP1B Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305902. [PMID: 37953462 PMCID: PMC10787103 DOI: 10.1002/advs.202305902] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiaolin Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Liang Shi
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Boqiang Liu
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Zhiyong Sheng
- School of Life ScienceBengbu Medical CollegeBengbu233030China
| | - Shuhui Chang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiujun Cai
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Ge Shan
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
16
|
Ju C, Zhou M, Du D, Wang C, Yao J, Li H, Luo Y, He F, He J. EIF4A3-mediated circ_0042881 activates the RAS pathway via miR-217/SOS1 axis to facilitate breast cancer progression. Cell Death Dis 2023; 14:559. [PMID: 37626035 PMCID: PMC10457341 DOI: 10.1038/s41419-023-06085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Breast cancer (BC) is one of the most frequent cancer-related deaths in women worldwide. Studies have shown the potential impact of circRNAs in multiple human tumorigeneses. Research on the vital signaling pathways and therapeutic targets of circRNAs is indispensable. Here, we aimed to investigate the clinical implications and underlying mechanisms of circ_0042881 in BC. RT-qPCR validated circ_0042881 was notably elevated in BC tissues and plasma, and closely associated with BC clinicopathological features. Functionally, circ_0042881 significantly accelerated the proliferation, migration, and invasion of BC cells in vitro and tumor growth and metastasis in vivo. Mechanistically, circ_0042881 promoted BC progression by sponging miR-217 to relieve its inhibition effect in son of sevenless 1 (SOS1), which further activated RAS protein and initiated downstream signaling cascades, including MEK/ERK pathway and PI3K/AKT pathway. We also demonstrated that treatment of BAY-293, an inhibitor of SOS1 and RAS interaction, attenuated BC progression induced by circ_0042881 overexpression. Furthermore, Eukaryotic initiation factor 4A-III (EIF4A3) could facilitate circ_0042881 circularization. Altogether, we proposed a novel signaling network in which circ_0042881, induced by EIF4A3, influences the process of BC tumorigenesis and metastasis by miR-217/SOS1 axis.
Collapse
Affiliation(s)
- Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jieqiong Yao
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Yang Luo
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Yi Q, Yue J, Liu Y, Shi H, Sun W, Feng J, Sun W. Recent advances of exosomal circRNAs in cancer and their potential clinical applications. J Transl Med 2023; 21:516. [PMID: 37525158 PMCID: PMC10388565 DOI: 10.1186/s12967-023-04348-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed, uninterrupted loop. The expression of circRNA differs among cell types and tissues, and various circRNAs are aberrantly expressed in a variety of diseases, including cancer. Aberrantly expressed circRNAs contribute to disease progression by acting as microRNA sponges, functional protein sponges, or novel templates for protein translation. Recent studies have shown that circRNAs are enriched in exosomes. Exosomes are spherical bilayer vesicles released by cells into extracellular spaces that mediate intercellular communication by delivering cargoes. These cargoes include metabolites, proteins, lipids, and RNA molecules. Exosome-mediated cell-cell or cell-microenvironment communications influence the progression of carcinogenesis by regulating cell proliferation, angiogenesis, metastasis as well as immune escape. In this review, we summarize the current knowledge about exosomal circRNAs in cancers and discuss their specific functions in tumorigenesis. Additionally, we discuss the potential value of exosomal circRNAs as diagnostic biomarkers and the potential applications of exosomal circRNA-based cancer therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Jiaji Yue
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Yang Liu
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Houyin Shi
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
19
|
Gao M, Shang X. Identification of associations between lncRNA and drug resistance based on deep learning and attention mechanism. Front Microbiol 2023; 14:1147778. [PMID: 37180267 PMCID: PMC10169643 DOI: 10.3389/fmicb.2023.1147778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Abnormal lncRNA expression can lead to the resistance of tumor cells to anticancer drugs, which is a crucial factor leading to high cancer mortality. Studying the relationship between lncRNA and drug resistance becomes necessary. Recently, deep learning has achieved promising results in predicting biomolecular associations. However, to our knowledge, deep learning-based lncRNA-drug resistance associations prediction has yet to be studied. Methods Here, we proposed a new computational model, DeepLDA, which used deep neural networks and graph attention mechanisms to learn lncRNA and drug embeddings for predicting potential relationships between lncRNAs and drug resistance. DeepLDA first constructed similarity networks for lncRNAs and drugs using known association information. Subsequently, deep graph neural networks were utilized to automatically extract features from multiple attributes of lncRNAs and drugs. These features were fed into graph attention networks to learn lncRNA and drug embeddings. Finally, the embeddings were used to predict potential associations between lncRNAs and drug resistance. Results Experimental results on the given datasets show that DeepLDA outperforms other machine learning-related prediction methods, and the deep neural network and attention mechanism can improve model performance. Dicsussion In summary, this study proposes a powerful deep-learning model that can effectively predict lncRNA-drug resistance associations and facilitate the development of lncRNA-targeted drugs. DeepLDA is available at https://github.com/meihonggao/DeepLDA.
Collapse
Affiliation(s)
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
20
|
Guo X, Gao C, Yang DH, Li S. Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist Updat 2023; 67:100937. [PMID: 36753923 DOI: 10.1016/j.drup.2023.100937] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Chemotherapy is one of the primary treatments for malignant tumors. However, the acquired drug resistance hinders clinical efficacy and leads to treatment failure in most patients. Exosomes are cell-derived vesicles with a diameter of 30-150 nm carrying and delivering substances such as DNAs, RNAs, lipids, and proteins for cellular communication in tumor development. Circular RNAs (circRNAs) present covalently closed-loop RNA structures, which regulate tumor cell proliferation, apoptosis, and metastasis by controlling different genes and signaling pathways. CircRNAs are abundant and stably expressed in exosomes. Recent studies have shown that they play critical roles in chemotherapy resistance in various cancers. In this review, we summarized the origin of exosomes and discussed the regulation mechanism of exosomal circRNAs in cancer drug resistance.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Congying Gao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang Liaoning Province 110042, China.
| |
Collapse
|
21
|
Wang H, Liu S, Sha X, Gao X, Liu G, Jiang X. Unveiling the prominent roles of circular RNAs ubiquitin binding associated protein 2 in cancers. Pathol Res Pract 2023; 241:154282. [PMID: 36580797 DOI: 10.1016/j.prp.2022.154282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs), a novel type of covalently closed non-coding RNAs, are widely expressed in eukaryotes and viruses. Accumulating evidence has shown that circRNAs play key roles in the pathophysiological changes process of human diseases and can affect cancer development and progression through regulating target genes expression, linear RNA transcription and protein generation. Recent studies had found that circRNA-UBAP2 (ubiquitin binding associated protein 2) was aberrantly expressed in various human tumors and could affect tumor cells proliferation, migration, invasion, cell cycle, anti-apoptosis, radioresistance, chemoresistance and other malignant biological behavioral progress. Mechanistic studies further revealed that circUBAP2 could affect the occurrence and development of human tumors through multiple different molecular regulatory pathways in vivo and in vitro. In addition, the abnormal expression of circUBAP2 was significantly correlated with the clinicopathological characteristics of malignant tumors and had potential value as biomarkers for the diagnosis and prognosis evaluation of cancer patients, which deserved further study. This review had summarized and discussed the oncogenic roles and clinical performances of circUBAP2 in various human malignancies with a focus on biological functions and molecular mechanisms, which could help to elevate the understanding to the roles of circRNAs and continue subsequent studies on circUBAP2.
Collapse
Affiliation(s)
- Haicun Wang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Sidi Liu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xiangjun Sha
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xin Gao
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Guanglin Liu
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 XueFu-ro, Harbin 150086, Heilongjiang Province, China.
| |
Collapse
|
22
|
circ-ZEB1 regulates epithelial-mesenchymal transition and chemotherapy resistance of colorectal cancer through acting on miR-200c-5p. Transl Oncol 2022; 28:101604. [PMID: 36542990 PMCID: PMC9792398 DOI: 10.1016/j.tranon.2022.101604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been demonstrated to be important regulators in human malignant tumors, including colorectal cancer (CRC). While the role circ-ZEB1 played in CRC remains unclear. In this study, we aim to explore the biological function and the underlying mechanism of circ-ZEB1 in CRC. RNAscope was used to analyze the expression and localization of circ-ZEB1 in CRC tissues. Loss of function experiments were conducted, including CCK-8, transwell assays, flow cytometry analysis, and murine xenograft models, so as to detect the effect of circ-ZEB1 on CRC cells. IC50 assay was used to evaluate the influence of circ-ZEB1 on the chemoresistance of CRC cells. Epithelial-mesenchymal transition (EMT) related markers were detected. The relationship between circ-ZEB1 and miR-200c-5p was investigated by FISH, dual-luciferase reporter assay, and RIP assay. We found in our study that circ-ZEB1 was significantly upregulated in CRC tissues. Downregulation of circ-ZEB1 inhibited cell proliferation, colony formation, as well as cell migration and invasion abilities of CRC cell lines. In vivo experiments indicated that knockdown of circ-ZEB1 suppressed tumorigenesis and distant metastasis of CRC cells in nude mice. What's more, EMT and chemoresistance of CRC cells were also attenuated following circ-ZEB1 knockdown. Mechanistically, we proved that circ-ZEB1 could directly bind with miR-200c and functioned as miR-200c sponge to exert its biological functions in CRC cells. In conclusion, circ-ZEB1 could promote CRC cells progression, EMT, and chemoresistance via acting on miR-200c, elucidating a potential therapeutic target to inhibit CRC progression.
Collapse
|
23
|
Cascinu S, Di Bartolomeo M, Lonardi S, Beretta G, Fornaro L, De Vita F. The evolving strategies for the management of patients with metastatic gastric cancer: A narrative review and expert opinion. Front Med (Lausanne) 2022; 9:1002435. [PMID: 36590964 PMCID: PMC9799163 DOI: 10.3389/fmed.2022.1002435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) is recognized as one of the most common deadly malignancies worldwide and about 40-50% of patients present at diagnosis with an unresectable disease due to a locally advanced or already metastatic condition. Recently, therapeutic options for management of metastatic GC (mGC) have been approved allowing a potential improvement of patient cancer treatment response and also an establishment of a continuum of care for this aggressive disease. This report is the result of a literature review by an expert panel. The aim of this document is to provide evidence, wherever it is lacking, to provide expert opinion directed at strategic management of mGC, and in particular aspect at practical management where appropriate guidelines are not available. Treatment landscape with new therapeutic strategies for third line and beyond, role of imaging, prognostic factors, symptoms, and markers as well as the importance of multidisciplinary approach particularly the nutritional aspects are discussed.
Collapse
Affiliation(s)
- Stefano Cascinu
- Comprehensive Cancer Center, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy,*Correspondence: Stefano Cascinu,
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Lonardi
- Medical Oncology Unit 3, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Lorenzo Fornaro
- Unit of Medical Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Ferdinando De Vita
- Oncologia Medica - Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
24
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
25
|
Li C, Peng X, Peng Z, Yan B. circBGN accelerates gastric cancer cell proliferation and invasion via activating IL6/STAT3 signaling pathway. FASEB J 2022; 36:e22604. [PMID: 36250950 DOI: 10.1096/fj.202200957rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023]
Abstract
Circular RNAs participate in the pathogenesis of various tumors, including gastric cancer (GC). In this study, we investigated the role of circBGN in regulating proliferation and invasion of GC cells and elucidated the mechanism. The expression of circBGN was assessed by quantitative reverse-transcription PCR and in situ hybridization. In addition, loss- and gain-of-function investigations in vitro and in vivo were performed to determine the biological functions of circBGN. Luciferase reporter assays and rescue experiments were applied to investigate the interaction between circBGN and miR-149-5p as well as the relationship between miR-149-5p and IL6. Our results showed that circBGN expression was significantly elevated in GC tissues and cells. Knockdown of circBGN dramatically suppressed GC cell proliferation and invasion in vitro. Xenograft experiments revealed that knockdown of circBGN delayed tumor growth in vivo. Furthermore, circBGN can directly bind to miR-149-5p, thereby preventing miR-149-5p from binding to its target mRNA [IL6 mRNA], thus activating IL6/STAT3 signaling pathway. Rescue assays indicated that circBGN regulates GC cell proliferation and invasion by upregulating miR-149-5p/IL6 axis output. Taken together, our investigation indicates that circBGN supports GC progression by activating IL6/STAT3 signaling pathway, thus pointing to a new possible therapeutic target in GC.
Collapse
Affiliation(s)
- Chenghui Li
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiang Peng
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhiyong Peng
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bin Yan
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
26
|
Lee KH, Kim S, Lee SW. Pros and Cons of In Vitro Methods for Circular RNA Preparation. Int J Mol Sci 2022; 23:13247. [PMID: 36362032 PMCID: PMC9654983 DOI: 10.3390/ijms232113247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/29/2023] Open
Abstract
mRNA is gaining success as a new therapeutic agent and vaccine. However, mRNA has limitations in stability. To overcome the shortcomings of mRNA, circular RNA is emerging as a new modality. In this review, several current methods of manufacturing circular RNA in vitro are introduced and their advantages and disadvantages are reviewed. Furthermore, this study discusses which fields and directions of research and development are needed for the increase in the efficacy and productivity of circular RNA as a therapeutic agent and vaccine formulation.
Collapse
Affiliation(s)
| | | | - Seong-Wook Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
| |
Collapse
|
27
|
Song X, Hou L, Zhao Y, Guan Q, Li Z. Metal-dependent programmed cell death-related lncRNA prognostic signatures and natural drug sensitivity prediction for gastric cancer. Front Pharmacol 2022; 13:1039499. [PMID: 36339625 PMCID: PMC9634547 DOI: 10.3389/fphar.2022.1039499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Gastric cancer is one of the most important malignancies with poor prognosis. Ferroptosis and cuproptosis are newly discovered metal-dependent types of programmed cell death, which may directly affect the outcome of gastric cancer. Long noncoding RNAs (lncRNAs) can affect the prognosis of cancer with stable structures, which could be potential prognostic prediction factors for gastric cancer. Methods: Differentially expressed metal-dependent programmed cell death (PCD)-related lncRNAs were identified with DESeq2 and Pearson’s correlation analysis. Through GO and KEGG analyses and GSEA , we identified the potential effects of metal-dependent PCD-related lncRNAs on prognosis. Using Cox regression analysis with the LASSO method, we constructed a 12-lncRNA prognostic signature model. Also, we evaluated the prognostic efficiency with Kaplan–Meier (K-M) survival curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) methods. The sensitivities for antitumor drugs were then predicted with the pRRophetic method. Also, we discuss Chinese patent medicines and plant extracts that could induce metal-dependent programmed cell death. Results: We constructed a metal-dependent PCD-related lncRNA-gene co-expression network. Also, a metal-dependent PCD-related gastric cancer prognostic signature model including 12 lncRNAs was constructed. The K-M survival curve revealed a poor prognosis in the high-risk group. ROC curve analysis shows that the AUC of our model is 0.766, which is better than that of other published models. Moreover, the half-maximum inhibitory concentration (IC50) for dasatinib, lapatinib, sunitinib, cytarabine, saracatinib, and vinorelbine was much lower among the high-risk group. Conclusion: Our 12 metal-dependent PCD-related lncRNA prognostic signature model may improve the OS prediction for gastric cancer. The antitumor drug sensitivity analysis results may also be helpful for individualized chemotherapy regimen design.
Collapse
Affiliation(s)
- Xuesong Song
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Lin Hou
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Zhao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- First Hospital of Jilin University, Changchun, China
| | - Zhiwen Li
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhiwen Li,
| |
Collapse
|