1
|
Teissonnière M, Point M, Biver E, Hadji P, Bonnelye E, Ebeling PR, Kendler D, de Villiers T, Holzer G, Body JJ, Fuleihan GEH, Brandi ML, Rizzoli R, Confavreux CB. Bone Effects of Anti-Cancer Treatments in 2024. Calcif Tissue Int 2025; 116:54. [PMID: 40146323 PMCID: PMC11950069 DOI: 10.1007/s00223-025-01362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Considerable progress has been made in the management of cancer patients in the last decade with the arrival of anti-cancer immunotherapies (immune checkpoint inhibitors) and targeted therapies. As a result, a broad spectrum of cancers, not just hormone-sensitive ones, have seen several patients achieve profound and prolonged remissions, or even cures. The management of medium- and long-term side-effects of treatment and quality of life of patients are essential considerations. This is especially true for bone, as bone fragility can lead to increased fractures and loss of autonomy, ultimately reducing the possibility of resuming physical activity. Physical activity is essential for lasting oncological remission and prevention of fatigue. While the issue of hormone therapies and their association with breast cancer has been recognized for some time, the situation is relatively new with regards to targeted therapies and immunotherapies. This is particularly challenging given the wide range of available targeted therapies and their application to numerous cancer types. This article provides a comprehensive review of the bone effects of the main anti-cancer therapies currently in use. The review goes beyond glucocorticoids and hormone therapies and discusses for each drug category what is known regarding cellular effects, BMD effects, and fracture incidence.
Collapse
Affiliation(s)
- Marie Teissonnière
- Pharmacie, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Mathieu Point
- INSERM UMR1033-LYOS, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peyman Hadji
- Frankfurt Center of Bone Health & Philipps University of Marburg, Frankfurt, Germany
| | - Edith Bonnelye
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - David Kendler
- Department of Medicine (Endocrinology), University of British Columbia, Vancouver, Canada
| | - Tobias de Villiers
- Department Gynaecology, Stellenbosch University, Cape Town, South Africa
| | | | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghada El Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program WHO Center for Metabolic Bone Disorders, American University of Beirut, Beirut, Lebanon
| | - Maria Luisa Brandi
- FIRMO Foundation, Florence and University Vita-Salute San Raffaele, Milan, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Cyrille B Confavreux
- INSERM UMR1033-LYOS, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
- Rheumatology Department, Bone Metastasis Expert Center (CEMOS), Hospices Civils of Lyon Cancer Institute (IC-HCL), Hôpital Lyon Sud, Pierre-Bénite, France.
- Centre Expert Des Métastases Osseuses (CEMOS), Service de Rhumatologie Sud, Hôpital Lyon Sud, 165 chemin du Grand Revoyet, 69310, Pierre Bénite, France.
| |
Collapse
|
2
|
Yang W, Pan Q, Huang F, Hu H, Shao Z. Research progress of bone metastases: From disease recognition to clinical practice. Front Oncol 2023; 12:1105745. [PMID: 36761418 PMCID: PMC9905420 DOI: 10.3389/fonc.2022.1105745] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Hu
- *Correspondence: Hongzhi Hu, ; Zengwu Shao,
| | | |
Collapse
|
3
|
Rayson A, Boudiffa M, Naveed M, Griffin J, Dall’Ara E, Bellantuono I. Geroprotectors and Skeletal Health: Beyond the Headlines. Front Cell Dev Biol 2022; 10:682045. [PMID: 35223825 PMCID: PMC8864221 DOI: 10.3389/fcell.2022.682045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis and osteoarthritis are the most common age-related diseases of the musculoskeletal system. They are responsible for high level of healthcare use and are often associated with comorbidities. Mechanisms of ageing such as senescence, inflammation and autophagy are common drivers for both diseases and molecules targeting those mechanisms (geroprotectors) have potential to prevent both diseases and their co-morbidities. However, studies to test the efficacy of geroprotectors on bone and joints are scant. The limited studies available show promising results to prevent and reverse Osteoporosis-like disease. In contrast, the effects on the development of Osteoarthritis-like disease in ageing mice has been disappointing thus far. Here we review the literature and report novel data on the effect of geroprotectors for Osteoporosis and Osteoarthritis, we challenge the notion that extension of lifespan correlates with extension of healthspan in all tissues and we highlight the need for more thorough studies to test the effects of geroprotectors on skeletal health in ageing organisms.
Collapse
Affiliation(s)
- Alexandra Rayson
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maya Boudiffa
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maneeha Naveed
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Jon Griffin
- Healthy Lifespan Institute, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| |
Collapse
|
4
|
Cebey-López M, Currás-Tuala MJ, Gómez-Rial J, Rivero-Calle I, Pardo-Seco J, Mendez-Gallart R, Pischedda S, Gómez-Carballa A, Barral-Arca R, Justicia-Grande A, Viz-Lasheras S, Rodríguez-Tenreiro C, Gómez R, Salas A, Martinón-Torres F. Case Report: Everolimus reduced bone turnover markers but showed no clinical benefit in a patient with severe progressive osseous heteroplasia. Front Pediatr 2022; 10:936780. [PMID: 36483469 PMCID: PMC9723155 DOI: 10.3389/fped.2022.936780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Progressive osseous heteroplasia (POH) is an ultrarare genetic disorder characterized by an inactivating mutation in the GNAS gene that causes heterotopic ossification. Inhibition of the mammalian target of the rapamycin (mTOR) signalling pathway has been proposed as a therapy for progressive bone fibrodysplasia and non-genetic forms of bone heteroplasia. Herein, we describe the impact of using Everolimus as a rescue therapy for an identical twin girl exhibiting an aggressive clinical phenotype of POH. METHODS Clinical evaluation of the progression of the disease during Everolimus treatment was performed periodically. Cytokine markers involved in bone metabolism and protein markers related to bone activity were analyzed to explore bone turnover activity. RESULTS The patient received Everolimus therapy for 36 weeks. During treatment, no clinical improvement of the disease was perceived. Analysis of biochemical parameters, namely, β-CTX (r 2 = -0.576, P-value = 0.016) and PNIP (r 2 = -0.598, P-value = 0.011), indicated that bone turnover activity was significantly reduced. Additionally, bone metabolism-related biomarkers showed only a significant positive correlation with PTH levels. CONCLUSIONS Everolimus treatment did not modify the clinical progression of the disease in an aggressive form of POH, although an impact on the protein markers studied was observed.
Collapse
Affiliation(s)
- M Cebey-López
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - M J Currás-Tuala
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Gómez-Rial
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Servicio de inmunologia, Servicio de Análisis Clínicos. Hospital Clínico Universitario (SERGAS), Santiago de Compostela, Spain
| | - I Rivero-Calle
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Pardo-Seco
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Mendez-Gallart
- Pediatric Surgery, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - S Pischedda
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Gómez-Carballa
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Barral-Arca
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Justicia-Grande
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - S Viz-Lasheras
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodríguez-Tenreiro
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital (SERGAS), Santiago de Compostela, Spain
| | - A Salas
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,GenPoB Research Group, Instituto de Investigación Sanitaria, Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Spain
| | - F Martinón-Torres
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Jeong H, Jeong JH, Kim JE, Ahn JH, Jung KH, Koh SJ, Cheon J, Sohn J, Kim GM, Lee KS, Sim SH, Park IH, Kim SB. Final results of the randomized phase 2 LEO trial and bone protective effects of everolimus for premenopausal hormone receptor-positive, HER2-negative metastatic breast cancer. Int J Cancer 2021; 149:917-924. [PMID: 33905134 DOI: 10.1002/ijc.33613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
The phase 2 LEO study showed that everolimus (EVE) plus letrozole (LET) with ovarian suppression increased progression-free survival (PFS) in tamoxifen-exposed premenopausal women with hormone receptor-positive, HER2-negative metastatic breast cancer with visceral metastases. Here we report final survival outcomes from the LEO study, and the results of exploratory analyses of bone turnover marker changes and bone-specific progressive disease. Patients who were exposed to or progressed on tamoxifen as adjuvant/palliative treatments were randomly assigned (2:1) to the EVE (leuprorelin + LET + EVE, n = 92) or LET (leuprorelin + LET, n = 45) arm. In a median 51-months of follow-up, the median PFS was 17.5 and 13.8 months in the EVE and LET arms, respectively (P = .245). Patients in the EVE arm with baseline visceral (median PFS 16.4 vs 9.5 months, P = .040) and bone (median PFS 17.1 vs 10.9, P = .003) metastases had greater PFS compared to the LET arm. No differences in overall survival (OS) were observed (median OS, 48.3 vs 50.8 months, P = .948). The 1-year cumulative incidences of bone-specific disease progression were 6.0% and 23.4% in the EVE and LET arms, respectively (hazard ratio 0.26, P < .001). Bone turnover markers at 6 and 12 weeks after treatment decreased in the EVE arm but were increased or stationary in the LET arm. Skeletal-related events occurred in 6.5% and 11.1% of patients in the EVE and LET arms, respectively. EVE + LET with ovarian suppression prolonged PFS in patients with baseline visceral or bone metastases and offered bone-protective effects in the overall study population. However, these clinical benefits did not translate into an OS benefit.
Collapse
Affiliation(s)
- Hyehyun Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Su-Jin Koh
- Division of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine Ulsan, Ulsan, South Korea
| | - Jaekyung Cheon
- Division of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine Ulsan, Ulsan, South Korea
| | - Joohyuk Sohn
- Department of Oncology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Gun Min Kim
- Department of Oncology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center, Goyang, South Korea
| | - Sung Hoon Sim
- Center for Breast Cancer, National Cancer Center, Goyang, South Korea
| | - In Hae Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
8
|
Tiedemann K, Hussein O, Komarova SV. Role of Altered Metabolic Microenvironment in Osteolytic Metastasis. Front Cell Dev Biol 2020; 8:435. [PMID: 32582711 PMCID: PMC7290111 DOI: 10.3389/fcell.2020.00435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Metastatic bone disease is generally incurable and leads to pathological fractures, pain, hypercalcemia, spinal cord compression and decreased mobility. The skeleton is the major site of bone metastases from solid cancers, including breast and prostate carcinoma. Bone metastasis is facilitated by activation of bone-resorbing osteoclasts, terminally differentiated multinucleated cells formed by fusion from monocytic precursors. Cancer cells are known to produce specific factors that stimulate osteoclast differentiation and function. Of interest, cancer cells are also known to alter their own bioenergetics increasing the use of glycolysis for their survival and function. Such change in energy utilization by cancer cells would result in altered levels of cell-permeable metabolites, including glucose, lactate, and pyruvate. Osteoclast resorption is energy-expensive, and we have previously demonstrated that during differentiation osteoclasts actively adapt to their bioenergetics microenvironment. We hypothesize that altered bioenergetics state of cancer cells will also modify the bioenergetics substrate availability for the tissue-resident bone cells, potentially creating a favorable milieu for pathological osteolysis. The goals of this review are to analyze how metastasizing cancer cells change the availability of energy substrates in bone microenvironment; and to assess how the altered bioenergetics may affect osteoclast differentiation and activity.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospitals for Children - Canada, Montréal, QC, Canada
| | - Osama Hussein
- Department of Surgery, Mansoura University Cancer Center, Mansoura, Egypt
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montréal, QC, Canada.,Shriners Hospitals for Children - Canada, Montréal, QC, Canada
| |
Collapse
|
9
|
Bone Metabolism and Vitamin D Implication in Gastroenteropancreatic Neuroendocrine Tumors. Nutrients 2020; 12:nu12041021. [PMID: 32276412 PMCID: PMC7230756 DOI: 10.3390/nu12041021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Patients affected by gastroenteropancreatic–neuroendocrine tumors (GEP–NETs) have an increased risk of developing osteopenia and osteoporosis, as several factors impact on bone metabolism in these patients. In fact, besides the direct effect of bone metastasis, bone health can be affected by hormone hypersecretion (including serotonin, cortisol, and parathyroid hormone-related protein), specific microRNAs, nutritional status (which in turn could be affected by medical and surgical treatments), and vitamin D deficiency. In patients with multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome associated with NET occurrence, bone damage may carry other consequences. Osteoporosis may negatively impact on the quality of life of these patients and can increment the cost of medical care since these patients usually live with their disease for a long time. However, recommendations suggesting screening to assess bone health in GEP–NET patients are missing. The aim of this review is to critically analyze evidence on the mechanisms that could have a potential impact on bone health in patients affected by GEP–NET, focusing on vitamin D and its role in GEP–NET, as well as on factors associated with MEN1 that could have an impact on bone homeostasis.
Collapse
|
10
|
Turpin A, Duterque-Coquillaud M, Vieillard MH. Bone Metastasis: Current State of Play. Transl Oncol 2020; 13:308-320. [PMID: 31877463 PMCID: PMC6931192 DOI: 10.1016/j.tranon.2019.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis (BM) in cancer remains a critical issue because of its associated clinical and biological complications. Moreover, BM can alter the quality of life and survival rate of cancer patients. Growing evidence suggests that bones are a fertile ground for the development of metastasis through a "vicious circle" of bone resorption/formation and tumor growth. This review aims to outline the current major issues in the diagnosis and management of BM in the most common types of osteotropic cancers and describe the mechanisms and effects of BM. First, we discuss the incidence of BM through the following questions: Are we witnessing an increase in incidence, and are we now better equipped with modern imaging techniques? Is the advent of efficient bone resorption inhibitors affecting the bigger picture of BM management? Second, we discuss the potential effects of cancer progression and well-prescribed drugs, such as multitarget tyrosine kinase inhibitors, inhibitors of the mammalian target of rapamycin, and immune checkpoint inhibitors, on BM. Finally, we examine the duality of the effects of some therapies that may help in cancer treatment but may also contribute to further BM.
Collapse
Affiliation(s)
- Anthony Turpin
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Targeted Therapies, F-59021 Lille, France; Department of Medical Oncology, CHU Lille, 59037 Lille, France
| | - Martine Duterque-Coquillaud
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Targeted Therapies, F-59021 Lille, France.
| | - Marie-Hélène Vieillard
- Department of Rheumatology, CHU de Lille, 59037 Lille, France; Department of supportive care, Centre Oscar Lambret, 59000 Lille, France
| |
Collapse
|
11
|
Altieri B, Di Dato C, Martini C, Sciammarella C, Di Sarno A, Colao A, Faggiano A. Bone Metastases in Neuroendocrine Neoplasms: From Pathogenesis to Clinical Management. Cancers (Basel) 2019; 11:cancers11091332. [PMID: 31500357 PMCID: PMC6770134 DOI: 10.3390/cancers11091332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Bone represents a common site of metastases for several solid tumors. However, the ability of neuroendocrine neoplasms (NENs) to localize to bone has always been considered a rare and late event. Thanks to the improvement of therapeutic options, which results in longer survival, and of imaging techniques, particularly after the introduction of positron emission tomography (PET) with gallium peptides, the diagnosis of bone metastases (BMs) in NENs is increasing. The onset of BMs can be associated with severe skeletal complications that impair the patient’s quality of life. Moreover, BMs negatively affect the prognosis of NEN patients, bringing out the lack of curative treatment options for advanced NENs. The current knowledge on BMs in gastro-entero-pancreatic (GEP) and bronchopulmonary (BP) NENs is still scant and is derived from a few retrospective studies and case reports. This review aims to perform a critical analysis of the evidence regarding the role of BMs in GEP- and BP-NENs, focusing on the molecular mechanisms underlining the development of BMs, as well as clinical presentation, diagnosis, and treatment of BMs, in an attempt to provide suggestions that can be used in clinical practice.
Collapse
Affiliation(s)
- Barbara Altieri
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Carla Di Dato
- Department of Clinical Medicine, Bufalini Hospital, 47521 Cesena, Italy.
| | - Chiara Martini
- Clinica Medica 3, Department of Medicine, DIMED, University of Padova, 35128 Padova, Italy.
| | - Concetta Sciammarella
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37126 Verona, Italy.
| | | | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
| | - Antongiulio Faggiano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
12
|
Dewulf J, Vangestel C, Verhoeven Y, van Dam P, Elvas F, Van den Wyngaert T, Clézardin P. Bone metastases in the era of targeted treatments: insights from molecular biology. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:98-111. [PMID: 31298015 DOI: 10.23736/s1824-4785.19.03203-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone metastases remain a common feature of advanced cancers and are associated with significant morbidity and mortality. Recent research has identified promising novel treatment targets to improve current treatment strategies for bone metastatic disease. This review summarizes the well-known and recently discovered molecular biology pathways in bone that govern normal physiological remodeling or drive the pathophysiological changes observed when bone metastases are present. In the rapidly changing world of targeted cancer treatments, it is important to recognize the specific treatment effects induced in bone by these agents and the potential impact on common imaging strategies. The osteoclastic targets (bisphosphonates, LGR4, RANKL, mTOR, MET-VEGFR, cathepsin K, Src, Dock 5) and the osteoblastic targets (Wnt and endothelin) are discussed, and the emerging field of osteo-immunity is introduced as potential future therapeutic target. Finally, a summary is provided of available trial data for agents that target these pathways and that have been assessed in patients. The ultimate goal of research into novel pathways and targets involved in the tumor-bone microenvironment is to tackle one of the great remaining unmet needs in oncology, that is finding a cure for bone metastatic disease.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Peter van Dam
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium - .,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Philippe Clézardin
- INSERM Laboratory Pathophysiology, Diagnosis and Treatments of Bone Diseases, Lyon, France.,INSERM European Associated Laboratory Cancer and Bone Metastasis, University of Sheffield, Medical School, Sheffield, UK
| |
Collapse
|
13
|
Wu J, Wang A, Wang X, Li G, Jia P, Shen G, Chen B, Yuan Y, Zhang H, Yang F, Xu Y. Rapamycin improves bone mass in high-turnover osteoporosis with iron accumulation through positive effects on osteogenesis and angiogenesis. Bone 2019; 121:16-28. [PMID: 30610968 DOI: 10.1016/j.bone.2018.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/08/2023]
Abstract
Iron accumulation is an independent risk factor for type I osteoporosis, but the molecular mechanisms of the phenomenon are not well defined, and effective therapy has not been reported. Here, we found that the level of mTOR was increased both in wild-type mouse models with iron accumulation and transgenic mouse models (Hepc-/-) of high-turnover osteoporosis with iron accumulation. We show that an increased level of mTOR can depress osteogenesis and angiogenesis by Cxcl9 both in bone and in vitro. Suppression of mTOR in mouse models by rapamycin and in vitro by siRNA transfection recovered both osteogenesis and angiogenesis. These findings revealed the role of mTOR in osteogenesis and angiogenesis in high-turnover osteoporosis with iron accumulation and showed that rapamycin targeting of mTOR ameliorates osteogenesis and angiogenesis to improve bone mass.
Collapse
Affiliation(s)
- Jiadong Wu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China; Department of Orthopedics, Affiliated Yancheng Hospital of Southeast University Medical College, 224005 Yancheng, China
| | - Aifei Wang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Xiao Wang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Guangfei Li
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Peng Jia
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Guangsi Shen
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Bin Chen
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Ye Yuan
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Hui Zhang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China
| | - Fan Yang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China; Osteoporosis Institute, Soochow University, 215004 Suzhou, China
| | - Youjia Xu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, 215004 Suzhou, China; Osteoporosis Institute, Soochow University, 215004 Suzhou, China.
| |
Collapse
|
14
|
Göbel A, Breining D, Rauner M, Hofbauer LC, Rachner TD. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death Dis 2019; 10:91. [PMID: 30692522 PMCID: PMC6349912 DOI: 10.1038/s41419-019-1322-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
The mevalonate pathway has emerged as a promising target for several solid tumors. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of this pathway, and are commonly used to treat patients with hypercholesterolemia. Pleiotropic antitumor mechanisms of statins have been demonstrated for several human cancer types. However, cancer cells differ in their individual statin sensitivity and some cell lines have shown relative resistance. In this study we demonstrate, that the human breast cancer cell lines MDA-MB-231, MDA-MB-468, MCF-7, and T47D are differentially affected by statins. Whereas the vitality of MDA-MB-231 and MDA-MB-468 cells was reduced by up to 60% using atorvastatin, simvastatin, or rosuvastatin (p < 0.001), only marginal effects were seen in T47D and MCF-7 cells following exposure to statins. Statin treatment led to an upregulation of HMGCR mRNA and protein expression by up to sixfolds in the statin-resistant cells lines (p < 0.001), but no alterations of HMGCR were observed in the statin-sensitive MDA-MB-231 and MDA-MB-468 cells. The knockdown of HMGCR prior to statin treatment sensitized the resistant cell lines, reflected by a 70% reduction in vitality, increased apoptotic DNA fragmentation (sixfold) and by accumulation of the apoptosis marker cleaved poly-ADP ribose polymerase. Statins induced a cleavage of the sterol-regulatory element-binding protein (SREBP)-2, a transcriptional activator of the HMGCR, in T47D and MCF-7 cells. The inhibition of SREBP-2 activation by co-administration of dipyridamole sensitized MCF-7 and T47D cells for statins (loss of vitality by 80%; p < 0.001). Furthermore, assessment of a statin-resistant MDA-MB-231 clone, generated by long-term sublethal statin exposure, revealed a significant induction of HMGCR expression by up to 12-folds (p < 0.001). Knockdown of HMGCR restored statin sensitivity back to levels of the parental cells. In conclusion, these results indicate a resistance of cancer cells against statins, which is in part due to the induction of HMGCR.
Collapse
Affiliation(s)
- Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dorit Breining
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Hadji P, Stoetzer O, Decker T, Kurbacher CM, Marmé F, Schneeweiss A, Mundhenke C, Distelrath A, Fasching PA, Lux MP, Lüftner D, Janni W, Muth M, Kreuzeder J, Quiering C, Grischke EM, Tesch H. The impact of mammalian target of rapamycin inhibition on bone health in postmenopausal women with hormone receptor-positive advanced breast cancer receiving everolimus plus exemestane in the phase IIIb 4EVER trial. J Bone Oncol 2018; 14:010-10. [PMID: 30515367 PMCID: PMC6263089 DOI: 10.1016/j.jbo.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/31/2023] Open
Abstract
Background Breast cancer and its treatments are associated with a detrimental effect on bone health. Here we report the results of an exploratory analysis assessing changes in levels of biomarkers of bone metabolism in patients enrolled in the phase IIIb 4EVER study. Methods The 4EVER trial investigated everolimus in combination with exemestane in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer. In this prespecified exploratory analysis, changes in biomarkers of bone turnover were assessed in patients from baseline to weeks 4, 12, and 24. The serum bone markers assessed were procollagen type 1 N-terminal propeptide (P1NP), C-terminal cross-linking telopeptide of type 1 collagen (CTX), osteocalcin, parathyroid hormone (PTH), and 25-hydroxyvitamin D (25-OH-vitamin D). On-treatment changes in bone markers over time were described per subgroup of interest and efficacy outcomes. Results Bone marker data were available for 241 of 299 enrolled patients. At the final assessment, P1NP, osteocalcin, PTH, 25-OH-vitamin D (all P < 0.001), and CTX (P = 0.036) were significantly decreased from baseline values per the Wilcoxon signed-rank test. At the last assessment (24 weeks or earlier), levels of serum CTX and PTH were significantly lower (P = 0.009 and P = 0.034, respectively) among patients with vs. without prior antiresorptive treatment (ART). Serum CTX levels were significantly lower (P < 0.001), and 25-OH-vitamin D concentrations significantly higher (P = 0.029), at the last postbaseline assessment in patients receiving concomitant ART vs. those without ART. Changes from baseline in PTH and 25-OH-vitamin D concentrations to the final assessment were significantly smaller in patients with prior ART. Lower baseline serum concentrations of osteocalcin and PTH were associated with clinical response (partial vs. non-response) at 24 weeks. High serum levels of CTX and P1NP at baseline were risk factors for progression at 12 weeks. Conclusions These exploratory analyses support use of everolimus plus exemestane for the treatment of postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer, and add to the body of evidence suggesting a potentially favorable impact of everolimus on bone turnover. Trial registration NCT01626222. Registered 22 June 2012, https://clinicaltrials.gov/ct2/show/NCT01626222.
Collapse
Key Words
- 25-OH-vitamin D, 25-hydroxyvitamin D
- Art, antiresorptive therapy
- BSAP, bone-specific alkaline phosphatase
- Bone health
- Bone marker
- Breast cancer
- CI, confidence interval
- CR, complete response
- CTX, C-terminal cross-linking telopeptide of type 1 collagen
- Everolimus
- HER2-negative, human epidermal growth factor receptor 2-negative
- HR, hazard ratio
- HR +, hormone receptor-positive
- Hormone receptor-positive
- Mammalian target of rapamycin
- NSAI, non-steroidal aromatase inhibitor
- OR, overall response
- ORR, overall response rate
- ORR24w, overall response rate within the first 24 weeks of treatment
- P1NP, procollagen type 1 N-terminal peptide
- PFS, progression-free survival
- PR, partial response
- PTH, parathyroid hormone
- SD, standard deviation
- SRE, skeletal-related event
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Peyman Hadji
- Department of Bone Oncology, Endocrinology and Reproductive Medicine, North West Hospital, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.,Philipps University of Marburg, Steinbacher Hohl 2-26, 60488 Marburg Frankfurt, Germany
| | - Oliver Stoetzer
- Haematology and Oncology, Outpatient Cancer Care Center, Munich, Germany
| | | | | | - Frederik Marmé
- Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Christoph Mundhenke
- Department of Obstetrics and Gynecology, University Hospital Kiel, Kiel, Germany
| | - Andrea Distelrath
- Praxisgemeinschaft für Onkologie und Urologie, Facharztzentrum am Meer, Friedrich-Paffrath-Str. 98, 26389 Wilhelmshaven, Germany
| | - Peter A Fasching
- Department of Obstetrics and Gynaecology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael P Lux
- Department of Obstetrics and Gynaecology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Diana Lüftner
- Medical Department for Haematology, Oncology, and Tumor Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | | | | | | | - Eva-Marie Grischke
- Department of Obstetrics and Gynecology, University of Tuebingen, Germany
| | - Hans Tesch
- Department of Oncology, Bethanien Hospital, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Farr JN, Almeida M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res 2018; 33:1568-1584. [PMID: 30075061 PMCID: PMC6327947 DOI: 10.1002/jbmr.3564] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Aging research has undergone unprecedented advances at an accelerating rate in recent years, leading to excitement in the field as well as opportunities for imagination and innovation. Novel insights indicate that, rather than resulting from a preprogrammed series of events, the aging process is predominantly driven by fundamental non-adaptive mechanisms that are interconnected, linked, and overlap. To varying degrees, these mechanisms also manifest with aging in bone where they cause skeletal fragility. Because these mechanisms of aging can be manipulated, it might be possible to slow, delay, or alleviate multiple age-related diseases and their complications by targeting conserved genetic signaling pathways, controlled functional networks, and basic biochemical processes. Indeed, findings in various mammalian species suggest that targeting fundamental aging mechanisms (eg, via either loss-of-function or gain-of-function mutations or administration of pharmacological therapies) can extend healthspan; ie, the healthy period of life free of chronic diseases. In this review, we summarize the evidence supporting the role of the spectrum of fundamental basic science discoveries contributing to organismal aging, with emphasis on mammalian studies and in particular aging mechanisms in bone that drive skeletal fragility. These mechanisms or aging hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Because these mechanisms are linked, interventions that ameliorate one hallmark can in theory ameliorate others. In the field of bone and mineral research, current challenges include defining the relative contributions of each aging hallmark to the natural skeletal aging process, better understanding the complex interconnections among the hallmarks, and identifying the most effective therapeutic strategies to safely target multiple hallmarks. Based on their interconnections, it may be feasible to simultaneously interfere with several fundamental aging mechanisms to alleviate a wide spectrum of age-related chronic diseases, including osteoporosis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Granata S, Santoro G, Masola V, Tomei P, Sallustio F, Pontrelli P, Accetturo M, Antonucci N, Carratù P, Lupo A, Zaza G. In Vitro Identification of New Transcriptomic and miRNomic Profiles Associated with Pulmonary Fibrosis Induced by High Doses Everolimus: Looking for New Pathogenetic Markers and Therapeutic Targets. Int J Mol Sci 2018; 19:1250. [PMID: 29677166 PMCID: PMC5979287 DOI: 10.3390/ijms19041250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
The administration of Everolimus (EVE), a mTOR inhibitor used in transplantation and cancer, is often associated with adverse effects including pulmonary fibrosis. Although the underlying mechanism is not fully clarified, this condition could be in part caused by epithelial to mesenchymal transition (EMT) of airway cells. To improve our knowledge, primary bronchial epithelial cells (BE63/3) were treated with EVE (5 and 100 nM) for 24 h. EMT markers (α-SMA, vimentin, fibronectin) were measured by RT-PCR. Transepithelial resistance was measured by Millicell-ERS ohmmeter. mRNA and microRNA profiling were performed by Illumina and Agilent kit, respectively. Only high dose EVE increased EMT markers and reduced the transepithelial resistance of BE63/3. Bioinformatics showed 125 de-regulated genes that, according to enrichment analysis, were implicated in collagen synthesis/metabolism. Connective tissue growth factor (CTGF) was one of the higher up-regulated mRNA. Five nM EVE was ineffective on the pro-fibrotic machinery. Additionally, 3 miRNAs resulted hyper-expressed after 100 nM EVE and able to regulate 31 of the genes selected by the transcriptomic analysis (including CTGF). RT-PCR and western blot for MMP12 and CTGF validated high-throughput results. Our results revealed a complex biological network implicated in EVE-related pulmonary fibrosis and underlined new potential disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Gloria Santoro
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Valentina Masola
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Paola Tomei
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Fabio Sallustio
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Paola Pontrelli
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Matteo Accetturo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Nadia Antonucci
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Pierluigi Carratù
- Department of Respiratory Diseases, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| |
Collapse
|
18
|
Huynh H, Wan Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun Biol 2018; 1:29. [PMID: 30271915 PMCID: PMC6123628 DOI: 10.1038/s42003-018-0028-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
Rapamycins are immunosuppressant and anti-cancer drugs that inhibit the kinase mTOR. Clinically, they often cause bone pain, bone necrosis, and high bone turnover, yet the mechanisms are unclear. Here we show that mTORC1 activity is high in osteoclast precursors but downregulated upon RANKL treatment. Loss-of-function genetic models reveal that while early Raptor deletion in hematopoietic stem cells blunts osteoclastogenesis due to compromised proliferation/survival, late Raptor deletion in osteoclast precursors instead augments osteoclastogenesis. Gain-of-function genetic models by TSC1 deletion in HSCs or osteoclast precursors cause constitutive mTORC1 activation, impairing osteoclastogenesis. Pharmacologically, rapamycin treatment at low but clinically relevant doses exacerbates osteoclast differentiation and bone resorption, leading to bone loss. Mechanistically, RANKL inactivates mTORC1 via calcineurin-mediated mTORC1 dephosphorylation, consequently activating NFATc1 by reducing mTORC1-mediated NFATc1 phosphorylation. These findings uncover biphasic roles of mTORC1 in osteoclastogenesis, dosage-dependent effects of rapamycin on bone, and a previously unrecognized calcineurin-mTORC1-NFATc1 phosphorylation-regulatory signaling cascade.
Collapse
Affiliation(s)
- HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Jiang F, Liu S, Chen A, Li BY, Robling AG, Chen J, Yokota H. Finite Element Analysis of the Mouse Distal Femur with Tumor Burden in Response to Knee Loading. INTERNATIONAL JOURNAL OF ORTHOPAEDICS (HONG KONG) 2018; 5:863-871. [PMID: 30505850 PMCID: PMC6261479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breast cancer-associated bone metastasis induces bone loss, followed by an increased risk of bone fracture. To develop a strategy for preventing tumor growth and protecting bone, an understanding of the mechanical properties of bone under tumor burden is indispensable. Using a mouse model of mammary tumor, we conducted finite element analysis (FEA) of two bone samples from the distal femur. One sample was from a placebo-treated mouse, and the other was from a mouse treated with the investigational drug candidate, PD407824, an inhibitor of checkpoint kinases. Mechanical testing and microCT images revealed that bone strength is improved by administration of PD407824. In response to loading to the knee, FEA predicted that the peaks of von Mises stress, an indicator of fracture yielding, as well as the third principal compressive stress, were higher in the placebo-treated femur than the drug-treated femur. Higher peak stresses in trabecular segments were observed in the lateral condyle, a critical region for integrity of the knee joint. Collectively, this FE study supports the notion that mechanical weakening of the femur was observed in the tumor-invaded trabecular bone, and chemical agents such as PD407824 may potentially assist in preventing bone loss and bone fracture.
Collapse
Affiliation(s)
- Feifei Jiang
- Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Chen
- Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|