1
|
Gu L, Shen Z, Shen S, Wang C, Liu Y, Wei X, Zheng M, Gu J, Chen X, Sun Y, Xu J, Lu Y, Lu W. The INAVA mRNA in Extracellular Vesicles Activates Normal Ovarian Fibroblasts by Phosphorylation-Ubiquitylation Crosstalk of HMGA2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500912. [PMID: 40265981 DOI: 10.1002/advs.202500912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/24/2025]
Abstract
Ovarian cancer is an aggressive gynecological tumor usually diagnosed with widespread metastases. Extracellular vesicles (EVs), though recognized as important mediators of tumor metastasis, have received limited attention into their specific functions via the mRNA profiling. Here it is reported elevated expression and selective enrichment of INAVA mRNA in both plasma- and tissue-derived EVs from ovarian cancer patients, which is positively correlated with distant metastasis and poor prognosis. Functionally, INAVA mRNA, upon uptake and translation, activates normal ovarian fibroblasts (NOFs) and drives extensive peritoneum metastasis in the orthotopic xenograft mouse model. Mechanistically, INAVA competitively binds with high mobility group protein A2 (HMGA2) and consequently inhibit its interaction with vaccinia-related kinase 1 (VRK1), leading to reduced HMGA2 phosphorylation on Ser105. Interestingly, this inhibitory phosphorylation stabilizes HMGA2 via blocking tripartite motif-containing 21 (TRIM21) -mediated K48-linked ubiquitylation, and ultimately enhances the transcription of STAT3 to activate NOFs. Lastly, a cell-permeable peptide that disrupts the INAVA-HMGA2 interaction leads to attenuated NOF activation and provides a promising strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Lingkai Gu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhangjin Shen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shizhen Shen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Conghui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuwan Liu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Mengxia Zheng
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiaxin Gu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaojing Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yan Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Weiguo Lu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, China
| |
Collapse
|
2
|
Zhang Y, Zhang S, Sun H, Xu L. The pathogenesis and therapeutic implications of metabolic reprogramming in renal cell carcinoma. Cell Death Discov 2025; 11:186. [PMID: 40253354 PMCID: PMC12009291 DOI: 10.1038/s41420-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Renal cell carcinoma (RCC), a therapeutically recalcitrant genitourinary malignancy, exemplifies the profound interplay between oncogenic signaling and metabolic adaptation. Emerging evidence positions metabolic reprogramming as a central axis of RCC pathogenesis, characterized by dynamic shifts in nutrient utilization that transcend canonical Warburg physiology to encompass lipid anabolism, glutamine auxotrophy, and microenvironment-driven metabolic plasticity. This orchestrated rewiring of cellular energetics sustains tumor proliferation under hypoxia while fostering immunosuppression through metabolite-mediated T cell exhaustion and myeloid-derived suppressor cell activation. Crucially, RCC exhibits metabolic heterogeneity across histological subtypes and intratumoral regions-a feature increasingly recognized as a determinant of therapeutic resistance. Our review systematically deciphers the molecular architecture of RCC metabolism, elucidating how VHL/HIF axis mutations, mTOR pathway dysregulation, and epigenetic modifiers converge to reshape glucose flux, lipid droplet biogenesis, and amino acid catabolism. We present novel insights into spatial metabolic zonation within RCC tumors, where pseudohypoxic niches engage in lactate shuttling and cholesterol efflux to adjacent vasculature, creating pro-angiogenic and immunosuppressive microdomains. Therapeutically, we evaluate first-in-class inhibitors targeting rate-limiting enzymes in de novo lipogenesis and glutamine metabolism, while proposing biomarker-driven strategies to overcome compensatory pathway activation. We highlight the synergy between glutaminase inhibitors and PD-1 blockade in reinvigorating CD8+ T cell function, and the role of lipid-loaded cancer-associated fibroblasts in shielding tumors from ferroptosis. Finally, we outline a translational roadmap integrating multi-omics profiling, functional metabolomics, and spatial biology to match metabolic vulnerabilities with precision therapies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shengli Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongbin Sun
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Zhu L, Xu Y, Huang C, Li C, Zhang Y, Li X, Pan W, Zeng Z. IRX5 Promoted SREBP1-Mediated de Novo Fatty Acid Synthesis via HMGN4 in Hepatocellular Carcinoma. J Cell Mol Med 2025; 29:e70441. [PMID: 40208102 PMCID: PMC11984319 DOI: 10.1111/jcmm.70441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/24/2024] [Accepted: 02/12/2025] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent malignant tumour, ranks highly in both morbidity and mortality, and its prevention and treatment need further studies. The transcription factor iroquois homeobox 5 (IRX5) plays an essential role in HCC, whereas little is known about its exact functions and underlying mechanisms in tumour metabolism reprogramming. Besides, as a transcription factor that mainly locates in nuclei, IRX5 lacks a nuclear localisation sequence, which makes uncovering the mechanism of IRX5 translocating into the nuclei of great significance. Here, we first found that both IRX5 and HCC development are highly expressed; IRX5 accelerates de novo fatty acid synthesis and promotes cancer cell proliferation and progression. Moreover, the GST pull-down combined with GC/MS experiments identified an interaction between IRX5 and high-mobility group nucleosomal binding domain 4 (HMGN4). Immunofluorescence analysis showed that IRX5 and HMGN4 colocalised within the nucleus. Coimmunoprecipitation further confirmed their direct interaction. The elevated expression of HMGN4 enhanced the nuclear transport of IRX5. Taken together, our observations suggest that HMGN4 driving IRX5 nuclear translocation promotes HCC development via de novo fatty acid synthesis reprogramming.
Collapse
Affiliation(s)
- Liying Zhu
- Center for Clinical Laboratoriesthe Affiliated Hospital of Guizhou Medical UniversityGuiyangPeople's Republic of China
- School of Basic Medical Sciences/School of Biology & EngineeringGuiyangGuizhouPeople's Republic of China
| | - Yongjie Xu
- Center for Clinical Laboratoriesthe Affiliated Hospital of Guizhou Medical UniversityGuiyangPeople's Republic of China
- School of Basic Medical Sciences/School of Biology & EngineeringGuiyangGuizhouPeople's Republic of China
- Guizhou Prenatal Diagnosis Centerthe Affiliated Hospital of Guizhou Medical UniversityGuiyangPeople's Republic of China
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of Education, Guizhou Medical UniversityGuiyangChina
| | - Changyudong Huang
- School of Basic Medical Sciences/School of Biology & EngineeringGuiyangGuizhouPeople's Republic of China
- Guizhou Prenatal Diagnosis Centerthe Affiliated Hospital of Guizhou Medical UniversityGuiyangPeople's Republic of China
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of Education, Guizhou Medical UniversityGuiyangChina
| | - Chengcheng Li
- Guizhou Prenatal Diagnosis Centerthe Affiliated Hospital of Guizhou Medical UniversityGuiyangPeople's Republic of China
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of Education, Guizhou Medical UniversityGuiyangChina
| | - Yiqiong Zhang
- School of Basic Medical Sciences/School of Biology & EngineeringGuiyangGuizhouPeople's Republic of China
- Guizhou Prenatal Diagnosis Centerthe Affiliated Hospital of Guizhou Medical UniversityGuiyangPeople's Republic of China
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of Education, Guizhou Medical UniversityGuiyangChina
| | - Xing Li
- Guizhou University of Traditional Chinese MedicineGuiyangGuizhouPeople's Republic of China
| | - Wei Pan
- School of Basic Medical Sciences/School of Biology & EngineeringGuiyangGuizhouPeople's Republic of China
- Guizhou Prenatal Diagnosis Centerthe Affiliated Hospital of Guizhou Medical UniversityGuiyangPeople's Republic of China
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of Education, Guizhou Medical UniversityGuiyangChina
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology & EngineeringGuiyangGuizhouPeople's Republic of China
| |
Collapse
|
4
|
Chen L, Fu Y, Wang J, Lv N, Yu S, Fang Q, Xin W. Isoliquiritigenin suppresses fatty acid synthesis and cancer cell migration in anaplastic thyroid carcinoma through AMPK/SREBF1 pathway. Arch Biochem Biophys 2025; 766:110352. [PMID: 39978618 DOI: 10.1016/j.abb.2025.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive neoplasm with poor prognosis and limited therapeutic alternatives. Isoliquiritigenin (ISL), a bioactive isoflavonoid, has exhibited an antitumor activity across multiple tumor types; however, its precise anticancer mechanisms against ATC remain unexplored. In this study, the therapeutic effects of ISL on ATC cells and the potential mechanism were investigated by RNA-seq analysis and untargeted lipidomic analysis, combined with in vitro and in vivo experimental validation. The results showed that ISL effectively hindered the proliferation of ATC cells, inhibited cancer cell migration by up-regulating the level of E-cadherin and down-regulating the level of N-cadherin, and inhibited fatty acid synthesis by down-regulating the level of Sterol regulatory element binding transcription factor 1 (SREBF1) and its downstream lipid synthesis-related enzyme expression level. The underlying mechanism appears to involve a decrease in intracellular ATP levels induced by ISL and the activation of phosphorylated AMPK, thereby downregulating the expression of SREBF1, ultimately inhibiting cell proliferation, migration, and lipid synthesis. In vivo experiments further confirmed that ISL significantly retarded the growth of tumor xenografts in mice, diminished tumor cell proliferation, and reduced SREBF1 protein levels. This study suggests that ISL modulates lipogenesis and impedes cancer cell migration in ATC through the AMPK/SREBF1 signaling pathway.
Collapse
Affiliation(s)
- Liangsheng Chen
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Yuxuan Fu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Jia Wang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Neng Lv
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Shuwei Yu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China
| | - Qilu Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China.
| | - Wenxiu Xin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Zhejiang, 310022, Hangzhou, China; Department of Pharmacy, Zhejiang Cancer Hospital, Zhejiang, 310022, Hangzhou, China.
| |
Collapse
|
5
|
Chen Y, Wang S, Zhang L, Peng D, Huang K, Ji B, Fu J, Xu Y. POT, an optogenetics-based endogenous protein degradation system. Commun Biol 2025; 8:455. [PMID: 40102608 PMCID: PMC11920400 DOI: 10.1038/s42003-025-07919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Precise regulation of protein abundance is critical for cellular homeostasis, whose dysfunction may directly lead to human diseases. Optogenetics allows rapid and reversible control of precisely defined cellular processes, which has the potential to be utilized for regulation of protein dynamics at various scales. Here, we developed a novel optogenetics-based protein degradation system, namely Peptide-mediated OptoTrim-Away (POT) which employs expressed small peptides to effectively target endogenous and unmodified proteins. By engineering the light-induced oligomerization of the E3 ligase TRIM21, POT can rapidly trigger protein degradation via the proteasomal pathway. Our results showed that the developed POT-PI3K and POT-GPX4 modules, which used the iSH2 and FUNDC1 domains to specifically target phosphoinositide 3-kinase (PI3K) and glutathione peroxidase 4 (GPX4) respectively, were able to potently induce the degradation of these endogenous proteins by light. Both live-cell imaging and biochemical experiments validated the potency of these tools in downregulating cancer cell migration, proliferation, and even promotion of cell apoptosis. Therefore, we believe the POT offers an alternative and practical solution for rapid manipulation of endogenous protein levels, and it could potentially be employed to dissect complex signaling pathways in cell and for targeted cellular therapies.
Collapse
Affiliation(s)
- Yunyue Chen
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyifei Wang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luhao Zhang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Peng
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Baohua Ji
- Department of Engineering Mechanics, Biomechanics and Biomaterials Laboratory, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Lu D, Zhang Y, Zhu P, Wu J, Yuan C, Ni L. The roles of the ubiquitin-proteasome system in renal disease. Int J Med Sci 2025; 22:1791-1810. [PMID: 40225869 PMCID: PMC11983301 DOI: 10.7150/ijms.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major pathway of specific intracellular protein degradation through proteasome degradation of ubiquitin-labeled substrates. Numerous biological processes, including the cell cycle, transcription, translation, apoptosis, receptor activity, and intracellular signaling, are regulated by UPS. Alterations of the UPS, which render them more or less susceptible to degradation, are responsible for disorders of renal diseases. This review aims to summarize the mechanism of UPS in renal diseases. Besides, this review explores the relationship among UPS, autophagy, and deubiquitination in the development of renal disease. The specific molecular linkages among these systems and pathogenesis, on the other hand, are unknown and controversial. In addition, we briefly describe some anti-renal disease agents targeting UPS components. This review emphasizes UPS as a promising therapeutic modality for the treatment of kidney disease. Our work, though still basic and limited, could provide options to future potential therapeutic targets for renal diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Danqin Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingying Zhang
- Department of Nephrology, Tongii Hospital of Tongji University, Shanghai, China
| | - Ping Zhu
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Jiao Wu
- Department of Nephrology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Cheng Yuan
- Department of Oncology, Yichang Central People's Hospital and The First College of Clinical Medical Science, China Three Gorges University Yichang, Hubei, China
- Tumor Prevention and Treatment Center of Three Gorges University and Cancer Research Institute of Three Gorges University Yichang, Hubei, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Hao Z, Wang Y, Chen L, Zhou Y, Fang D, Yao W, Xiao L, Zhang Y. TRIM21 Promotes Endothelial Cell Activation via Accelerating SOCS3 Ubiquitination Degradation in Atherosclerosis. Cardiovasc Toxicol 2025; 25:395-410. [PMID: 39921798 DOI: 10.1007/s12012-025-09965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/19/2025] [Indexed: 02/10/2025]
Abstract
Activated endothelial cells play an important role in the beginning of atherosclerotic disease by secreting various proteins and inflammatory cytokines. Ubiquitination is one of the most common post-translational changes in cells. However, the role and mechanisms of ubiquitination in endothelial cell activation remain poorly understood. In this study, we identified TRIM21 as an E3 ubiquitin ligase with increased expression in atherosclerotic disease and activated endothelial cells. Knockdown of TRIM21 resulted in reduced secretion of inflammatory factors and attenuated the pyroptosis of endothelial cells, inhibiting the progression of atherosclerosis. Mechanistically, TRIM21 could bind and ubiquitinate SOCS3, thereby enhancing NLRP3-mediated pyroptosis. Taken together, we found that endothelial TRIM21 activated the JAK/STAT3 pathway by degrading SOCS3, which in turn promoted NLRP3-mediated pyroptosis and aggravated atherosclerosis, revealing that TRIM21 may be a promising treatment target for the medical management of atherosclerosis.
Collapse
Affiliation(s)
- Zhenxuan Hao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yihuan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linlin Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanjun Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dezhou Fang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenxiang Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
8
|
Yang Q, Cai Y, Wang Z, Guo S, Qiu S, Zhang A. Understanding the physiological mechanisms and therapeutic targets of diseases: Lipidomics strategies. Life Sci 2025; 363:123411. [PMID: 39848598 DOI: 10.1016/j.lfs.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
As a pivotal branch of metabolomics, lipidomics studies global changes in lipid metabolism under different physiological and pathological conditions or drug interventions, discovers key lipid markers, and elaborates the associated lipid metabolism network. There are a considerable number of lipids in the host, which act on various functional networks such as metabolism and immune regulation. As an indispensable research method, lipidomics plays a key character in the analysis of lipid composition in organisms, the elaboration of the physiological mechanism of lipids, and the decoding of their character in the occurrence and development of diseases by exploring the character of lipids in the host environmental network. As an essential means of driving lipidomics research, High-throughput and High-resolution mass spectrometry is helpful in exploring disease phenotypic characteristics, diagnosing disease biomarkers, regulating related metabolic pathways, and discovering related active components. In this paper, we discuss the specific role of lipidomics in the analysis of disease diagnosis, prognosis and treatment, which is conducive to the realization of accurate and personalized medicine.
Collapse
Affiliation(s)
- Qiang Yang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Cai
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Sifan Guo
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Aihua Zhang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| |
Collapse
|
9
|
Pan X, Ren Z, Gong P, Sun X, Wang L, He Y, Liu D, Cao X. Cryptotanshinone Inhibits Obesity-Related Cervical Cancer by Downregulating CXCL8 Expression in Hela Cells. Chem Biodivers 2025:e202403263. [PMID: 39921242 DOI: 10.1002/cbdv.202403263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Cervical cancer is one of the cancers commonly found in the female reproductive system and is associated with obesity. However, the exact connection mechanisms remain unclear. Screening of key therapeutic targets and natural products with good antitumor activity has become a crucial strategy for cancer therapy. Cryptotanshinone is one of the main extracts of tanshinone, which has anti-inflammatory and anti-cancer properties. Key therapeutic targets and related low-toxicity natural active ingredients were identified as crucial components in cancer treatment strategies. Therefore, network pharmacology and cellular biology techniques were used to screen and validate key targets in obesity-related cervical cancer and to elucidate the mechanisms of its cryptotanshinone. The results indicated that C-X-C motif chemokine ligand 8 (CXCL8) might be modulated by cryptotanshinone. The knockdown of CXCL8 significantly reduced Hela cell viability to 15.29% ± 4.59% compared with the control group (p < 0.01), which consequently inhibited both cell proliferation and lipid droplet formation. Moreover, cryptotanshinone (20, 40, and 80 µM) significantly reduced CXCL8 expression and inhibited the NOD-like receptor signaling pathway in Hela cells compared with the control group (p < 0.01). Therefore, this study manifested that cryptotanshinone potentially played an important role in obesity-related cervical cancer. This study provided an important experimental basis for further exploring the pathogenesis and prevention of obesity-related cervical cancer.
Collapse
Affiliation(s)
- Xinyu Pan
- Department of Bioinformatics, School of Life Science, Liaoning University, Shenyang, China
| | - Ziqi Ren
- Department of Bioinformatics, School of Life Science, Liaoning University, Shenyang, China
| | - Ping Gong
- Hunan Institute of Microbiology, Changsha, China
| | - Xiaodan Sun
- Department of Bioinformatics, School of Life Science, Liaoning University, Shenyang, China
| | - Le Wang
- Department of Bioinformatics, School of Life Science, Liaoning University, Shenyang, China
| | - Yin He
- Department of Bioinformatics, School of Life Science, Liaoning University, Shenyang, China
| | - Dan Liu
- Department of Bioinformatics, School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Bioinformatics, School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
10
|
Yang Z, Cai J, Li J, Liu X, Liu W, Cui K, Bai Z, Dong Y, Peng D, Duan Q, Shahzad A, Zhang Q. The Mechanism of TRIM21 Inhibiting the Invasion and Migration of ccRCC by Stabilizing ASS1. Mol Carcinog 2025; 64:260-278. [PMID: 39513657 DOI: 10.1002/mc.23840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive invasion and metastasis, presenting significant clinical challenges. Gaining insights into the molecular mechanisms underlying its progression is crucial for the development of effective therapeutic strategies. Addressing a critical knowledge gap in understanding ccRCC tumorigenesis, this study aims to elucidate the expression patterns of TRIM21 in ccRCC, unravel its impact on ccRCC patient prognosis, and investigate the regulatory role of TRIM21 in ASS1 expression and urea cycle dysregulation within the context of ccRCC. The results demonstrate that TRIM21 is downregulated in ccRCC, and low expression of TRIM21 predicts an unfavorable prognosis for ccRCC patients. Furthermore, the upregulation of TRIM21 can inhibit the migration and invasion of ccRCC cells by regulating the ubiquitination modification of ASS1. This not only expands the functional role of TRIM21 in ccRCC tumorigenesis but also demonstrates its ability to reverse urea cycle dysregulation through stabilizing ASS1 expression. Specifically, abnormal downregulation of TRIM21 in ccRCC reduces K63 ubiquitination modification of ASS1, leading to decreased stability of the ASS1 protein, aggravated urea cycle dysregulation, and facilitated migration and invasion of ccRCC cells. Additionally, reduction in ASS1 reverses the depressed migration and invasion caused by overexpression of TRIM21 in ccRCC cells. In summary, our findings contribute to a deeper understanding of the functional role played by TRIM21 in ccRCC progression, pinpoint a unique and novel regulatory mechanism involving ectopic downregulation-mediated ASS1 ubiquitination modification and urea cycle dysfunction during ccRCC progression, and provide fresh insights for further investigation into the pathogenesis and metabolic reprogramming associated with ccRCC.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jihao Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ziyuan Bai
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yurong Dong
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongmei Peng
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Xu Y, Zeng J, Liu K, Li D, Huang S, Fu S, Ye M, Tao S, Wu J. USP11 promotes lipogenesis and tumorigenesis by regulating SREBF1 stability in hepatocellular carcinoma. Cell Commun Signal 2024; 22:550. [PMID: 39558331 PMCID: PMC11572171 DOI: 10.1186/s12964-024-01926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The relationship between hepatocellular carcinoma (HCC) metastasis and cancer metabolism reprogramming is becoming increasingly evident. Ubiquitin-specific protease 11 (USP11), a member of the deubiquitinating enzyme family, has been linked to various cancer-related processes. While USP11 is known to promote HCC metastasis and proliferation, the precise mechanisms, especially those related to cancer metabolism, remain unclear. METHODS Through mass spectrometry, co-immunoprecipitation, immunofluorescence, and ubiquitination assays, we identified USP11 as the key deubiquitinase for SREBF1.Lipogenesis was evaluated using Oil Red O and Nile Red staining, along with the detection of triglycerides and cholesterol. To assess HCC cell proliferation, migration, and invasion in vitro, Transwell assays, EDU, colony formation, and CCK-8 were conducted. Xenograft models in nude mice were developed to verify the role of the USP11/SREBF1 axis in lipogenesis and tumor growth in vivo. RESULTS USP11 directly interacts with SREBF1, and its silencing leads to the disruption of SREBF1 stabilization through K48-linked deubiquitination and degradation. Importantly, the truncated mutant USP11 (503-938 aa) interacts with the truncated mutant SREBF1 (569-1147aa), with K1151 playing a crucial role in this interaction. Higher levels of USP11 enhance lipogenesis, proliferation, and metastasis in HCC cells. Importantly, the knockdown of SREBF1 weakened the effects of USP11 in enhancing lipogenesis and tumorigenesis. Futhermore, the elevated expression of USP11 and SREBF1 in HCC tissue serves as an indicator of poor prognosis in HCC patients. CONCLUSIONS In summary, our study reveals that USP11 promotes HCC proliferation and metastasis through SREBF1-induced lipogenesis. These findings provide a foundation for novel therapies targeting lipid metabolism in HCC.
Collapse
Affiliation(s)
- Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jiayu Zeng
- Department of Pediatric Surgery, Jiangxi Provincial Children's Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Li
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shumin Fu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Mao Ye
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medcical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
12
|
Yang S, Cao SJ, Li CY, Zhang Q, Zhang BL, Qiu F, Kang N. Berberine directly targets AKR1B10 protein to modulate lipid and glucose metabolism disorders in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118354. [PMID: 38762210 DOI: 10.1016/j.jep.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Cong-Yu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
13
|
Liu XM, Wang ZH, Wei QX, Song Y, Ma XX. Equol exerts anti-tumor effects on choriocarcinoma cells by promoting TRIM21-mediated ubiquitination of ANXA2. Biol Direct 2024; 19:78. [PMID: 39242533 PMCID: PMC11378480 DOI: 10.1186/s13062-024-00519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024] Open
Abstract
Choriocarcinoma is a malignant cancer that belongs to gestational trophoblastic neoplasia (GTN). Herein, serum metabolomic analysis was performed on 29 GTN patients and 30 healthy individuals to characterize the metabolic variations during GTN progression. Ultimately 24 differential metabolites (DMs) were identified, of which, Equol was down-regulated in GTN patients, whose VIP score is the 3rd highest among the 24 DMs. As an intestinal metabolite of daidzein, the anticancer potential of Equol has been demonstrated in multiple cancers, but not choriocarcinoma. Hence, human choriocarcinoma cell lines JEG-3 and Bewo were used and JEG-3-derived subcutaneous xenograft models were developed to assess the effect of Equol on choriocarcinoma. The results suggested that Equol treatment effectively suppressed choriocarcinoma cell proliferation, induced cell apoptosis, and reduced tumorigenesis. Label-free quantitative proteomics showed that 136 proteins were significantly affected by Equol and 20 proteins were enriched in Gene Ontology terms linked to protein degradation. Tripartite motif containing 21 (TRIM21), a E3 ubiquitin ligase, was up-regulated by Equol. Equol-induced effects on choriocarcinoma cells could be reversed by TRIM21 inhibition. Annexin A2 (ANXA2) interacted with TRIM21 and its ubiquitination was modulated by TRIM21. We found that TRIM21 was responsible for proteasome-mediated degradation of ANXA2 induced by Equol, and the inhibitory effects of Equol on the malignant behaviors of choriocarcinoma cells were realized by TRIM21-mediated down-regulation of ANXA2. Moreover, β-catenin activation was inhibited by Equol, which also depended on TRIM21-mediated down-regulation of ANXA2. Taken together, Equol may be a novel candidate for the treatment for choriocarcinoma.
Collapse
Affiliation(s)
- Xiao-Mei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zi-Hao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Qian-Xue Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Yang Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
14
|
Zhang J, Wang Y, Zhang J, Wang X, Liu J, Huo M, Hu T, Ma T, Zhang D, Li Y, Guo C, Yang Y, Zhang M, Yuan B, Qin H, Teng X, Gao T, Hao X, Yu H, Huang W, Xu B, Wang Y. The feedback loop between MTA1 and MTA3/TRIM21 modulates stemness of breast cancer in response to estrogen. Cell Death Dis 2024; 15:597. [PMID: 39154024 PMCID: PMC11330498 DOI: 10.1038/s41419-024-06942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
The metastasis-associated protein (MTA) family plays a crucial role in the development of breast cancer, a common malignancy with a high incidence rate among women. However, the mechanism by which each member of the MTA family contributes to breast cancer progression is poorly understood. In this study, we aimed to investigate the roles of MTA1, MTA3, and tripartite motif-containing 21 (TRIM21) in the proliferation, invasion, epithelial-mesenchymal transition (EMT), and stem cell-like properties of breast cancer cells in vivo and in vitro. The molecular mechanisms of the feedback loop between MTA1 and MTA3/TRIM21 regulated by estrogen were explored using Chromatin immunoprecipitation (ChIP), luciferase reporter, immunoprecipitation (IP), and ubiquitination assays. These findings demonstrated that MTA1 acts as a driver to promote the progression of breast cancer by repressing the transcription of tumor suppressor genes, including TRIM21 and MTA3. Conversely, MTA3 inhibited MTA1 transcription and TRIM21 regulated MTA1 protein stability in breast cancer. Estrogen disrupted the balance between MTA1 and MTA3, as well as between MTA1 and TRIM21, thereby affecting stemness and the EMT processes in breast cancer. These findings suggest that MTA1 plays a vital role in stem cell fate and the hierarchical regulatory network of EMT through negative feedback loops with MTA3 or TRIM21 in response to estrogen, supporting MTA1, MTA3, and TRIM21 as potential prognostic biomarkers and MTA1 as a treatment target for future breast cancer therapies.
Collapse
Affiliation(s)
- Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinuo Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Hu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Die Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinhui Hao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Shen Z, Dong T, Yong H, Deng C, Chen C, Chen X, Chen M, Chu S, Zheng J, Li Z, Bai J. FBXO22 promotes glioblastoma malignant progression by mediating VHL ubiquitination and degradation. Cell Death Discov 2024; 10:151. [PMID: 38519492 PMCID: PMC10959977 DOI: 10.1038/s41420-024-01919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor. Despite comprehensive treatment with traditional surgery, radiotherapy, and chemotherapy, the median survival rate is <14.6% and the 5-year survival rate is only 5%. FBXO22, a substrate receptor of the SCF ubiquitin ligases, has been reported to play a promoting role in melanoma, liver cancer, cervical cancer, and other cancers. However, the function of FBXO22 in GBM has not been reported. In the present study, we demonstrate that FBXO22 is highly expressed in glioma and is positively correlated with worse pathological features and shorter survival of GBM patients. We revealed that FBXO22 promotes GBM cell proliferation, angiogenesis, migration, and tumorigenesis in vitro and in vivo. In terms of mechanism, we reveal that FBXO22 decreases VHL expression by directly mediating VHL ubiquitination degradation, which ultimately increases HIF-1α and VEGFA expression. In addition, our data confirm that there are positive correlations among FBXO22, HIF-1α, and VEGFA expression, and there is a negative correlation between FBXO22 and VHL protein expression in glioma patients. Our study strongly indicates that FBXO22 is a promising diagnostic marker and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Zhigang Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Dong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Chuyin Deng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changxiu Chen
- Department of Pediatrics, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miaolei Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Laboratory of Tumor Epigenetics, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
16
|
Liu H, Chen X, Wang P, Chen M, Deng C, Qian X, Bai J, Li Z, Yu X. PRMT1-mediated PGK1 arginine methylation promotes colorectal cancer glycolysis and tumorigenesis. Cell Death Dis 2024; 15:170. [PMID: 38402202 PMCID: PMC10894231 DOI: 10.1038/s41419-024-06544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Many types of cancer cells, including colorectal cancer cells (CRC), can simultaneously enhance glycolysis and repress the mitochondrial tricarboxylic acid (TCA) cycle, which is called the Warburg effect. However, the detailed mechanisms of abnormal activation of the glycolysis pathway in colorectal cancer are largely unknown. In this study, we reveal that the protein arginine methyltransferase 1 (PRMT1) promotes glycolysis, proliferation, and tumorigenesis in CRC cells. Mechanistically, PRMT1-mediated arginine asymmetric dimethylation modification of phosphoglycerate kinase 1 (PGK1, the first ATP-producing enzyme in glycolysis) at R206 (meR206-PGK1) enhances the phosphorylation level of PGK1 at S203 (pS203-PGK1), which inhibits mitochondrial function and promotes glycolysis. We found that PRMT1 and meR206-PGK1 expression were positively correlated with pS203-PGK1 expression in tissues from colorectal cancer patients. Furthermore, we also confirmed that meR206-PGK1 expression is positively correlated with the poor survival of patients with colorectal cancer. Our findings show that PRMT1 and meR206-PGK1 may become promising predictive biomarkers for the prognosis of patients with CRC and that arginine methyltransferase inhibitors have great potential in colorectal cancer treatment.
Collapse
Affiliation(s)
- Hao Liu
- School of Medicine, Nankai University, Tianjin, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xintian Chen
- Department of Gastroenterology, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pengfei Wang
- Department of Gastroenterology, the First People's Hospital of Shuyang County, Suqian, Jiangsu, China
| | - Miaolei Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuyin Deng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingyou Qian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Laboratory of Tumor Epigenetics, Department of Pathophysiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
| | - Xiangyang Yu
- School of Medicine, Nankai University, Tianjin, China.
- Department of Gastrointestinal Surgery, the Hospital of Integrated Chinese and Western Medicine, Tianjin, China.
| |
Collapse
|
17
|
Göransson S, Strömblad S. Regulation of protein synthesis and stability by mechanical cues and its implications in cancer. Curr Opin Cell Biol 2024; 86:102304. [PMID: 38113713 DOI: 10.1016/j.ceb.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Elevated tissue stiffness is a common feature of many solid tumors and the downstream mechanical signaling affects many cellular processes and contributes to cancer progression. Significant progress has been made in understanding how the mechanical properties of the matrix affect cancer cell behavior as well as transcription. However, how the same mechanical cues impact protein synthesis and stability and how this may contribute to disease is less well understood. Here, we present emerging evidence that cancer progression is frequently supported by gene regulation acting beyond the mRNA level and highlight some of the known crosstalk between this type of regulation and mechanotransduction in cancer as well as in other contexts. We suggest that future systematic approaches to define mechanosensitive translatomes and proteomes and how these are controlled may provide novel targets for cancer therapy.
Collapse
Affiliation(s)
- Sara Göransson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden.
| |
Collapse
|
18
|
Guo T, Zhang X, Chen S, Wang X, Wang X. Targeting lipid biosynthesis on the basis of conventional treatments for clear cell renal cell carcinoma: A promising therapeutic approach. Life Sci 2024; 336:122329. [PMID: 38052321 DOI: 10.1016/j.lfs.2023.122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
A variety of cancer cells exhibit dysregulated lipid metabolism, characterized by excessive intracellular lipid accumulation, and clear cell renal cell carcinoma (ccRCC) is the most typical disease with these characteristics. As the most common malignancy of all renal cell carcinomas (RCCs), ccRCC is typically characterized by a large accumulation of lipids and glycogen in the cytoplasm and a nucleus that is squeezed by the accumulated lipid droplets and localized to the marginal areas within the cytoplasm. This lipid accumulation has been found to be critically involved in the maintenance of malignant features observed in various cancers. Firstly, it maintains the persistent proliferative and metastasis properties of cancer cells. Secondly, it acts as a buffer against lipid peroxidation, preventing lipid peroxidation-induced ferroptosis. Moreover, lipids can diminish the sensitivity of cancer cells to radiotherapy. As ccRCC is a type of cancer with high lipid synthesis, targeting lipid synthesis-related genes in cancer cells may be a promising therapeutic modality for single treatment or in combination with radiotherapy, chemotherapy, and immunotherapy. This may revolutionize the choice of treatment modality for ccRCC patients. In this review, we concentrate on the current status and progress of research on lipid biosynthesis in ccRCC and the potential applications of targeting lipid synthesis to treat ccRCC. At last, we propose perspective and future research directions for targeting inhibition of lipid biosynthesis in combination with conventional therapeutic approaches for the treatment of ccRCC, which will help to evolve the therapeutic model.
Collapse
Affiliation(s)
- Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Hsu CH, Yu YL. The interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjögren's syndrome, cancers, and cancer metabolism. Cancer Cell Int 2023; 23:289. [PMID: 37993883 PMCID: PMC10664372 DOI: 10.1186/s12935-023-03143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Protein tripartite motif-containing 21 (TRIM21/Ro52), an E3 ubiquitin ligase, is an essential regulator of innate immunity, and its dysregulation is closely associated with the development of autoimmune diseases, predominantly systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS). TRIM21 /Ro52 also features anti-cancer and carcinogenic functions according to different malignancies. The interconnected role of TRIM21/Ro52 in regulating autoimmunity and cell metabolism in autoimmune diseases and malignancies is implicated. In this review, we summarize current findings on how TRIM21/Ro52 affects inflammation and tumorigenesis, and investigate the relationship between TRIM21/Ro52 expression and the formation of lymphoma and breast cancer in SLE and pSS populations.
Collapse
Affiliation(s)
- Chueh-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
- Institute of Translational Medicine and New Drug Development, Taichung, 40402, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
20
|
Li Z, Chen C, Yong H, Jiang L, Wang P, Meng S, Chu S, Li Z, Guo Q, Zheng J, Bai J, Li H. PRMT2 promotes RCC tumorigenesis and metastasis via enhancing WNT5A transcriptional expression. Cell Death Dis 2023; 14:322. [PMID: 37173306 PMCID: PMC10182089 DOI: 10.1038/s41419-023-05837-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Protein arginine methyltransferase 2 (PRMT2) is involved in several biological processes via histone methylation and transcriptional regulation. Although PRMT2 has been reported to affect breast cancer and glioblastoma progression, its role in renal cell cancer (RCC) remains unclear. Here, we found that PRMT2 was upregulated in primary RCC and RCC cell lines. We demonstrated that PRMT2 overexpression promoted RCC cell proliferation and motility both in vitro and in vivo. Moreover, we revealed that PRMT2-mediated H3R8 asymmetric dimethylation (H3R8me2a) was enriched in the WNT5A promoter region and enhanced WNT5A transcriptional expression, leading to activation of Wnt signaling and malignant progression of RCC. Finally, we confirmed that high PRMT2 and WNT5A expression was strongly correlated with poor clinicopathological characteristics and poor overall survival in RCC patient tissues. Our findings indicate that PRMT2 and WNT5A may be promising predictive diagnostic biomarkers for RCC metastasis. Our study also suggests that PRMT2 is a novel therapeutic target in patients with RCC.
Collapse
Affiliation(s)
- Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaozhen Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Lei Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingxiang Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Hailong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|