1
|
Chen L, Wu Y, Lv T, Tuo R, Xiao Y. Mesenchymal stem cells enchanced by salidroside to inhibit ferroptosis and improve premature ovarian insufficiency via Keap1/Nrf2/GPX4 signaling. Redox Rep 2025; 30:2455914. [PMID: 39874130 PMCID: PMC11776066 DOI: 10.1080/13510002.2025.2455914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited. PURPOSE This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling. METHODS The effect of salidroside and MSCs on ovarian granular cells (GCs) was analyzed. After treatment, hormone levels and -fertility of rats were measured. Lipid peroxidation levels, iron deposition and mitochondrial morphology were detected. The genes and proteins of Keap1/Nrf2/GPX4 signaling were examined. RESULTS Salidroside and MSCs were found to inhibit cell death of GCs by reducing peroxidation and intracellular ferrous. Salidroside promotes the proliferation of MSCs and supports cell survival in ovary. Salidroside combined with MSCs therapy restored ovarian function, which was better than MSCs monotherapy. Salidroside-enhanced MSCs to inhibit ferroptosis. The results showed activation of the Keap1/Nrf2/GPX4 signaling and an increase in anti-ferroptosis molecule. CONCLUSIONS Salidroside-enhanced MSCs as a ferroptosis inhibitor and provide new therapeutic strategies for POI. The possible mechanisms of MSCs were related to maintaining redox homeostasis via a Keap1/Nrf2/GPX4 signaling.
Collapse
Affiliation(s)
- Lixuan Chen
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People’s Republic of China
| | - Yingnan Wu
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tiying Lv
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Rui Tuo
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People’s Republic of China
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Soleimany Z, Siadat F, Farhadi M, Mirshaby ZS, Sanadgol Z, Eyni H. Improvement of ovarian function in a premature ovarian failure mouse model using Vitex agnus-castus extract. JBRA Assist Reprod 2025; 29:117-126. [PMID: 39835794 PMCID: PMC11867258 DOI: 10.5935/1518-0557.20240101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Premature ovarian failure (POF) leads to infertility. Numerous researchers have endeavored to enhance ovarian function through antioxidant interventions. Extract from Vitex agnus-castus (VAC) has demonstrated a protective effect. Therefore, the objective of this study was to investigate the amelioration of ovarian function following VAC treatment in a POF mouse model. METHODS In this investigation, 30 female NMRI mice were categorized into control, POF model (cyclophosphamide 120 mg/kg I.P), and experimental groups (100, 300, and 500 of VAC extract). Parameters such as body weight, vaginal smears, and follicular evaluation were examined. FSH, estradiol levels, free radicals, and the expression of the FMR1 gene were assessed. RESULTS The microscopic assessment revealed that POF induced morphological alterations in ovarian tissue, whereas VAC treatment significantly ameliorated ovarian tissue conditions. The follicles number exhibited a significant reduction in the POF group; however, VAC led to an increase in follicular count and elevated estradiol levels in the treatment groups. Serum FSH levels displayed an elevation in the POF group, whereas the treatment groups exhibited a substantial reduction in FSH levels compared to the POF group. The expression of the FMR1 gene demonstrated upregulation in the POF group compared to the control group (p<0.05). Moreover, this expression significantly decreased in the 500-dose VAC group compared to the POF group (p<0.001). ROS generation exhibited a significant increase in the POF group, which was conversely mitigated in all experimental groups. CONCLUSIONS Our findings underscore the potential of this extract to ameliorate POF symptoms, however, further investigations are needed.
Collapse
Affiliation(s)
- Zeinab Soleimany
- Department of Biology, North Tehran Branch, Islamic Azad
University, Tehran, Iran
| | - Fatemeh Siadat
- Department of Biology, North Tehran Branch, Islamic Azad
University, Tehran, Iran
| | - Mona Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University,
Karaj, Iran
| | | | - Zahra Sanadgol
- Department of Microbiology, Karaj Branch, Islamic Azad University,
Karaj, Iran
| | - Hossein Eyni
- Stem Cell and Regenerative Medicine Research Center, Department of
Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang S, Zou X, Feng X, Shi S, Zheng Y, Li Q, Wu Y. Exosomes derived from hypoxic mesenchymal stem cell ameliorate premature ovarian insufficiency by reducing mitochondrial oxidative stress. Sci Rep 2025; 15:8235. [PMID: 40065033 PMCID: PMC11894067 DOI: 10.1038/s41598-025-90879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Cyclophosphamide (CTX) exposure causes premature ovarian insufficiency (POI). The therapeutic potential of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) is not fully understood, especially regarding whether hypoxic preconditioning enhances their efficacy in POI. In this study, exosomes were isolated and identified from hucMSCs (hucMSCs-Exos) under hypoxic (HExos) and normoxic (NExos) conditions. Cyclophosphamide (CTX) was used to develop the POI rat model, and NExos or HExos was injected into the tail vein to investigate its therapeutic effect on POI. In addition, CTX-treated KGN cell lines were used to investigate the effects of NExos and HExos on cell proliferation, apoptosis, oxidative stress and mitochondrial membrane potential.The results indicated that hucMSCs-Exos transplantation substantially improved body weight, ovarian weight coefficient, estrous cycles, ovarian morphology, ovulation count, and sex hormone levels in POI rats. Further, HExos showed a higher level of therapeutic efficiency than NExos. In vitro experiments demonstrated that NExos and HExos may be phagocytosed by KGN cell line, decrease cell apoptosis, and enhance cell growth. After NExos or HExos transplantation, the reactive oxygen species level was reduced, mitochondrial membrane potential enhanced, and the levels of mitochondrial oxidative stress-associated factors returned to their basal level. Notably, the improvement of oxidative stress by NExos or HExos was blocked by the SIRT3 selective inhibitor 3-TYP. In conclusion, hypoxia-induced hucMSCs-Exos protected the ovarian reserve against CXT-induced ovarian damage by rectifying mitochondrial malfunction via the SIRT3/PGC1-α pathway, establishing a solid basis for developing specific ovarian protection therapies.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Life sciences, Jining Medical University, Rizhao City, Shandong, China
| | - Xinfeng Zou
- Shandong Xinchao Biotechnology Co., Ltd., Rizhao City, Shandong, China
| | - Xiaona Feng
- School of Life sciences, Jining Medical University, Rizhao City, Shandong, China
| | - Shuai Shi
- IVF center, Jinhua People's Hospital, Jinhua City, Zhejiang, China
| | - Yanyun Zheng
- School of Life sciences, Jining Medical University, Rizhao City, Shandong, China
| | - Qun Li
- School of Life sciences, Jining Medical University, Rizhao City, Shandong, China
| | - Yanqun Wu
- School of Life sciences, Jining Medical University, Rizhao City, Shandong, China.
| |
Collapse
|
4
|
Xiao T, Chen Y, Jiang B, Huang M, Liang Y, Xu Y, Zheng X, Wang W, Chen X, Cai G. Ultrasound-guided renal subcapsular transplantation of mesenchymal stem cells for treatment of acute kidney injury in a minipig model: safety and efficacy evaluation. Stem Cell Res Ther 2025; 16:102. [PMID: 40022148 PMCID: PMC11871648 DOI: 10.1186/s13287-025-04137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/10/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a major global public health concern with limited treatment options. While preclinical studies have suggested the potential of mesenchymal stem cells (MSCs) to repair and protect injured kidneys in AKI, clinical trials using transarterial MSCs transplantation have yielded disappointing results. This study aimed to investigate the feasibility and safety of minimally invasive renal subcapsular transplantation of MSCs for treating AKI in a minipig model, ultimately aiming to facilitate the clinical translation of this approach. METHODS A novel AKI minipig model was established by combining cisplatin with hydration to evaluate the effectiveness of potential therapies. Renal subcapsular catheterization was successfully achieved under ultrasound guidance. Subsequently, the efficacy of renal subcapsular MSCs transplantation was assessed, and the biological role of the tryptophan metabolite kynurenine (Kyn) in AKI was elucidated through both in vivo and in vitro experiments. RESULTS The method of pre-hydration at 4% of body weight, followed by post-cisplatin (3.8 mg/kg) hydration at 2% of body weight, successfully established a cisplatin-induced AKI minipig model with a survival time exceeding 28 days, closely mimicking the clinical characteristics of typical AKI patients. Additionally, we discovered that multiple MSCs transplantations promoted renal function recovery more effectively than single transplantation via the renal subcapsular catheter. Furthermore, elevated levels of Kyn were observed in kidney during AKI, which activated the aryl hydrocarbon receptor (AhR)-mediated NF-κB/NLRP3/IL-1β signaling pathway in tubular epithelial cells, thereby exacerbating inflammatory injury. CONCLUSIONS Ultrasound-guided renal subcapsular transplantation of mesenchymal stem cells is a safe and effective therapeutic approach for AKI, with the potential to bring about significant clinical advancements in the future.
Collapse
Affiliation(s)
- Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Bo Jiang
- Department of Ultrasound, First Medical Centre of Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yanjun Liang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xumin Zheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Wenjuan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
5
|
Chen J, He Z, Xu W, Kang Y, Zhu F, Tang H, Wang J, Zhong F. Human umbilical cord mesenchymal stem cells restore chemotherapy-induced premature ovarian failure by inhibiting ferroptosis in vitro ovarian culture system. Reprod Biol Endocrinol 2024; 22:137. [PMID: 39511578 PMCID: PMC11542367 DOI: 10.1186/s12958-024-01310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential in repairing chemotherapy-induced premature ovarian failure (POF). However, challenges such as stem cell loss and immune phagocytosis post-transplantation hinder their application. Due to easy and safe handling, in vitro ovarian culture is widely available for drug screening, pathophysiological research, and in vitro fertilization. MSCs could exhibit therapeutic capacity for ovarian injury, and avoid stem cell loss and immune phagocytosis in vitro tissue culture system. Therefore, this study utilizes an in vitro ovarian culture system to investigate the reparative potential of human umbilical cord mesenchymal stem cells (hUCMSCs) and their mechanism. METHODS In this study, a chemotherapy-induced POF model was established by introducing cisplatin in vitro ovarian culture system. The reparative effects of hUCMSCs on damaged ovarian tissue were validated through Transwell chambers. Tissue histology examination, immunohistochemical staining, Western blotting, and RT-PCR were employed to evaluate the expression effects of hUCMSCs on ferroptosis and fibrosis-related genes during the process of repairing cisplatin-induced POF. RESULTS Cisplatin was found to activate ovarian follicles in vitro POF model. Transcriptomic sequencing analysis revealed that cisplatin could activate genes associated with ferroptosis. hUCMSCs alleviated cisplatin-induced POF by suppressing the expression of ferroptosis. Moreover, inhibiting ferroptosis by hUCMSCs also ameliorated ovarian hormone levels and reduced the expression of fibrosis-related factors α-SMA and COL-I in the ovaries. CONCLUSIONS This study confirms that cisplatin-induced ovarian damage via ferroptosis in vitro POF model, and hUCMSCs repair ovarian injury by inhibiting the ferroptosis pathway and suppressing fibrosis. This research contributes to evaluating the effectiveness of hUCMSCs in treating chemotherapy-induced POF by inhibiting ferroptosis in an in vitro ovarian culture system and provides a potential therapeutic strategy for chemotherapy-induced POF.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenjuan Xu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yumiao Kang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Fengyu Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Suzhou, Anhui Province, 234011, China.
| | - Jianye Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
6
|
He J, Ao C, Li M, Deng T, Zheng S, Zhang K, Tu C, Ouyang Y, Lang R, Jiang Y, Yang Y, Li C, Wu D. Clusterin-carrying extracellular vesicles derived from human umbilical cord mesenchymal stem cells restore the ovarian function of premature ovarian failure mice through activating the PI3K/AKT pathway. Stem Cell Res Ther 2024; 15:300. [PMID: 39272156 PMCID: PMC11401318 DOI: 10.1186/s13287-024-03926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Emerging evidence has highlighted the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) in chemotherapy-induced premature ovarian failure (POF). This study was designed to investigate the appropriate timing and molecular mechanism of UC-MSCs treatment for chemotherapy-induced POF. METHODS Ovarian structure and function of mice were assessed every 3 days after injections with cyclophosphamide (CTX) and busulfan (BUS). UC-MSCs and UC-MSCs-derived extracellular vesicles (EVs) were infused into mice via the tail vein, respectively. Ovarian function was analyzed by follicle counts, the serum levels of hormones and ovarian morphology. The apoptosis and proliferation of ovarian granulosa cells were analyzed in vitro and in vivo. Label-free quantitative proteomics was used to detect the differentially expressed proteins in UC-MSC-derived EVs. RESULTS After CTX/BUS injection, we observed that the ovarian function of POF mice was significantly deteriorated on day 9 after CTX/BUS infusion. TUNEL assay indicated that the number of apoptotic cells in the ovaries of POF mice was significantly higher than that in normal mice on day 3 after CTX/BUS injection. Transplantation of UC-MSCs on day 6 after CTX/BUS injection significantly improved ovarian function, enhanced proliferation and inhibited apoptosis of ovarian granulosa cells, whereas the therapeutic effect of UC-MSCs transplantation decreased on day 9, or day 12 after CTX/BUS injection. Moreover, EVs derived from UC-MSCs exerted similar therapeutic effects on POF. UC-MSCs-derived EVs could activate the PI3K/AKT signaling pathway and reduce ovarian granulosa cell apoptosis. Quantitative proteomics analysis revealed that clusterin (CLU) was highly expressed in the EVs of UC-MSCs. The supplementation of CLU proteins prevented ovarian granulosa cells from chemotherapy-induced apoptosis. Further mechanistic analysis showed that CLU-knockdown blocked the PI3K/AKT signaling and reversed the protective effects of UC-MSCs-derived EVs. CONCLUSIONS Administration of UC-MSCs and UC-MSCs-derived EVs on day 6 of CTX/BUS injection could effectively improve the ovarian function of POF mice. UC-MSCs-derived EVs carrying CLU promoted proliferation and inhibited apoptosis of ovarian granulosa cells through activating the PI3K/AKT pathway. This study identifies a previously unrecognized molecular mechanism of UC-MSCs-mediated protective effects on POF, which pave the way for the use of cell-free therapeutic approach for POF.
Collapse
Affiliation(s)
- Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Mao Li
- College of Life Sciences, Hubei University, Wuhan, China
| | - Taoran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China.
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
7
|
Guan CY, Zhang D, Sun XC, Ma X, Xia HF. Human Umbilical Cord Mesenchymal Stem Cells Combined with Dehydroepiandrosterone Inhibits Inflammation-Induced Uterine Aging in Mice. Stem Cells Dev 2024; 33:419-431. [PMID: 38770820 DOI: 10.1089/scd.2023.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
With the postponement of the reproductive age of women, the difficulty of embryo implantation caused by uterine aging has become a key factor restricting fertility. However, there are few studies on protective interventions for naturally aging uteri. Although many factors cause uterine aging, such as oxidative stress (OS), inflammation, and fibrosis, their impact on uterine function manifests as reduced endometrial receptivity. This study aimed to use a combination of human umbilical cord mesenchymal stem cells (hUC-MSCs) and dehydroepiandrosterone (DHEA) to delay uterine aging. The results showed that the combined treatment of hUC-MSCs + DHEA increased the number of uterine glandular bodies and the thickness of the endometrium while inhibiting the senescence of endometrial epithelial cells. This combined treatment alleviates the expression of OS (reactive oxygen species, superoxide dismutase, and GSH-PX) and proinflammatory factors (interleukin [IL]-1, IL6, IL-18, and tumor necrosis factor-α) in the uterus, delaying the aging process. The combined treatment of hUC-MSCs + DHEA alleviated the abnormal hormone response of the endometrium, inhibited excessive accumulation and fibrosis of uterine collagen, and upregulated uterine estrogen and progesterone receptors through the PI3K/AKT/mTOR pathway. This study suggests that uterine aging can be delayed through hUC-MSCs + DHEA combination therapy, providing a new treatment method for uterine aging.
Collapse
Affiliation(s)
- Chun-Yi Guan
- Reproductive and Genetic Center, National Research Institute for Family Planning, Beijing, People's Republic of China
| | - Dan Zhang
- Graduate School, Peking Union Medical College, Beijing, People's Republic of China
| | - Xue-Cheng Sun
- Graduate School, Peking Union Medical College, Beijing, People's Republic of China
| | - Xu Ma
- Reproductive and Genetic Center, National Research Institute for Family Planning, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Beijing, People's Republic of China
| | - Hong-Fei Xia
- Reproductive and Genetic Center, National Research Institute for Family Planning, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
8
|
Chang L, Fan WW, Yuan HL, Liu X, Wang Q, Ruan GP, Pan XH, Zhu XQ. Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. NPJ Regen Med 2024; 9:20. [PMID: 38729990 PMCID: PMC11087646 DOI: 10.1038/s41536-024-00363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.
Collapse
Affiliation(s)
- Le Chang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei-Wen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - He-Ling Yuan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xin Liu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
9
|
Dai F, Liu H, He J, Wu J, Yuan C, Wang R, Yuan M, Yang D, Deng Z, Wang L, Wang Y, Yang X, Wang H, Hu W, Cheng Y. Model construction and drug therapy of primary ovarian insufficiency by ultrasound-guided injection. Stem Cell Res Ther 2024; 15:49. [PMID: 38378684 PMCID: PMC10880334 DOI: 10.1186/s13287-024-03646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Clinically, hormone replacement therapy (HRT) is the main treatment for primary ovarian insufficiency (POI). However, HRT may increase the risk of both breast cancer and cardiovascular disease. Exosomes derived from human umbilical cord mesenchymal stem cell (hUC-MSC) have been gradually applied to the therapy of a variety of diseases through inflammation inhibition, immune regulation, and tissue repair functions. However, the application and study of hUC-MSC exosomes in POI remain limited. METHODS Here, we first constructed four rat animal models: the POI-C model (the "cyclophosphamide-induced" POI model via intraperitoneal injection), the POI-B model (the "busulfan-induced" POI model), the POI-U model (the "cyclophosphamide-induced" POI model under ultrasonic guidance), and MS model (the "maternal separation model"). Second, we compared the body weight, ovarian index, status, Rat Grimace Scale, complications, and mortality rate of different POI rat models. Finally, a transabdominal ultrasound-guided injection of hUC-MSC exosomes was performed, and its therapeuticy effects on the POI animal models were evaluated, including changes in hormone levels, oestrous cycles, ovarian apoptosis levels, and fertility. In addition, we performed RNA-seq to explore the possible mechanism of hUC-MSC exosomes function. RESULTS Compared with the POI-C, POI-B, and MS animal models, the POI-U model showed less fluctuation in weight, a lower ovarian index, fewer complications, a lower mortality rate, and a higher model success rate. Second, we successfully identified hUC-MSCs and their exosomes, and performed ultrasound-guided intraovarian hUC-MSCs exosomes injection. Finally, we confirmed that the ultrasound-guided exosome injection (termed POI-e) effectively improved ovarian hormone levels, the oestrous cycle, ovarian function, and fertility. Mechanically, hUC-MSCs may play a therapeutic role by regulating ovarian immune and metabolic functions. CONCLUSIONS In our study, we innovatively constructed an ultrasound-guided ovarian drug injection method to construct POI-U animal models and hUC-MSC exosomes injection. And we confirmed the therapeutic efficacy of hUC-MSC exosomes on the POI-U animal models. Our study will offer a better choice for new animal models of POI in the future and provides certain guidance for the hUC-MSCs exosome therapy in POI patients.
Collapse
Affiliation(s)
- Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Juan He
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinglin Wu
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Chaoyan Yuan
- Department of Gynecology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Wei Hu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
10
|
Hu L, Tan R, He Y, Wang H, Pu D, Wu J. Stem cell therapy for premature ovarian insufficiency: a systematic review and meta-analysis of animal and clinical studies. Arch Gynecol Obstet 2024; 309:457-467. [PMID: 37264272 DOI: 10.1007/s00404-023-07062-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE The aim of this systematic review and meta-analysis is to evaluate the efficacy of stem cell therapy in mouse models of POI and patients with POI. METHODS The PubMed, Web of Science, and Embase databases were searched from inception to February 2022 for relevant animal and clinical studies. The reference lists of the included reviews were manually searched to identify additional eligible studies. Data were independently extracted by two investigators, and disagreements were resolved by discussion. SYRCLE's risk of bias tool and the MINORS tool were used to assess the quality of animal and clinical studies by two independent investigators. All statistical analyses were conducted using Review Manager 5.3 software. RESULTS A total of twenty animal studies and six clinical studies were included in this meta-analysis. In animal studies, the results showed that stem cells could improve hormone levels, follicle count, estrous cycle and pregnancy outcome. For hormone levels, stem cells increased serum E2 and AMH levels and decreased serum FSH and LH levels compared with the control group (serum E2 level: SMD: 5.05, 95% CI 4.21-5.90, P < 0.00001; serum AMH level: SMD: 4.42, 95% CI 3.06-5.79, P < 0.00001; serum FSH level: SMD: - 3.79, 95% CI - 4.87 to - 2.70, P < 0.00001; serum LH level: SMD: - 1.31, 95% CI - 1.65 to - 0.96, P < 0.00001). All follicle counts, except for the antral follicle count, were significantly changed compared with the control group. (primordial follicle count: SMD: 4.61, 95% CI 3.65-5.56, P < 0.00001; primary follicle count: SMD: 3.35, 95% CI 1.08-5.63, P = 0.004; secondary follicle count: SMD: 3.23, 95% CI 1.92-4.55, P < 0.00001; total follicle count: SMD: 4.84, 95% CI 2.86-6.83, P < 0.00001; oocyte count: SMD: 7.56, 95% CI 5.92-9.20, P < 0.00001; atretic follicle count: SMD: - 1.79, 95% CI - 2.59 to - 1.00, P < 0.00001). For the estrous cycle, stem cell therapy increased the number of estrous cycles (WMD: 2.72, 95% CI 2.07-3.37, P < 0.00001) and decreased the duration of the estrous cycle (WMD: - 1.26, 95% CI - 1.84 to - 0.69, P < 0.0001) compared with the control group. For pregnancy outcomes, stem cell therapy increased the fertility rate (RR: 3.00, 95% CI 1.74-5.17, P < 0.0001) and litter size (WMD: 3.82, 95% CI 0.36-7.28, P = 0.03) compared with the control group. In animal studies, the asymmetric funnel plot of serum E2 and FSH levels indicated the possibility of publication bias. Unpublished and negative studies may be the source of publication bias. In clinical studies, the results showed that stem cell therapy could decrease serum FSH level (MD: - 30.32, 95% CI - 59.03 to - 1.01, P = 0.04) and increase AFC (MD: 1.07, 95% CI 0.70-1.43, P < 0.00001), pregnancy rate (RD: 0.19, 95% CI 0.04-0.34, P = 0.01) and live birth rate (RD: 0.19, 95% CI 0.07-0.31, P = 0.001) in POI patients. In addition, there was no significant difference in menstrual function regained (RD: 0.22, 95% CI - 0.03-0.46, P = 0.09), oocytes retrieved (MD: 1.00, 95% CI - 0.64-2.64, P = 0.23) and embryos (MD: 0.80, 95% CI - 0.15-1.76, P = 0.10) between different groups. CONCLUSION This meta-analysis suggested that stem cell therapy might be effective in POI mouse models and patients and could be considered a potential treatment to restore fertility capability in POI patients.
Collapse
Affiliation(s)
- Luanqian Hu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongrong Tan
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuheng He
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiyuan Wang
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danhua Pu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jie Wu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Feng Y, Zhang W, Xu X, Wang W, Xu Y, Wang M, Zhang J, Xu H, Fu F. Protective effect of Luffa cylindrica fermentation liquid on cyclophosphamide-induced premature ovarian failure in female mice by attenuating oxidative stress, inflammation and apoptosis. J Ovarian Res 2024; 17:24. [PMID: 38273341 PMCID: PMC10809788 DOI: 10.1186/s13048-024-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of women's infertility without effective treatment. The purpose of this study was to investigate the protective effects of Luffa cylindrica fermentation liquid (LF) on cyclophosphamide (CTX) -induced POF in mice and to preliminarily investigate the underlying mechanisms. Thirty-two Balb/c mice were divided into four groups randomly. One group served as the control, while the other three received CTX injections to establish POF models. A 14-day gavage of either 5 or 10 μL/g LF was administered to two LF pretreatment groups. To analyze the effects of LF, the ovarian index, follicle number, the levels of serum sex hormones, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), inflammatory factors, and apoptosis of the ovarian cells were measured. The effects of LF pretreatment on the expression of TLR4/NF-κB and apoptosis pathways were also evaluated. We found that LF pretreatment increased the ovarian index and the number of primordial and antral follicles while decreasing those of atretic follicles. LF pretreatment also increased the serum levels of estradiol (E2) and anti-Müllerian hormone (AMH), while decreasing those of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Furthermore, LF pretreatment increased the levels of SOD and GSH in the ovaries, while decreasing those of MDA, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). LF administration reduced the amount of TUNEL+ ovarian cells and the levels of TLR4 and NF-κB P65 protein expression. In conclusion, LF has antioxidant, anti-inflammatory as well as anti-apoptotic effects against CTX-induced POF, and the inhibition of TLR4/NF-κB and apoptosis pathways may be involved in its mechanisms.
Collapse
Affiliation(s)
- Yueying Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Wei Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
| | - Xiaowei Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yuanyuan Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, No. 1 Mingde Road, Nanchang, 330000, People's Republic of China.
| |
Collapse
|
12
|
Hu B, Zheng X, Zhang W. Resveratrol-βcd inhibited premature ovarian insufficiency progression by regulating granulosa cell autophagy. J Ovarian Res 2024; 17:18. [PMID: 38221630 PMCID: PMC10789063 DOI: 10.1186/s13048-024-01344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND The ovarian environment of premature ovarian insufficiency (POI) patients exhibits immune dysregulation, which leads to excessive secretion of numerous proinflammatory cytokines that affect ovarian function. An abnormal level of macrophage polarization directly or indirectly inhibits the differentiation of ovarian granulosa cells and steroid hormone production, ultimately leading to POI. Resveratrol, as a health supplement, has been widely recognized for its safety. There is a substantial amount of evidence indicating that resveratrol and its analogs possess significant immune-regulatory functions. It has also been reported that resveratrol can effectively inhibit the progression of POI. However, the underlying immunological and molecular mechanisms through which resveratrol inhibits the progression of POI are still unclear. RESULTS Our preliminary reports have shown that resveratrol-βcd, the beta-cyclodextrin complex of resveratrol, significantly enhances the stability of resveratrol. Resveratrol-βcd could regulate the dysfunctional immune status of macrophages and T cells in the tumor microenvironment. In this study, we treated busulfan and cyclophosphamide (B/C)-treated mice, which were used as a POI model, with resveratrol-βcd. After resveratrol-βcd treatment, the levels of IL-6 in the ovaries were significantly increased, and the progression of POI was suppressed. IL-6 activated granulosa cells (GCs) through soluble IL-6R (sIL-6R), promoting autophagy in GCs. Resveratrol-βcd and IL-6 had a synergistic effect on enhancing autophagy in GCs and promoting E2 secretion. CONCLUSIONS We partially elucidated the immune mechanism by which resveratrol inhibits the progression of POI and the autophagy-regulating function of GCs. This provides a theoretical basis for using resveratrol to prevent POI in future studies and clinical guidance.
Collapse
Affiliation(s)
- Bingbing Hu
- The Reproductive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Xiushuang Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
13
|
Luo ZB, Yang LH, Han SZ, Chang SY, Liu H, An ZY, Zhang XL, Quan BH, Yin XJ, Kang JD. Cyclophosphamide reduces gene transcriptional activity and embryo in vitro development by inhibiting NF-κB expression through decreasing AcH4K12. Chem Biol Interact 2024; 387:110806. [PMID: 37980972 DOI: 10.1016/j.cbi.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Cyclophosphamide (CTX), a widely used chemotherapeutic agent for cancer treatment, has been associated with long-term toxicity and detrimental effects on oocytes and ovaries, resulting in female reproductive dysfunction. This study aimed to investigate the potential impact of CTX on in vitro maturation (IVM) injury of porcine oocytes and subsequent embryonic development, as well as its effects on epigenetic modification and gene activation during early embryonic development. The results demonstrated that CTX treatment caused aberrant spindle structure and mitochondrial dysfunction during oocyte maturation, inducing DNA damage and early apoptosis, which consequently disrupted meiotic maturation. Indeed, CTX significantly reduced the in vitro developmental capacity of porcine embryos, and induced DNA damage and apoptosis in in vitro fertilization (IVF) blastocysts. Importantly, CTX induced abnormal histone modification of AcH4K12 in early porcine embryos. Moreover, addition of LBH589 before zygotic genome activation (ZGA) effectively increased AcH4K12 levels and restored the protein expression of NF-κB, which can effectively enhance the in vitro developmental potential of IVF embryos. The DNA damage and apoptosis induced by CTX compromised the quality of the blastocysts, which were recovered by supplementation with LBH589. This restoration was accompanied by down-regulation of BAX mRNA expression and up-regulation of BCL2, POU5F1, SOX2 and SOD1 mRNA expression. These findings indicated that CTX caused abnormal histone modification of AcH4K12 in early porcine embryos and reduced the protein expression of NF-κB, a key regulator of early embryo development, which may block subsequent ZGA processes.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Hongye Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
14
|
Elahi N, Ai J, Makoolati Z. A Review on Treatment of Premature Ovarian Insufficiency: Characteristics, Limitations, and Challenges of Stem Cell versus ExosomeTherapy. Vet Med Int 2023; 2023:5760011. [PMID: 38023426 PMCID: PMC10673665 DOI: 10.1155/2023/5760011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a complex disorder that can result in varying degrees of infertility. Recently, mesenchymal stem cell (MSC) therapy and its derivatives, such as exosomes, have been introduced as novel strategies for the treatment of POI. This review discusses the features, limitations, and challenges of MSC and exosome therapy in the treatment of POI and provides readers with new insights for comparing and selecting chemical agents, optimizing doses, and other factors involved in study design and treatment strategies. MSC therapy has been shown to improve ovarian function in some animals with POI, but it can also have side effects such as high cost, time-consuming processes, limited lifespan and cell sources, loss of original characteristics during in vitro proliferation, dependence on specific culture environments, potential immune reactions, unknown therapeutic mechanisms, etc. However, exosome therapy is a newer therapy that has not been studied as extensively as MSC therapy, but that it has shown some promise in animal studies. The evidence for the effectiveness of MSC and exosome therapy is still limited, and more research is needed to determine whether these therapies are effective and safe for women with POI. This study presents a new perspective for researchers to advance their research in the fields of cell-based and cell-free therapies.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Makoolati
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
15
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
16
|
Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open 2023; 2023:hoad040. [PMID: 37954935 PMCID: PMC10637864 DOI: 10.1093/hropen/hoad040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future clinical application? SUMMARY ANSWER Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings. WHAT IS KNOWN ALREADY Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a number of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites (homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities. STUDY DESIGN SIZE DURATION Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 'mesenchymal stem cells' AND 'ovarian follicles' OR 'ovarian tissue culture' OR 'ovarian follicle culture' OR 'cumulus oocyte complex'. Only peer-reviewed published articles written in English were included. PARTICIPANTS/MATERIALS SETTING METHODS The primary outcome for the experimental strategies was evaluation of the ovarian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, oocyte growth and maturation rates, and of course pregnancy outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Preclinical studies exploring MSCs from different animal origins and tissue sources in specific conditions were selected (n = 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian tissue in experimental animal models. LIMITATIONS REASONS FOR CAUTION While preclinical results look promising in terms of protecting the ovarian reserve in different experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS All gathered data on the one hand show that regenerative medicine techniques are quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive medicine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively used in different clinical applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0077.14, FNRS-CDR J.0063.20, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, and the Fondation St Luc. None of the authors have any competing interest to disclose. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
17
|
Shuyuan Y, Meimei W, Fenghua L, Huishan Z, Min C, Hongchu B, Xuemei L. hUMSC transplantation restores follicle development in ovary damaged mice via re-establish extracellular matrix (ECM) components. J Ovarian Res 2023; 16:172. [PMID: 37620943 PMCID: PMC10464307 DOI: 10.1186/s13048-023-01217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES Explore the therapeutic role of human umbilical mesenchymal stem cells (hUMSCs) transplantation for regeneration of ECM components and restoration of follicular development in mice. BACKGROUND The extracellular matrix (ECM) is crucial to maintain ovary function and regulate follicular development, as it participates in important cell signaling and provides physical support to the cells. However, it is unknown how hUMSCs affect the expression of ECM-related genes in ovaries treated with cyclophosphamide (CTX) and busulfan (BUS). METHODS In the present study, we used 64 six- to eight-week-old ICR female mice to established mouse model. The mice were randomly divided into four groups (n = 16/group): control, POI, POI + hUMSCs, and POI + PBS group. The premature ovarian insufficiency (POI) mouse model was established by intraperitoneal injection of CTX and BUS for 7days, then, hUMSCs or PBS were respectively injected via the tail vein in POI + hUMSCs or POI + PBS group. Another 7days after injection, the mice were sacrificed to harvest the ovary tissue. The ovaries were immediately frozen with liquid nitrogen or fixed with 4% PFA for subsequent experiments. To screen differentially expressed genes (DEGs), we performed transcriptome sequencing of ovaries. Thereafter, a Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the related biological functions. Retrieval of interacting genes for ECM-related DEGs was performed using the function of STRINGdb (version 2.6.5) to evaluate potential protein-protein interaction (PPI) networks. Furthermore, qRT-PCR and IHC were performed to assess the differential expression of selected DEGs in control, damaged, hUMSCs-transplanted and non-transplanted ovaries. RESULTS Chemotherapy caused mouse ovarian follicular reserve depletion, and hUMSCs transplantation partially restored follicular development. Our results revealed that ECM-receptor interaction and ECM organization were both downregulated in the damaged ovaries. Further investigation showed that ECM-related genes were downregulated in the CTX and BUS treatment group and partially rescued in hUMSCs injection group but not in the PBS group. qRT-PCR and IHC verified the results: collagen IV and laminin gamma 3 were both expressed around follicle regions in normal ovaries, chemotherapy treatment disrupted their expression, and hUMSCs transplantation rescued their localization and expression to some extent. CONCLUSION Our data demonstrated that ECM-related genes participate in the regulation of ovarian reserve, hUMSCs treatment rescued abnormal expression and localization of collagen IV and laminin gamma 3 in the damaged ovaries. The results suggest that hUMSCs transplantation can maintain ECM-stable microenvironments, which is beneficial to follicular development.
Collapse
Affiliation(s)
- Yin Shuyuan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wang Meimei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Li Fenghua
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Zhao Huishan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chu Min
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Bao Hongchu
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Liu Xuemei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
18
|
Meng X, Zhang S, Zhao L, Wang Y. Hydrogen-rich water treatment targets RT1-Db1 and RT1-Bb to alleviate premature ovarian failure in rats. PeerJ 2023; 11:e15564. [PMID: 37397014 PMCID: PMC10314742 DOI: 10.7717/peerj.15564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Background Premature ovarian failure (POF) is defined as the cessation of ovarian function before the age of 40 years, imposing a significant health burden on patients. However, effective etiological therapy for POF is scarce. Thus, we aimed to explore the protective role and targets of hydrogen-rich water (HRW) in POF. Methods Based on cyclophosphamide (CTX)-induced POF rat models, the protective role of HRW treatment was mainly determined through serum 17-β-estradiol (E2), follicle-stimulating hormone (FSH), anti-mullerian hormone (AMH) levels, ovarian histomorphological analysis, and TUNEL assay. Tandem mass tag (TMT)-based quantitative proteomic analysis was then conducted on ovarian tissues, and the targets of HRW in POF were identified integrating differential expression analysis, functional enrichment analysis, and interaction analysis. Results In HRW treatment of POF rats, the serum AMH and E2 levels significantly increased, and FSH level significantly reduced, indicating the protective role of HRW. After TMT quantitative proteomic analysis, a total of 16 candidate differentially expressed proteins (DEPs) were identified after the cross analysis of DEPs from POF vs. control and POF+HRW vs. POF groups, which were found to be significantly enriched in 296 GO terms and 36 KEGG pathways. The crucial targets, RT1-Db1 and RT1-Bb, were finally identified based on both protein-protein interaction network and GeneMANIA network. Conclusions The HRW treatment could significantly alleviate the ovarian injury of POF rats; RT1-Db1 and RT1-Bb are identified as two crucial targets of HRW treatment in POF rats.
Collapse
Affiliation(s)
- Xiaoyin Meng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Shuai Zhang
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Lu Zhao
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| |
Collapse
|
19
|
Ohtake T, Itaba S, Salybekov AA, Sheng Y, Sato T, Yanai M, Imagawa M, Fujii S, Kumagai H, Harata M, Asahara T, Kobayashi S. Repetitive administration of cultured human CD34+ cells improve adenine-induced kidney injury in mice. World J Stem Cells 2023; 15:268-280. [PMID: 37181001 PMCID: PMC10173816 DOI: 10.4252/wjsc.v15.i4.268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease (CKD).
AIM To examine the efficacy of cultured human CD34+ cells with enhanced proliferating potential in kidney injury in mice.
METHODS Human umbilical cord blood (UCB)-derived CD34+ cells were incubated for one week in vasculogenic conditioning medium. Vasculogenic culture significantly increased the number of CD34+ cells and their ability to form endothelial progenitor cell colony-forming units. Adenine-induced tubulointerstitial injury of the kidney was induced in immunodeficient non-obese diabetic/severe combined immunodeficiency mice, and cultured human UCB-CD34+ cells were administered at a dose of 1 × 106/mouse on days 7, 14, and 21 after the start of adenine diet.
RESULTS Repetitive administration of cultured UCB-CD34+ cells significantly improved the time-course of kidney dysfunction in the cell therapy group compared with that in the control group. Both interstitial fibrosis and tubular damage were significantly reduced in the cell therapy group compared with those in the control group (P < 0.01). Microvasculature integrity was significantly preserved (P < 0.01) and macrophage infiltration into kidney tissue was dramatically decreased in the cell therapy group compared with those in the control group (P < 0.001).
CONCLUSION Early intervention using human cultured CD34+ cells significantly improved the progression of tubulointerstitial kidney injury. Repetitive administration of cultured human UCB-CD34+ cells significantly improved tubulointerstitial damage in adenine-induced kidney injury in mice via vasculoprotective and anti-inflammatory effects.
Collapse
Affiliation(s)
- Takayasu Ohtake
- Regenerative Medicine, The Center for Cell Therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Kanagawa, Japan
- Kidney Disease and Transplant center, Shonan Kamakura General Hospital, Kamakura 247-8533, Kanagawa, Japan
- Regenerative Medicine, Shonan Research Institute of Innovative Medicine, Kamakura 247-8533, Kanagawa, Japan
| | - Shoichi Itaba
- Kamakura Techno-science Inc., Kamakura 248-0036, Japan
| | - Amankeldi A Salybekov
- Regenerative Medicine, Shonan Research Institute of Innovative Medicine, Kamakura 247-8533, Kanagawa, Japan
| | - Yin Sheng
- Advanced Medicine Science, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Tsutomu Sato
- Regenerative Medicine, Shonan Research Institute of Innovative Medicine, Kamakura 247-8533, Kanagawa, Japan
| | - Mitsuru Yanai
- Department of Pathology, Sapporo Tokushukai Hospital, Sapporo 004-0041, Japan
| | - Makoto Imagawa
- Department of Pathology, Sapporo Medical Center, Sapporo 004-0041, Japan
| | - Shigeo Fujii
- Kamakura Techno-science Inc., Kamakura 248-0036, Japan
| | | | | | - Takayuki Asahara
- Regenerative Medicine, Shonan Research Institute of Innovative Medicine, Kamakura 247-8533, Kanagawa, Japan
- Cell Processing and Cell/Genome Analysis Center, The Center for Cell Therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Kanagawa, Japan
| | - Shuzo Kobayashi
- Regenerative Medicine, Shonan Research Institute of Innovative Medicine, Kamakura 247-8533, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Kanazawa, Japan
| |
Collapse
|
20
|
Pellicer N, Cozzolino M, Diaz-García C, Galliano D, Cobo A, Pellicer A, Herraiz S. Ovarian rescue in women with premature ovarian insufficiency: facts and fiction. Reprod Biomed Online 2023; 46:543-565. [PMID: 36710157 DOI: 10.1016/j.rbmo.2022.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
The ovary has a comparatively short functional lifespan compared with other organs, and genetic and pathological injuries can further shorten its functional life. Thus, preserving ovarian function should be considered in the context of women with threats to ovarian reserve, such as ageing, premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). Indeed, one-third of women with POI retain resting follicles that can be reactivated to produce competent oocytes, as proved by the in-vitro activation of dormant follicles. This paper discusses mechanisms and clinical data relating to new therapeutic strategies using ovarian fragmentation, stem cells or platelet-rich plasma to regain ovarian function in women of older age (>38 years) or with POI or DOR. Follicle reactivation techniques show promising experimental outcomes and have been successful in some cases, when POI is established or DOR diagnosed; however, there is scarce clinical evidence to warrant their widespread clinical use. Beyond these contexts, also discussed is how new insights into the biological mechanisms governing follicular dynamics and oocyte competence may play a role in reversing ovarian damage, as no technique modifies oocyte quality. Additional studies should focus on increasing follicle number and quality. Finally, there is a small but important subgroup of women lacking residual follicles and requiring oocyte generation from stem cells.
Collapse
Affiliation(s)
| | | | - César Diaz-García
- IVI London, EGA Institute for Women's Health, UCL, London, UK; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | - Ana Cobo
- IVI RMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- IVI RMA Rome, Rome, Italy; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sonia Herraiz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| |
Collapse
|
21
|
Luo X, Liu W, Zhao M, Wang J, Gao X, Feng F. The evaluation of sea cucumber ( Acaudina leucoprocta) peptide on sex hormone regulation in normal and premature ovarian failure female mice. Food Funct 2023; 14:1430-1445. [PMID: 36645395 DOI: 10.1039/d2fo01707e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sea cucumber peptides (SCPs) have various functional activities. However, studies to evaluate the efficacy and safety of SCPs from the perspective of sex hormones are still lacking. In this study, normal and premature ovarian failure (POF) female mice were used to assess the effect of SCPs on the sex hormones. The ovarian and uterine indices were not influenced by SCP both in normal and POF mice. In normal mice, SCP showed no significant impact on the estrous cycle, ovarian, uterine morphology, sex hormone levels, and sex hormone synthesis-related genes of the ovary. However, 0.6 mg per g bw dosage of SCP (SCPH) statistically increased mapk1 expression on normal mice hypothalamus. In POF mice, SCPH played a more positive role than a low dosage of SCP (0.2 mg per g bw). SCP ameliorated POF-induced estrous cycle disturbances and significantly increased serum estradiol, testosterone, and AMH levels. Moreover, SCP increased the synthesis of the sex hormone by upregulating the expression of StAR, Fshr, and Cyp19a1 in the ovary, which might be due to the activation of the cAMP-related signaling pathways. The upregulation of mapk1, Esr1, and Gnrh was also observed in the hypothalamus. Together, SCP is safe for normal female mice and seems to have positive effects on POF mice from sex hormone regulation. However, the risk of excessive supplementation of sex hormones induced by the SCP intake in POF mice needs to be further explored.
Collapse
Affiliation(s)
- Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Can a Large Number of Transplanted Mesenchymal Stem Cells Have an Optimal Therapeutic Effect on Improving Ovarian Function? Int J Mol Sci 2022; 23:ijms232416009. [PMID: 36555651 PMCID: PMC9788312 DOI: 10.3390/ijms232416009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are next-generation treatment in degenerative diseases. For the application of mesenchymal stem cell therapy to degenerative disease, transplantation conditions (e.g., optimized dose, delivery route and regenerating efficacy) should be considered. Recently, researchers have studied the mode of action of MSC in the treatment of ovarian degenerative disease. However, the evidence for the optimal number of cells for the developing stem cell therapeutics is insufficient. The objective of this study was to evaluate the efficacy in ovarian dysfunction, depends on cell dose. By intraovarian transplantation of low (1 × 105) and high (5 × 105) doses of placenta-derived mesenchymal stem cells (PD-MSCs) into thioacetamide (TAA)-injured rats, we compared the levels of apoptosis and oxidative stress that depend on different cell doses. Apoptosis and oxidative stress were significantly decreased in the transplanted (Tx) group compared to the non-transplanted (NTx) group in ovarian tissues from TAA-injured rats (* p < 0.05). In addition, we confirmed that follicular development was significantly increased in the Tx groups compared to the NTx group (* p < 0.05). However, there were no significant differences in the apoptosis, antioxidant or follicular development of injured ovarian tissues between the low and high doses PD-MSCs group. These findings provide new insights into the understanding and evidence obtained from clinical trials for stem cell therapy in reproductive systems.
Collapse
|
23
|
Rodríguez-Eguren A, Gómez-Álvarez M, Francés-Herrero E, Romeu M, Ferrero H, Seli E, Cervelló I. Human Umbilical Cord-Based Therapeutics: Stem Cells and Blood Derivatives for Female Reproductive Medicine. Int J Mol Sci 2022; 23:ijms232415942. [PMID: 36555583 PMCID: PMC9785531 DOI: 10.3390/ijms232415942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
There are several conditions that lead to female infertility, where traditional or conventional treatments have limited efficacy. In these challenging scenarios, stem cell (SC) therapies have been investigated as alternative treatment strategies. Human umbilical cord (hUC) mesenchymal stem cells (hUC-MSC), along with their secreted paracrine factors, extracts, and biomolecules, have emerged as promising therapeutic alternatives in regenerative medicine, due to their remarkable potential to promote anti-inflammatory and regenerative processes more efficiently than other autologous treatments. Similarly, hUC blood derivatives, such as platelet-rich plasma (PRP), or isolated plasma elements, such as growth factors, have also demonstrated potential. This literature review aims to summarize the recent therapeutic advances based on hUC-MSCs, hUC blood, and/or other plasma derivatives (e.g., extracellular vesicles, hUC-PRP, and growth factors) in the context of female reproductive medicine. We present an in-depth analysis of the principal molecules mediating tissue regeneration, compiling the application of these therapies in preclinical and clinical studies, within the context of the human reproductive tract. Despite the recent advances in bioengineering strategies that sustain delivery and amplify the scope of the therapeutic benefits, further clinical trials are required prior to the wide implementation of these alternative therapies in reproductive medicine.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
| | | | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mónica Romeu
- Gynecological Service, Consortium General University Hospital of Valencia, 46014 Valencia, Spain
| | - Hortensia Ferrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence: or
| |
Collapse
|
24
|
Bai X, Wang S. Signaling pathway intervention in premature ovarian failure. Front Med (Lausanne) 2022; 9:999440. [PMID: 36507521 PMCID: PMC9733706 DOI: 10.3389/fmed.2022.999440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Premature ovarian failure (POF) is a multifactorial disease that refers to the occurrence of secondary amenorrhea, estrogen decrease, and gonadotropin increase in women under the age of 40. The prevalence of POF is increasing year by year, and the existing instances can be categorized as primary or secondary cases. This disease has adverse effects on both the physiology and psychology of women. Hormone replacement therapy is the recommended treatment for POF, and a multidisciplinary strategy is required to enhance the quality of life of patients. According to recent studies, the primary mechanism of POF is the depletion of ovarian reserve function as a result of increased primordial follicular activation or primordial follicular insufficiency. Therefore, understanding the processes of primordial follicle activation and associated pathways and exploring effective interventions are important for the treatment of POF.
Collapse
|
25
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
26
|
Investigation of Molecular Mechanism of Banxia Xiexin Decoction in Colon Cancer via Network Pharmacology and In Vivo Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4961407. [PMID: 35815259 PMCID: PMC9270134 DOI: 10.1155/2022/4961407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Objective Banxia Xiexin decoction (BXD) is widely used in the treatment of gastrointestinal and other digestive diseases. This study is based on network pharmacology to explore the molecular mechanism of BXD in the treatment of colon cancer. Methods The bioactive components and potential targets of BXD were obtained from public database. The protein-protein interaction (PPI) network of the potential targets of BXD for colon cancer was constructed based on the STRING database, cytoscape software, gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of the PPI network. Finally, we established a xenograft nude mouse model to verify the effect of BXD in colon cancer treatment. Results We have acquired a total of 55 bioactive components and 136 cross-targets of BXD. The results of enrichment analysis suggested that the oxidate stress and diet were the key factors of colon cancer occurrence, and AGE-RAGE signaling pathway plays an essential role in the treatment of colon cancer with BXD. Animal experiments revealed that BXD could suppress tumor growth and induce tumor cell apoptosis in the xenograft nude mouse model with HCT116 cells. Conclusion This study uncovered that BXD inhibits the malignant progression of colon cancer that may be related to multiple compounds (berberine, quercetin, baicalein, etc.), multiple targets (Bcl2, Bax, IL6, TNFα, CASP3, etc.), and multiple pathways (human cytomegalovirus infection, AGE-RAGE signaling pathway in diabetic complications, etc.).
Collapse
|