1
|
Okafor A, Adam Y, Brors B, Adebiyi E. Transcriptome analysis reveals a de novo DNA element that may interact with chromatin-associated proteins in Plasmodium berghei during erythrocytic development. Sci Rep 2025; 15:18621. [PMID: 40436967 PMCID: PMC12120095 DOI: 10.1038/s41598-025-03586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
The life cycle of Plasmodium parasites involves intricate, multistage processes that are tightly regulated by stage-specific transcription factors. These factors bind to regulatory regions within gene promoters, enabling the precise expression of genes required for each developmental stage. Despite the importance of these transcriptional mechanisms, our understanding remains limited, particularly in the rodent model organism P. berghei. To address this, we conducted a genome-wide analysis of RNA-Seq data from different developmental stages of P. berghei by initially integrating data from human malaria parasites P. falciparum and P. vivax. We identified unique transcriptional signatures across Plasmodium species. Our analysis of P. berghei revealed stage-specific gene sets clustered by expression profiles and predicted regulatory motifs involved in their control. We interpreted these motifs using known binding sites for eukaryotic transcription factors including ApiAP2 proteins. Additionally, we expanded the annotation of the AGGTAA motif which resembles a de novo motif linked to erythrocytic development in P. falciparum, and identified its potential interacting proteins including members of the PfMORC and GCN5 complexes. This study enhances our understanding of gene regulation in P. berghei and provides new insights into the transcriptional dynamics underlying Plasmodium development.
Collapse
Affiliation(s)
- Adaobi Okafor
- Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, 112233, Ogun State, Nigeria
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, 112233, Ogun State, Nigeria
| | - Benedikt Brors
- Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Ezekiel Adebiyi
- Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, 112233, Ogun State, Nigeria.
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, 10218, Kampala, Uganda.
- Institute of Infectious Diseases (IDI), Makerere University, 10218, Kampala, Uganda.
| |
Collapse
|
2
|
Zhang H, Mulqueen RM, Iannuzo N, Farrera DO, Polverino F, Galligan JJ, Ledford JG, Adey AC, Cusanovich DA. txci-ATAC-seq: a massive-scale single-cell technique to profile chromatin accessibility. Genome Biol 2024; 25:78. [PMID: 38519979 PMCID: PMC10958877 DOI: 10.1186/s13059-023-03150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/20/2023] [Indexed: 03/25/2024] Open
Abstract
We develop a large-scale single-cell ATAC-seq method by combining Tn5-based pre-indexing with 10× Genomics barcoding, enabling the indexing of up to 200,000 nuclei across multiple samples in a single reaction. We profile 449,953 nuclei across diverse tissues, including the human cortex, mouse brain, human lung, mouse lung, mouse liver, and lung tissue from a club cell secretory protein knockout (CC16-/-) model. Our study of CC16-/- nuclei uncovers previously underappreciated technical artifacts derived from remnant 129 mouse strain genetic material, which cause profound cell-type-specific changes in regulatory elements near many genes, thereby confounding the interpretation of this commonly referenced mouse model.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Ryan M Mulqueen
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Dominique O Farrera
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Francesca Polverino
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona, Tucson, AZ, USA
- Banner - University Medicine North, Pulmonary - Clinic F, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Julie G Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.
- Oregon Health & Science University, Knight Cardiovascular Institute, Portland, OR, USA.
| | - Darren A Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Trujillo MN, Jennings EQ, Hoffman EA, Zhang H, Phoebe AM, Mastin GE, Kitamura N, Reisz JA, Megill E, Kantner D, Marcinkiewicz MM, Twardy SM, Lebario F, Chapman E, McCullough RL, D'Alessandro A, Snyder NW, Cusanovich DA, Galligan JJ. Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol Metab 2024; 81:101888. [PMID: 38307385 PMCID: PMC10869261 DOI: 10.1016/j.molmet.2024.101888] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in mediating histone lactoylation and inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH and histone lactoylation with a corresponding potentiation of the inflammatory response when exposed to lipopolysaccharides. An analysis of chromatin accessibility shows that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state; upon stimulation, however, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is the primary driving factor facilitating histone lactoylation and a major contributor to inflammatory signaling.
Collapse
Affiliation(s)
- Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Emely A Hoffman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Hao Zhang
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Aiden M Phoebe
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Grace E Mastin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Naoya Kitamura
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Daniel Kantner
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Mariola M Marcinkiewicz
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Shannon M Twardy
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Felicidad Lebario
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Darren A Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
4
|
Welfley H, Kylat R, Zaghloul N, Halonen M, Martinez FD, Ahmed M, Cusanovich DA. Single-Cell Profiling of Premature Neonate Airways Reveals a Continuum of Myeloid Differentiation. Am J Respir Cell Mol Biol 2023; 69:689-697. [PMID: 37643399 PMCID: PMC10704120 DOI: 10.1165/rcmb.2022-0293oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
Single-cell genomic technologies hold great potential to advance our understanding of lung development and disease. A major limitation lies in accessing intact cells from primary lung tissues for profiling human airway health. Sampling methods such as endotracheal aspiration that are compatible with clinical interventions could enable longitudinal studies, the enrollment of large cohorts, and the development of novel diagnostics. To explore single-cell RNA sequencing profiling of the cell types present at birth in the airway lumen of extremely premature neonates (<28 wk gestation), we isolated cells from endotracheal aspirates collected from intubated neonates within the first hour after birth. We generated data on 10 subjects, providing a rich view of airway luminal biology at a critical developmental period. Our results show that cells present in the airways of premature neonates primarily represent a continuum of myeloid differentiation, including fetal monocytes (25% of total), intermediate myeloid populations (48%), and macrophages (2.6%). Applying trajectory analysis to the myeloid populations, we identified two trajectories consistent with the developmental stages of interstitial and alveolar macrophages, as well as a third trajectory presenting an alternative pathway bridging the distinct macrophage precursors. The three trajectories share many dynamic genes (N = 5,451), but also have distinct transcriptional changes (259 alveolar-specific, 666 interstitial-specific, and 285 bridging-specific). Overall, our results define cells isolated within the so-called "golden hour of birth" in extremely premature neonate airways, representing complex lung biology, and can be used in studies of human development and disease.
Collapse
Affiliation(s)
| | - Ranjit Kylat
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Nahla Zaghloul
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | | | | | - Mohamed Ahmed
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Darren A. Cusanovich
- Asthma and Airway Disease Research Center and
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
5
|
Trujillo MN, Jennings EQ, Hoffman EA, Zhang H, Phoebe AM, Mastin GE, Kitamura N, Reisz JA, Megill E, Kantner D, Marcinkiewicz MM, Twardy SM, Lebario F, Chapman E, McCullough RL, D'Alessandro A, Snyder NW, Cusanovich DA, Galligan JJ. Lactoylglutathione promotes inflammatory signaling in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561739. [PMID: 37873172 PMCID: PMC10592727 DOI: 10.1101/2023.10.10.561739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH, while demonstrating a potentiated inflammatory response when exposed to lipopolysaccharides, corresponding with a rise in histone lactoylation. Interestingly, our data demonstrate that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state, however, upon stimulation, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is a primary contributing factor facilitating the inflammatory response.
Collapse
|
6
|
Liu P, Li D, Zhang J, He M, Gao D, Wang Y, Lin Y, Pan D, Li P, Wang T, Li J, Kong F, Zeng B, Lu L, Ma J, Long K, Li G, Tang Q, Jin L, Li M. Comparative three-dimensional genome architectures of adipose tissues provide insight into human-specific regulation of metabolic homeostasis. J Biol Chem 2023; 299:104757. [PMID: 37116707 PMCID: PMC10245122 DOI: 10.1016/j.jbc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.
Collapse
Affiliation(s)
- Pengliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China.
| | - Jiaman Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Wildlife Conservation Research Department, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine & Genetics, Chengdu Xi'nan Gynecology Hospital, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department & Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Bracci AN, Dallmann A, Ding Q, Hubisz MJ, Caballero M, Koren A. The evolution of the human DNA replication timing program. Proc Natl Acad Sci U S A 2023; 120:e2213896120. [PMID: 36848554 PMCID: PMC10013799 DOI: 10.1073/pnas.2213896120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
DNA is replicated according to a defined spatiotemporal program that is linked to both gene regulation and genome stability. The evolutionary forces that have shaped replication timing programs in eukaryotic species are largely unknown. Here, we studied the molecular causes and consequences of replication timing evolution across 94 humans, 95 chimpanzees, and 23 rhesus macaques. Replication timing differences recapitulated the species' phylogenetic tree, suggesting continuous evolution of the DNA replication timing program in primates. Hundreds of genomic regions had significant replication timing variation between humans and chimpanzees, of which 66 showed advances in replication origin firing in humans, while 57 were delayed. Genes overlapping these regions displayed correlated changes in expression levels and chromatin structure. Many human-chimpanzee variants also exhibited interindividual replication timing variation, pointing to ongoing evolution of replication timing at these loci. Association of replication timing variation with genetic variation revealed that DNA sequence evolution can explain replication timing variation between species. Taken together, DNA replication timing shows substantial and ongoing evolution in the human lineage that is driven by sequence alterations and could impact regulatory evolution at specific genomic sites.
Collapse
Affiliation(s)
- Alexa N. Bracci
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Anissa Dallmann
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Melissa J. Hubisz
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY14853
| | - Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
8
|
Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat Rev Genet 2023; 24:314-331. [PMID: 36599936 DOI: 10.1038/s41576-022-00554-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Primate genomics holds the key to understanding fundamental aspects of human evolution and disease. However, genetic diversity and functional genomics data sets are currently available for only a few of the more than 500 extant primate species. Concerted efforts are under way to characterize primate genomes, genetic polymorphism and divergence, and functional landscapes across the primate phylogeny. The resulting data sets will enable the connection of genotypes to phenotypes and provide new insight into aspects of the genetics of primate traits, including human diseases. In this Review, we describe the existing genome assemblies as well as genetic variation and functional genomic data sets. We highlight some of the challenges with sample acquisition. Finally, we explore how technological advances in single-cell functional genomics and induced pluripotent stem cell-derived organoids will facilitate our understanding of the molecular foundations of primate biology.
Collapse
|
9
|
Chen S, Liu S, Shi S, Jiang Y, Cao M, Tang Y, Li W, Liu J, Fang L, Yu Y, Zhang S. Comparative epigenomics reveals the impact of ruminant-specific regulatory elements on complex traits. BMC Biol 2022; 20:273. [PMID: 36482458 PMCID: PMC9730597 DOI: 10.1186/s12915-022-01459-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insights into the genetic basis of complex traits and disease in both human and livestock species have been achieved over the past decade through detection of genetic variants in genome-wide association studies (GWAS). A majority of such variants were found located in noncoding genomic regions, and though the involvement of numerous regulatory elements (REs) has been predicted across multiple tissues in domesticated animals, their evolutionary conservation and effects on complex traits have not been fully elucidated, particularly in ruminants. Here, we systematically analyzed 137 epigenomic and transcriptomic datasets of six mammals, including cattle, sheep, goats, pigs, mice, and humans, and then integrated them with large-scale GWAS of complex traits. RESULTS Using 40 ChIP-seq datasets of H3K4me3 and H3K27ac, we detected 68,479, 58,562, 63,273, 97,244, 111,881, and 87,049 REs in the liver of cattle, sheep, goats, pigs, humans and mice, respectively. We then systematically characterized the dynamic functional landscapes of these REs by integrating multi-omics datasets, including gene expression, chromatin accessibility, and DNA methylation. We identified a core set (n = 6359) of ruminant-specific REs that are involved in liver development, metabolism, and immune processes. Genes with more complex cis-REs exhibited higher gene expression levels and stronger conservation across species. Furthermore, we integrated expression quantitative trait loci (eQTLs) and GWAS from 44 and 52 complex traits/diseases in cattle and humans, respectively. These results demonstrated that REs with different degrees of evolutionary conservation across species exhibited distinct enrichments for GWAS signals of complex traits. CONCLUSIONS We systematically annotated genome-wide functional REs in liver across six mammals and demonstrated the evolution of REs and their associations with transcriptional output and conservation. Detecting lineage-specific REs allows us to decipher the evolutionary and genetic basis of complex phenotypes in livestock and humans, which may benefit the discovery of potential biomedical models for functional variants and genes of specific human diseases.
Collapse
Affiliation(s)
- Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Shaolei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Laverre A, Tannier E, Necsulea A. Long-range promoter-enhancer contacts are conserved during evolution and contribute to gene expression robustness. Genome Res 2021; 32:280-296. [PMID: 34930799 PMCID: PMC8805723 DOI: 10.1101/gr.275901.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
Gene expression is regulated through complex molecular interactions, involving cis-acting elements that can be situated far away from their target genes. Data on long-range contacts between promoters and regulatory elements are rapidly accumulating. However, it remains unclear how these regulatory relationships evolve and how they contribute to the establishment of robust gene expression profiles. Here, we address these questions by comparing genome-wide maps of promoter-centered chromatin contacts in mouse and human. We show that there is significant evolutionary conservation of cis-regulatory landscapes, indicating that selective pressures act to preserve not only regulatory element sequences but also their chromatin contacts with target genes. The extent of evolutionary conservation is remarkable for long-range promoter–enhancer contacts, illustrating how the structure of regulatory landscapes constrains large-scale genome evolution. We show that the evolution of cis-regulatory landscapes, measured in terms of distal element sequences, synteny, or contacts with target genes, is significantly associated with gene expression evolution.
Collapse
Affiliation(s)
- Alexandre Laverre
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive
| | - Eric Tannier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, Centre de recherche Inria de Lyon
| | | |
Collapse
|
11
|
Tralamazza SM, Abraham LN, Reyes-Avila CS, Corrêa B, Croll D. Histone H3K27 methylation perturbs transcriptional robustness and underpins dispensability of highly conserved genes in fungi. Mol Biol Evol 2021; 39:6424003. [PMID: 34751371 PMCID: PMC8789075 DOI: 10.1093/molbev/msab323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications are key regulators of gene expression and underpin genome integrity. Yet, how epigenetic changes affect the evolution and transcriptional robustness of genes remains largely unknown. Here, we show how the repressive histone mark H3K27me3 underpins the trajectory of highly conserved genes in fungi. We first performed transcriptomic profiling on closely related species of the plant pathogen Fusarium graminearum species complex. We determined transcriptional responsiveness of genes across environmental conditions to determine expression robustness. To infer evolutionary conservation, we used a framework of 23 species across the Fusarium genus including three species covered with histone methylation data. Gene expression variation is negatively correlated with gene conservation confirming that highly conserved genes show higher expression robustness. In contrast, genes marked by H3K27me3 do not show such associations. Furthermore, highly conserved genes marked by H3K27me3 encode smaller proteins, exhibit weaker codon usage bias, higher levels of hydrophobicity, show lower intrinsically disordered regions, and are enriched for functions related to regulation and membrane transport. The evolutionary age of conserved genes with H3K27me3 histone marks falls typically within the origins of the Fusarium genus. We show that highly conserved genes marked by H3K27me3 are more likely to be dispensable for survival during host infection. Lastly, we show that conserved genes exposed to repressive H3K27me3 marks across distantly related Fusarium fungi are associated with transcriptional perturbation at the microevolutionary scale. In conclusion, we show how repressive histone marks are entangled in the evolutionary fate of highly conserved genes across evolutionary timescales.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland.,Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | | | - Benedito Corrêa
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| |
Collapse
|
12
|
García-Pérez R, Esteller-Cucala P, Mas G, Lobón I, Di Carlo V, Riera M, Kuhlwilm M, Navarro A, Blancher A, Di Croce L, Gómez-Skarmeta JL, Juan D, Marquès-Bonet T. Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures. Nat Commun 2021; 12:3116. [PMID: 34035253 PMCID: PMC8149829 DOI: 10.1038/s41467-021-23397-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
Changes in the epigenetic regulation of gene expression have a central role in evolution. Here, we extensively profiled a panel of human, chimpanzee, gorilla, orangutan, and macaque lymphoblastoid cell lines (LCLs), using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, further complemented with whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS). We annotated regulatory elements (RE) and integrated chromatin contact maps to define gene regulatory architectures, creating the largest catalog of RE in primates to date. We report that epigenetic conservation and its correlation with sequence conservation in primates depends on the activity state of the regulatory element. Our gene regulatory architectures reveal the coordination of different types of components and highlight the role of promoters and intragenic enhancers (gE) in the regulation of gene expression. We observe that most regulatory changes occur in weakly active gE. Remarkably, novel human-specific gE with weak activities are enriched in human-specific nucleotide changes. These elements appear in genes with signals of positive selection and human acceleration, tissue-specific expression, and particular functional enrichments, suggesting that the regulatory evolution of these genes may have contributed to human adaptation.
Collapse
Affiliation(s)
| | | | - Glòria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Lobón
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Valerio Di Carlo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Meritxell Riera
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- National Institute for Bioinformatics (INB), PRBB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antoine Blancher
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, Toulouse, France
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
13
|
Recently Evolved Enhancers Emerge with High Interindividual Variability and Less Frequently Associate with Disease. Cell Rep 2021; 31:107799. [PMID: 32579926 DOI: 10.1016/j.celrep.2020.107799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in non-coding regulatory DNA such as enhancers underlie a wide variety of diseases including developmental disorders and cancer. As enhancers rapidly evolve, understanding their function and configuration in non-human disease models can have important clinical applications. Here, we analyze enhancer configurations in tissues isolated from the common marmoset, a widely used primate model for human disease. Integrating these data with human and mouse data, we find that enhancers containing trait-associated variants are preferentially conserved. In contrast, most human-specific enhancers are highly variable between individuals, with a subset failing to contact promoters. These are located further away from genes and more often reside in inactive B-compartments. Our data show that enhancers typically emerge as instable elements with minimal biological impact prior to their integration in a transcriptional program. Furthermore, our data provide insight into which trait variations in enhancers can be faithfully modeled using the common marmoset.
Collapse
|
14
|
Mittleman BE, Pott S, Warland S, Barr K, Cuevas C, Gilad Y. Divergence in alternative polyadenylation contributes to gene regulatory differences between humans and chimpanzees. eLife 2021; 10:e62548. [PMID: 33595436 PMCID: PMC7954529 DOI: 10.7554/elife.62548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
While comparative functional genomic studies have shown that inter-species differences in gene expression can be explained by corresponding inter-species differences in genetic and epigenetic regulatory mechanisms, co-transcriptional mechanisms, such as alternative polyadenylation (APA), have received little attention. We characterized APA in lymphoblastoid cell lines from six humans and six chimpanzees by identifying and estimating the usage for 44,432 polyadenylation sites (PAS) in 9518 genes. Although APA is largely conserved, 1705 genes showed significantly different PAS usage (FDR 0.05) between species. Genes with divergent APA also tend to be differentially expressed, are enriched among genes showing differences in protein translation, and can explain a subset of observed inter-species protein expression differences that do not differ at the transcript level. Finally, we found that genes with a dominant PAS, which is used more often than other PAS, are particularly enriched for differentially expressed genes.
Collapse
Affiliation(s)
- Briana E Mittleman
- Genetics, Genomics and Systems Biology, University of ChicagoChicagoUnited States
| | - Sebastian Pott
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Shane Warland
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Kenneth Barr
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Claudia Cuevas
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Yoav Gilad
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| |
Collapse
|
15
|
di Porzio U. A bigger brain for a more complex environment. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0041/revneuro-2020-0041.xml. [PMID: 32924383 DOI: 10.1515/revneuro-2020-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
The environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned "on" and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.
Collapse
Affiliation(s)
- Umberto di Porzio
- Developmental Neurobiology Laboratory, Institute of Genetics and Biophysics, CNR, Via Pietro Castellino 111, 80128 Naples, Italy
| |
Collapse
|
16
|
Tang J, Wu Z, Tian Y, Yang R. ICGEC: a comparative method for measuring epigenetic conservation of genes via the integrated signal from multiple histone modifications between cell types. BMC Genomics 2020; 21:356. [PMID: 32398001 PMCID: PMC7216622 DOI: 10.1186/s12864-020-6771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Background Histone post-translational modifications play crucial roles in epigenetic regulation of gene expression and are known to be associated with the phenotypic differences of different cell types. Therefore, it is of fundamental importance to dissect the genes and pathways involved in such a phenotypic variation at the level of epigenetics. However, the existing comparative approaches are largely based on the differences, especially the absolute difference in the levels of individual histone modifications of genes under contrasting conditions. Thus, a method for measuring the overall change in the epigenetic circumstance of each gene underpinned by multiple types of histone modifications between cell types is lacking. Results To address this challenge, we developed ICGEC, a new method for estimating the degree of epigenetic conservation of genes between two cell lines. Different from existing comparative methods, ICGEC provides a reliable score for measuring the relative change in the epigenetic context of corresponding gene between two conditions and simultaneously produces a score for each histone mark. The application of ICGEC to the human embryonic stem cell line H1 and four H1-derived cell lines with available epigenomic data for the same 16 types of histone modifications indicated high robustness and reliability of ICGEC. Furthermore, the analysis of the epigenetically dynamic and conserved genes which were defined based on the ICGEC output results demonstrated that ICGEC can deepen our understanding of the biological processes of cell differentiation to overcome the limitations of traditional expression analysis. Specifically, the ICGEC-derived differentiation-direction-specific genes were shown to have putative functions that are well-matched with cell identity. Additionally, H3K79me1 and H3K27ac were found to be the main histone marks accounting for whether an epigenetically dynamic gene was differentially expressed between two cell lines. Conclusions The use of ICGEC creates a convenient and robust way to measure the overall epigenetic conservation of individual genes and marks between two conditions. Thus, it provides a basis for exploring the epigenotype-phenotype relationship. ICGEC can be deemed a state-of-the-art method tailored for comparative epigenomic analysis of changes in cell dynamics.
Collapse
Affiliation(s)
- Jing Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhan Tian
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
17
|
Identification of Structural Variation in Chimpanzees Using Optical Mapping and Nanopore Sequencing. Genes (Basel) 2020; 11:genes11030276. [PMID: 32143403 PMCID: PMC7140787 DOI: 10.3390/genes11030276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts to comprehensively characterize great ape genetic diversity using short-read sequencing and single-nucleotide variants have led to important discoveries related to selection within species, demographic history, and lineage-specific traits. Structural variants (SVs), including deletions and inversions, comprise a larger proportion of genetic differences between and within species, making them an important yet understudied source of trait divergence. Here, we used a combination of long-read and -range sequencing approaches to characterize the structural variant landscape of two additional Pan troglodytes verus individuals, one of whom carries 13% admixture from Pan troglodytes troglodytes. We performed optical mapping of both individuals followed by nanopore sequencing of one individual. Filtering for larger variants (>10 kbp) and combined with genotyping of SVs using short-read data from the Great Ape Genome Project, we identified 425 deletions and 59 inversions, of which 88 and 36, respectively, were novel. Compared with gene expression in humans, we found a significant enrichment of chimpanzee genes with differential expression in lymphoblastoid cell lines and induced pluripotent stem cells, both within deletions and near inversion breakpoints. We examined chromatin-conformation maps from human and chimpanzee using these same cell types and observed alterations in genomic interactions at SV breakpoints. Finally, we focused on 56 genes impacted by SVs in >90% of chimpanzees and absent in humans and gorillas, which may contribute to chimpanzee-specific features. Sequencing a greater set of individuals from diverse subspecies will be critical to establish the complete landscape of genetic variation in chimpanzees.
Collapse
|
18
|
Blake LE, Roux J, Hernando-Herraez I, Banovich NE, Perez RG, Hsiao CJ, Eres I, Cuevas C, Marques-Bonet T, Gilad Y. A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res 2020; 30:250-262. [PMID: 31953346 PMCID: PMC7050529 DOI: 10.1101/gr.254904.119] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/02/2020] [Indexed: 01/02/2023]
Abstract
Previously published comparative functional genomic data sets from primates using frozen tissue samples, including many data sets from our own group, were often collected and analyzed using nonoptimal study designs and analysis approaches. In addition, when samples from multiple tissues were studied in a comparative framework, individuals and tissues were confounded. We designed a multitissue comparative study of gene expression and DNA methylation in primates that minimizes confounding effects by using a balanced design with respect to species, tissues, and individuals. We also developed a comparative analysis pipeline that minimizes biases attributable to sequence divergence. Thus, we present the most comprehensive catalog of similarities and differences in gene expression and DNA methylation levels between livers, kidneys, hearts, and lungs, in humans, chimpanzees, and rhesus macaques. We estimate that overall, interspecies and inter-tissue differences in gene expression levels can only modestly be accounted for by corresponding differences in promoter DNA methylation. However, the expression pattern of genes with conserved inter-tissue expression differences can be explained by corresponding interspecies methylation changes more often. Finally, we show that genes whose tissue-specific regulatory patterns are consistent with the action of natural selection are highly connected in both gene regulatory and protein–protein interaction networks.
Collapse
Affiliation(s)
- Lauren E Blake
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Julien Roux
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | | | - Nicholas E Banovich
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Raquel Garcia Perez
- Universitat Pompeu Fabra, Institute of Evolutionary Biology, 88 08003 Barcelona, Spain
| | - Chiaowen Joyce Hsiao
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Claudia Cuevas
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Tomas Marques-Bonet
- Universitat Pompeu Fabra, Institute of Evolutionary Biology, 88 08003 Barcelona, Spain.,Passeig de Lluís Companys, Catalan Institution of Research and Advanced Studies, 23 08010 Barcelona, Spain.,Barcelona Institute of Science and Technology, Centre for Genomic Regulation, 88 08003 Barcelona, Spain.,Universitat Autònoma de Barcelona, Institut Català de Paleontologia Miquel Crusafont, 08193 Barcelona, Spain
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.,Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
19
|
Edsall LE, Berrio A, Majoros WH, Swain-Lenz D, Morrow S, Shibata Y, Safi A, Wray GA, Crawford GE, Allen AS. Evaluating Chromatin Accessibility Differences Across Multiple Primate Species Using a Joint Modeling Approach. Genome Biol Evol 2019; 11:3035-3053. [PMID: 31599933 PMCID: PMC6821351 DOI: 10.1093/gbe/evz218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Changes in transcriptional regulation are thought to be a major contributor to the evolution of phenotypic traits, but the contribution of changes in chromatin accessibility to the evolution of gene expression remains almost entirely unknown. To address this important gap in knowledge, we developed a new method to identify DNase I Hypersensitive (DHS) sites with differential chromatin accessibility between species using a joint modeling approach. Our method overcomes several limitations inherent to conventional threshold-based pairwise comparisons that become increasingly apparent as the number of species analyzed rises. Our approach employs a single quantitative test which is more sensitive than existing pairwise methods. To illustrate, we applied our joint approach to DHS sites in fibroblast cells from five primates (human, chimpanzee, gorilla, orangutan, and rhesus macaque). We identified 89,744 DHS sites, of which 41% are identified as differential between species using the joint model compared with 33% using the conventional pairwise approach. The joint model provides a principled approach to distinguishing single from multiple chromatin accessibility changes among species. We found that nondifferential DHS sites are enriched for nucleotide conservation. Differential DHS sites with decreased chromatin accessibility relative to rhesus macaque occur more commonly near transcription start sites (TSS), while those with increased chromatin accessibility occur more commonly distal to TSS. Further, differential DHS sites near TSS are less cell type-specific than more distal regulatory elements. Taken together, these results point to distinct classes of DHS sites, each with distinct characteristics of selection, genomic location, and cell type specificity.
Collapse
Affiliation(s)
- Lee E Edsall
- Center for Genomic and Computational Biology, Duke University
- Division of Medical Genetics, Department of Pediatrics, Duke University
- University Program in Genetics and Genomics, Duke University
| | | | | | | | | | - Yoichiro Shibata
- Center for Genomic and Computational Biology, Duke University
- Division of Medical Genetics, Department of Pediatrics, Duke University
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University
- Division of Medical Genetics, Department of Pediatrics, Duke University
| | - Gregory A Wray
- Center for Genomic and Computational Biology, Duke University
- Department of Biology, Duke University
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University
- Division of Medical Genetics, Department of Pediatrics, Duke University
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University
| |
Collapse
|
20
|
Read DF, Cook K, Lu YY, Le Roch KG, Noble WS. Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features. PLoS Comput Biol 2019; 15:e1007329. [PMID: 31509524 PMCID: PMC6756558 DOI: 10.1371/journal.pcbi.1007329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/23/2019] [Accepted: 08/12/2019] [Indexed: 12/02/2022] Open
Abstract
Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors.
Collapse
Affiliation(s)
- David F. Read
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kate Cook
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Yang Y. Lu
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
21
|
Eres IE, Luo K, Hsiao CJ, Blake LE, Gilad Y. Reorganization of 3D genome structure may contribute to gene regulatory evolution in primates. PLoS Genet 2019; 15:e1008278. [PMID: 31323043 PMCID: PMC6668850 DOI: 10.1371/journal.pgen.1008278] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/31/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence supports the notion that variation in gene regulation plays a crucial role in both speciation and adaptation. However, a comprehensive functional understanding of the mechanisms underlying regulatory evolution remains elusive. In primates, one of the crucial missing pieces of information towards a better understanding of regulatory evolution is a comparative annotation of interactions between distal regulatory elements and promoters. Chromatin conformation capture technologies have enabled genome-wide quantifications of such distal 3D interactions. However, relatively little comparative research in primates has been done using such technologies. To address this gap, we used Hi-C to characterize 3D chromatin interactions in induced pluripotent stem cells (iPSCs) from humans and chimpanzees. We also used RNA-seq to collect gene expression data from the same lines. We generally observed that lower-order, pairwise 3D genomic interactions are conserved in humans and chimpanzees, but higher order genomic structures, such as topologically associating domains (TADs), are not as conserved. Inter-species differences in 3D genomic interactions are often associated with gene expression differences between the species. To provide additional functional context to our observations, we considered previously published chromatin data from human stem cells. We found that inter-species differences in 3D genomic interactions, which are also associated with gene expression differences between the species, are enriched for both active and repressive marks. Overall, our data demonstrate that, as expected, an understanding of 3D genome reorganization is key to explaining regulatory evolution. The way in which a genome folds affects the regulation of gene expression. This is often due to loops in the three-dimensional structure that bring linearly distant genes and regulatory elements into close proximity. Most studies examining three-dimensional structure genome-wide are limited to a single species. In this study, we compared three-dimensional structure in the genomes of induced pluripotent stem cells from humans and chimpanzees. We collected gene expression data from the same samples, which allowed us to assess the contribution of three-dimensional chromatin conformation to gene regulatory evolution in primates. Our results demonstrate that gene expression differences between the species may often be mediated by differences in three-dimensional genomic interactions. Our data also suggest that large-scale chromatin structures (i.e. topologically associating domains, TADs) are not well conserved in their placement across species. We hope the analytical paradigms we present here could serve as a basis for future comparative studies of three-dimensional genome organization, elucidating the putative functional regulatory loci driving speciation.
Collapse
Affiliation(s)
- Ittai E. Eres
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Chiaowen Joyce Hsiao
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Lauren E. Blake
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lu J, Cao X, Zhong S. EpiAlignment: alignment with both DNA sequence and epigenomic data. Nucleic Acids Res 2019; 47:W11-W19. [PMID: 31114924 PMCID: PMC6602515 DOI: 10.1093/nar/gkz426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022] Open
Abstract
Comparative epigenomics, which subjects both epigenome and genome to interspecies comparison, has become a powerful approach to reveal regulatory features of the genome. Thus elucidated regulatory features surpass the information derived from comparison of genomic sequences alone. Here, we present EpiAlignment, a web-based tool to align genomic regions with both DNA sequence and epigenomic data. EpiAlignment takes DNA sequence and epigenomic profiles derived by ChIP-seq from two species as input data, and outputs the best semi-global alignments. These alignments are based on EpiAlignment scores, computed by a dynamic programming algorithm that accounts for both sequence alignment and epigenome similarity. For timely response, the EpiAlignment web server automatically initiates up to 140 computing threads depending on the size of user input data. For users’ convenience, we have pre-compiled the comparable human and mouse epigenome datasets in matched cell types and tissues from the Roadmap Epigenomics and ENCODE consortia. Users can either upload their own data or select pre-compiled datasets as inputs for EpiAlignment analyses. Results are presented in graphical and tabular formats where the entries can be interactively expanded to visualize additional features of these aligned regions. EpiAlignment is available at https://epialign.ucsd.edu/.
Collapse
Affiliation(s)
- Jia Lu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- To whom correspondence should be addressed. Tel: +1 858 246 1118; Fax: +1 858 244 4543;
| |
Collapse
|
23
|
Vilgalys TP, Rogers J, Jolly CJ, Baboon Genome Analysis, Mukherjee S, Tung J. Evolution of DNA Methylation in Papio Baboons. Mol Biol Evol 2019; 36:527-540. [PMID: 30521003 PMCID: PMC6389319 DOI: 10.1093/molbev/msy227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Changes in gene regulation have long been thought to play an important role in primate evolution. However, although a number of studies have compared genome-wide gene expression patterns across primate species, fewer have investigated the gene regulatory mechanisms that underlie such patterns, or the relative contribution of drift versus selection. Here, we profiled genome-scale DNA methylation levels in blood samples from five of the six extant species of the baboon genus Papio (4-14 individuals per species). This radiation presents the opportunity to investigate DNA methylation divergence at both shallow and deeper timescales (0.380-1.4 My). In contrast to studies in human populations, but similar to studies in great apes, DNA methylation profiles clearly mirror genetic and geographic structure. Divergence in DNA methylation proceeds fastest in unannotated regions of the genome and slowest in regions of the genome that are likely more constrained at the sequence level (e.g., gene exons). Both heuristic approaches and Ornstein-Uhlenbeck models suggest that DNA methylation levels at a small set of sites have been affected by positive selection, and that this class is enriched in functionally relevant contexts, including promoters, enhancers, and CpG islands. Our results thus indicate that the rate and distribution of DNA methylation changes across the genome largely mirror genetic structure. However, at some CpG sites, DNA methylation levels themselves may have been a target of positive selection, pointing to loci that could be important in connecting sequence variation to fitness-related traits.
Collapse
Affiliation(s)
- Tauras P Vilgalys
- Department of Evolutionary Anthropology, Duke University, Durham, NC
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY
- Center for the Study of Human Origins, New York University, New York, NY
- New York Consortium for Evolutionary Primatology, New York, NY
| | | | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC
- Department of Mathematics, Duke University, Durham, NC
- Department of Computer Science, Duke University, Durham, NC
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC
- Department of Biology, Duke University, Durham, NC
- Duke University Population Research Institute, Duke University, Durham, NC
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
| |
Collapse
|
24
|
Bitar M, Barry G. Multiple Innovations in Genetic and Epigenetic Mechanisms Cooperate to Underpin Human Brain Evolution. Mol Biol Evol 2019; 35:263-268. [PMID: 29177456 DOI: 10.1093/molbev/msx303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our knowledge of how the human brain differs from those of other species in terms of evolutionary adaptations and functionality is limited. Comparative genomics reveal valuable insight, especially the expansion of human-specific noncoding regulatory and repeat-containing regions. Recent studies add to our knowledge of evolving brain function by investigating cellular mechanisms such as protein emergence, extensive sequence editing, retrotransposon activity, dynamic epigenetic modifications, and multiple noncoding RNA functions. These findings present an opportunity to combine newly discovered genetic and epigenetic mechanisms with more established concepts into a more comprehensive picture to better understand the uniquely evolved human brain.
Collapse
Affiliation(s)
- Mainá Bitar
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Guy Barry
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
25
|
Ruiz JL, Yerbanga RS, Lefèvre T, Ouedraogo JB, Corces VG, Gómez-Díaz E. Chromatin changes in Anopheles gambiae induced by Plasmodium falciparum infection. Epigenetics Chromatin 2019; 12:5. [PMID: 30616642 PMCID: PMC6322293 DOI: 10.1186/s13072-018-0250-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Infection by the human malaria parasite leads to important changes in mosquito phenotypic traits related to vector competence. However, we still lack a clear understanding of the underlying mechanisms and, in particular, of the epigenetic basis for these changes. We have examined genome-wide distribution maps of H3K27ac, H3K9ac, H3K9me3 and H3K4me3 by ChIP-seq and the transcriptome by RNA-seq, of midguts from Anopheles gambiae mosquitoes blood-fed uninfected and infected with natural isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. RESULTS We report 15,916 regions containing differential histone modification enrichment between infected and uninfected, of which 8339 locate at promoters and/or intersect with genes. The functional annotation of these regions allowed us to identify infection-responsive genes showing differential enrichment in various histone modifications, such as CLIP proteases, antimicrobial peptides-encoding genes, and genes related to melanization responses and the complement system. Further, the motif analysis of regions differentially enriched in various histone modifications predicts binding sites that might be involved in the cis-regulation of these regions, such as Deaf1, Pangolin and Dorsal transcription factors (TFs). Some of these TFs are known to regulate immunity gene expression in Drosophila and are involved in the Notch and JAK/STAT signaling pathways. CONCLUSIONS The analysis of malaria infection-induced chromatin changes in mosquitoes is important not only to identify regulatory elements and genes underlying mosquito responses to P. falciparum infection, but also for possible applications to the genetic manipulation of mosquitoes and to other mosquito-borne systems.
Collapse
Affiliation(s)
- José L. Ruiz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| | - Rakiswendé S. Yerbanga
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean B. Ouedraogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 171, Bobo Dioulasso, Burkina Faso
| | - Victor G. Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322 USA
| | - Elena Gómez-Díaz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
26
|
Ward MC, Zhao S, Luo K, Pavlovic BJ, Karimi MM, Stephens M, Gilad Y. Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs. eLife 2018; 7:33084. [PMID: 29648536 PMCID: PMC5943035 DOI: 10.7554/elife.33084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise almost half of primate genomes and their aberrant regulation can result in deleterious effects. In pluripotent stem cells, rapidly evolving KRAB-ZNF genes target TEs for silencing by H3K9me3. To investigate the evolution of TE silencing, we performed H3K9me3 ChIP-seq experiments in induced pluripotent stem cells from 10 human and 7 chimpanzee individuals. We identified four million orthologous TEs and found the SVA and ERV families to be marked most frequently by H3K9me3. We found little evidence of inter-species differences in TE silencing, with as many as 82% of putatively silenced TEs marked at similar levels in humans and chimpanzees. TEs that are preferentially silenced in one species are a similar age to those silenced in both species and are not more likely to be associated with expression divergence of nearby orthologous genes. Our data suggest limited species-specificity of TE silencing across 6 million years of primate evolution.
Collapse
Affiliation(s)
- Michelle C Ward
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Medicine, University of Chicago, Chicago, United States
| | - Siming Zhao
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Bryan J Pavlovic
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences, Imperial College, London, United Kingdom
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Statistics, University of Chicago, Chicago, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Medicine, University of Chicago, Chicago, United States
| |
Collapse
|
27
|
Sun S, Sun X, Zheng Y. Higher-order partial least squares for predicting gene expression levels from chromatin states. BMC Bioinformatics 2018; 19:113. [PMID: 29671394 PMCID: PMC5907142 DOI: 10.1186/s12859-018-2100-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Extensive studies have shown that gene expression levels are strongly affected by chromatin mark combinations via at least two mechanisms, i.e., activation or repression. But their combinatorial patterns are still unclear. To further understand the relationship between histone modifications and gene expression levels, here in this paper, we introduce a purely geometric higher-order representation, tensor (also called multidimensional array), which might borrow more unknown interactions in chromatin states to predicting gene expression levels. Results The prediction models were learned from regions around upstream 10k base pairs and downstream 10k base pairs of the transcriptional start sites (TSSs) on three species (i.e., Human, Rhesus Macaque, and Chimpanzee) with five histone modifications (i.e., H3K4me1, H3K4me3, H3K27ac, H3K27me3, and Pol II). Experimental results demonstrate that the proposed method is more powerful to predicting gene expression levels than several other popular methods. Specifically, our method enable to get more powerful performance on both commonly used criteria, R and RMSE, as high as 1.7% and 11%, respectively. Conclusions The overall aim of this work is to show that the higher-order representation is able to include more unknown interaction information between histone modifications across different species.
Collapse
Affiliation(s)
- Shiquan Sun
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China. .,Department of Biostatistics, University of Michigan, Ann Arbor, 48109, MI, USA.
| | - Xifang Sun
- School of Science, Xi'an Shiyou University, Xi'an, 710065, Shaanxi, People's Republic of China
| | - Yan Zheng
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| |
Collapse
|
28
|
Danko CG, Choate LA, Marks BA, Rice EJ, Wang Z, Chu T, Martins AL, Dukler N, Coonrod SA, Tait Wojno ED, Lis JT, Kraus WL, Siepel A. Dynamic evolution of regulatory element ensembles in primate CD4 + T cells. Nat Ecol Evol 2018; 2:537-548. [PMID: 29379187 PMCID: PMC5957490 DOI: 10.1038/s41559-017-0447-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
How evolutionary changes at enhancers affect the transcription of target genes remains an important open question. Previous comparative studies of gene expression have largely measured the abundance of messenger RNA, which is affected by post-transcriptional regulatory processes, hence limiting inferences about the mechanisms underlying expression differences. Here, we directly measured nascent transcription in primate species, allowing us to separate transcription from post-transcriptional regulation. We used precision run-on and sequencing to map RNA polymerases in resting and activated CD4+ T cells in multiple human, chimpanzee and rhesus macaque individuals, with rodents as outgroups. We observed general conservation in coding and non-coding transcription, punctuated by numerous differences between species, particularly at distal enhancers and non-coding RNAs. Genes regulated by larger numbers of enhancers are more frequently transcribed at evolutionarily stable levels, despite reduced conservation at individual enhancers. Adaptive nucleotide substitutions are associated with lineage-specific transcription and at one locus, SGPP2, we predict and experimentally validate that multiple substitutions contribute to human-specific transcription. Collectively, our findings suggest a pervasive role for evolutionary compensation across ensembles of enhancers that jointly regulate target genes.
Collapse
Affiliation(s)
- Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brooke A Marks
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Andre L Martins
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Noah Dukler
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
29
|
Hao X, Zeng P, Zhang S, Zhou X. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies. PLoS Genet 2018; 14:e1007186. [PMID: 29377896 PMCID: PMC5805369 DOI: 10.1371/journal.pgen.1007186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study.
Collapse
Affiliation(s)
- Xingjie Hao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Ping Zeng
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
30
|
Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol 2018; 2:152-163. [PMID: 29180706 PMCID: PMC5733139 DOI: 10.1038/s41559-017-0377-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/10/2017] [Indexed: 02/02/2023]
Abstract
To gain insight into how mammalian gene expression is controlled by rapidly evolving regulatory elements, we jointly analysed promoter and enhancer activity with downstream transcription levels in liver samples from 15 species. Genes associated with complex regulatory landscapes generally exhibit high expression levels that remain evolutionarily stable. While the number of regulatory elements is the key driver of transcriptional output and resilience, regulatory conservation matters: elements active across mammals most effectively stabilize gene expression. In contrast, recently evolved enhancers typically contribute weakly, consistent with their high evolutionary plasticity. These effects are observed across the entire mammalian clade and are robust to potential confounders, such as the gene expression level. Using liver as a representative somatic tissue, our results illuminate how the evolutionary stability of gene expression is profoundly entwined with both the number and conservation of surrounding promoters and enhancers.
Collapse
Affiliation(s)
- Camille Berthelot
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197, Institut National de la Santé et de la Recherche Médicale U1024, 46 Rue d'Ulm, 75230, Paris, Cedex 05, France
| | - Diego Villar
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Julie E Horvath
- Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, USA
- Evolutionary Anthropology Department, Duke University, Durham, NC, 27707, USA
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
31
|
Abstract
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future.
Collapse
Affiliation(s)
- Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Grosshaderner Str. 2, D-82152 Martinsried, Germany.
| |
Collapse
|
32
|
Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 2017; 3:8-16. [PMID: 29255284 DOI: 10.1038/s41564-017-0072-8] [Citation(s) in RCA: 669] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
Population stratification is a useful approach for a better understanding of complex biological problems in human health and wellbeing. The proposal that such stratification applies to the human gut microbiome, in the form of distinct community composition types termed enterotypes, has been met with both excitement and controversy. In view of accumulated data and re-analyses since the original work, we revisit the concept of enterotypes, discuss different methods of dividing up the landscape of possible microbiome configurations, and put these concepts into functional, ecological and medical contexts. As enterotypes are of use in describing the gut microbial community landscape and may become relevant in clinical practice, we aim to reconcile differing views and encourage a balanced application of the concept.
Collapse
|
33
|
Zhou J, Sears RL, Xing X, Zhang B, Li D, Rockweiler NB, Jang HS, Choudhary MNK, Lee HJ, Lowdon RF, Arand J, Tabers B, Gu CC, Cicero TJ, Wang T. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics 2017; 18:724. [PMID: 28899353 PMCID: PMC5596466 DOI: 10.1186/s12864-017-4115-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Results Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Conclusions Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites. Electronic supplementary material The online version of this article (10.1186/s12864-017-4115-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.,Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Renee L Sears
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole B Rockweiler
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyo Sik Jang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mayank N K Choudhary
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyung Joo Lee
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca F Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Arand
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Brianne Tabers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Theodore J Cicero
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models. Nat Commun 2017; 8:456. [PMID: 28878256 PMCID: PMC5587666 DOI: 10.1038/s41467-017-00470-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 06/30/2017] [Indexed: 01/03/2023] Open
Abstract
Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.Genetic prediction of complex traits with polygenic architecture has wide application from animal breeding to disease prevention. Here, Zeng and Zhou develop a non-parametric genetic prediction method based on latent Dirichlet Process regression models.
Collapse
|
35
|
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, Perry GH, Lynch VJ, Brown CD. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res 2017; 27:1623-1633. [PMID: 28855262 PMCID: PMC5630026 DOI: 10.1101/gr.218149.116] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
Abstract
Gene regulation shapes the evolution of phenotypic diversity. We investigated the evolution of liver promoters and enhancers in six primate species using ChIP-seq (H3K27ac and H3K4me1) to profile cis-regulatory elements (CREs) and using RNA-seq to characterize gene expression in the same individuals. To quantify regulatory divergence, we compared CRE activity across species by testing differential ChIP-seq read depths directly measured for orthologous sequences. We show that the primate regulatory landscape is largely conserved across the lineage, with 63% of the tested human liver CREs showing similar activity across species. Conserved CRE function is associated with sequence conservation, proximity to coding genes, cell-type specificity, and transcription factor binding. Newly evolved CREs are enriched in immune response and neurodevelopmental functions. We further demonstrate that conserved CREs bind master regulators, suggesting that while CREs contribute to species adaptation to the environment, core functions remain intact. Newly evolved CREs are enriched in young transposable elements (TEs), including Long-Terminal-Repeats (LTRs) and SINE-VNTR-Alus (SVAs), that significantly affect gene expression. Conversely, only 16% of conserved CREs overlap TEs. We tested the cis-regulatory activity of 69 TE subfamilies by luciferase reporter assays, spanning all major TE classes, and showed that 95.6% of tested TEs can function as either transcriptional activators or repressors. In conclusion, we demonstrated the critical role of TEs in primate gene regulation and illustrated potential mechanisms underlying evolutionary divergence among the primate species through the noncoding genome.
Collapse
Affiliation(s)
- Marco Trizzino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - YoSon Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marcia Holsbach-Beltrame
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katherine Aracena
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katelyn Mika
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Minal Caliskan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Sun S, Hood M, Scott L, Peng Q, Mukherjee S, Tung J, Zhou X. Differential expression analysis for RNAseq using Poisson mixed models. Nucleic Acids Res 2017; 45:e106. [PMID: 28369632 PMCID: PMC5499851 DOI: 10.1093/nar/gkx204] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html.
Collapse
Affiliation(s)
- Shiquan Sun
- Systems Engineering Institute, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle Hood
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Scott
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qinke Peng
- Systems Engineering Institute, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, and Computer Science, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC 27708, USA
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Terekhanova NV, Seplyarskiy VB, Soldatov RA, Bazykin GA. Evolution of Local Mutation Rate and Its Determinants. Mol Biol Evol 2017; 34:1100-1109. [PMID: 28138076 PMCID: PMC5850301 DOI: 10.1093/molbev/msx060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutation rate varies along the human genome, and part of this variation is explainable by measurable local properties of the DNA molecule. Moreover, mutation rates differ between orthologous genomic regions of different species, but the drivers of this change are unclear. Here, we use data on human divergence from chimpanzee, human rare polymorphism, and human de novo mutations to predict the substitution rate at orthologous regions of non-human mammals. We show that the local mutation rates are very similar between human and apes, implying that their variation has a strong underlying cryptic component not explainable by the known genomic features. Mutation rates become progressively less similar in more distant species, and these changes are partially explainable by changes in the local genomic features of orthologous regions, most importantly, in the recombination rate. However, they are much more rapid, implying that the cryptic component underlying the mutation rate is more ephemeral than the known genomic features. These findings shed light on the determinants of mutation rate evolution. Key words local mutation rate, molecular evolution, recombination rate.
Collapse
Affiliation(s)
- Nadezhda V. Terekhanova
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir B. Seplyarskiy
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Ruslan A. Soldatov
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A. Bazykin
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
38
|
Sun S, Zhang X, Peng Q. A high-order representation and classification method for transcription factor binding sites recognition in Escherichia coli. Artif Intell Med 2017; 75:16-23. [PMID: 28363453 DOI: 10.1016/j.artmed.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Identifying transcription factors binding sites (TFBSs) plays an important role in understanding gene regulatory processes. The underlying mechanism of the specific binding for transcription factors (TFs) is still poorly understood. Previous machine learning-based approaches to identifying TFBSs commonly map a known TFBS to a one-dimensional vector using its physicochemical properties. However, when the dimension-sample rate is large (i.e., number of dimensions/number of samples), concatenating different physicochemical properties to a one-dimensional vector not only is likely to lose some structural information, but also poses significant challenges to recognition methods. MATERIALS AND METHOD In this paper, we introduce a purely geometric representation method, tensor (also called multidimensional array), to represent TFs using their physicochemical properties. Accompanying the multidimensional array representation, we also develop a tensor-based recognition method, tensor partial least squares classifier (abbreviated as TPLSC). Intuitively, multidimensional arrays enable borrowing more information than one-dimensional arrays. The performance of each method is evaluated by average F-measure on 51 Escherichia coli TFs from RegulonDB database. RESULTS In our first experiment, the results show that multiple nucleotide properties can obtain more power than dinucleotide properties. In the second experiment, the results demonstrate that our method can gain increased prediction power, roughly 33% improvements more than the best result from existing methods. CONCLUSION The representation method for TFs is an important step in TFBSs recognition. We illustrate the benefits of this representation on real data application via a series of experiments. This method can gain further insights into the mechanism of TF binding and be of great use for metabolic engineering applications.
Collapse
Affiliation(s)
- Shiquan Sun
- Systems Engineering Institute, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China; Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Xiongpan Zhang
- Systems Engineering Institute, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China.
| | - Qinke Peng
- Systems Engineering Institute, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
39
|
Yu D, Shi W, Zhang YE. Underrepresentation of active histone modification marks in evolutionarily young genes. INSECT SCIENCE 2017; 24:174-186. [PMID: 26607206 DOI: 10.1111/1744-7917.12299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
It is known that evolutionarily new genes can rapidly evolve essential roles in fundamental biological processes. Nevertheless, the underlying molecular mechanism of how they acquire their novel transcriptional pattern is less characterized except for the role of cis-regulatory evolution. Epigenetic modification offers an alternative possibility. Here, we examined how histone modifications have changed among different gene age groups in Drosophila melanogaster by integrative analyses of an updated new gene dataset and published epigenomic data. We found a robust pattern across various datasets where both the coverage and intensity of active histone modifications, histone 3 lysine 4 trimethylation and lysine 36 trimethylation, increased with evolutionary age. Such a temporal correlation is negative and much weaker for the repressive histone mark, lysine 9 trimethylation, which is expected given its major association with heterochromatin. By further comparison with neighboring old genes, the depletion of active marks of new genes could be only partially explained by the local epigenetic context. All these data are consistent with the observation that older genes bear relatively higher expression levels and suggest that the evolution of histone modifications could be implicated in transcriptional evolution after gene birth.
Collapse
Affiliation(s)
- Daqi Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenwen Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Gómez-Díaz E, Yerbanga RS, Lefèvre T, Cohuet A, Rowley MJ, Ouedraogo JB, Corces VG. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci Rep 2017; 7:40655. [PMID: 28091569 PMCID: PMC5238449 DOI: 10.1038/srep40655] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
P. falciparum phenotypic plasticity is linked to the variant expression of clonal multigene families such as the var genes. We have examined changes in transcription and histone modifications that occur during sporogonic development of P. falciparum in the mosquito host. All var genes are silenced or transcribed at low levels in blood stages (gametocyte/ring) of the parasite in the human host. After infection of mosquitoes, a single var gene is selected for expression in the oocyst, and transcription of this gene increases dramatically in the sporozoite. The same PF3D7_1255200 var gene was activated in 4 different experimental infections. Transcription of this var gene during parasite development in the mosquito correlates with the presence of low levels of H3K9me3 at the binding site for the PF3D7_1466400 AP2 transcription factor. This chromatin state in the sporozoite also correlates with the expression of an antisense long non-coding RNA (lncRNA) that has previously been shown to promote var gene transcription during the intraerythrocytic cycle in vitro. Expression of both the sense protein-coding transcript and the antisense lncRNA increase dramatically in sporozoites. The findings suggest a complex process for the activation of a single particular var gene that involves AP2 transcription factors and lncRNAs.
Collapse
|
41
|
Melamed P, Yosefzon Y, Rudnizky S, Pnueli L. Transcriptional enhancers: Transcription, function and flexibility. Transcription 2016; 7:26-31. [PMID: 26934309 DOI: 10.1080/21541264.2015.1128517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Active transcriptional enhancers are often transcribed to eRNAs, whose changing levels mirror those of the target gene mRNA. We discuss some of the reported functions of these eRNAs and their likely diversity to allow utilization of distinct cis regulatory regions to enhance transcription in diverse developmental and cellular contexts.
Collapse
Affiliation(s)
- Philippa Melamed
- a Faculty of Biology, Technion-Israel Institute of Technology , Haifa , Israel
| | - Yahav Yosefzon
- a Faculty of Biology, Technion-Israel Institute of Technology , Haifa , Israel
| | - Sergei Rudnizky
- a Faculty of Biology, Technion-Israel Institute of Technology , Haifa , Israel
| | - Lilach Pnueli
- a Faculty of Biology, Technion-Israel Institute of Technology , Haifa , Israel
| |
Collapse
|
42
|
Bell CG. Insights in human epigenomic dynamics through comparative primate analysis. Genomics 2016; 108:115-125. [DOI: 10.1016/j.ygeno.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/03/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
|
43
|
Abstract
As a species, we possess unique biological features that distinguish us from other primates. Here, we review recent efforts to identify changes in gene regulation that drove the evolution of novel human phenotypes. We discuss genotype-directed comparisons of human and nonhuman primate genomes to identify human-specific genetic changes that may encode new regulatory functions. We also review phenotype-directed approaches, which use comparisons of gene expression or regulatory function in homologous human and nonhuman primate cells and tissues to identify changes in expression levels or regulatory activity that may be due to genetic changes in humans. Together, these studies are beginning to reveal the landscape of regulatory innovation in human evolution and point to specific regulatory changes for further study. Finally, we highlight two novel strategies to model human-specific regulatory functions in vivo: primate induced pluripotent stem cells and the generation of humanized mice by genome editing.
Collapse
Affiliation(s)
- Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510;
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510; .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
44
|
Lea AJ, Altmann J, Alberts SC, Tung J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol Ecol 2016; 25:1681-96. [PMID: 26508127 PMCID: PMC4846536 DOI: 10.1111/mec.13436] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
Abstract
Variation in resource availability commonly exerts strong effects on fitness-related traits in wild animals. However, we know little about the molecular mechanisms that mediate these effects, or about their persistence over time. To address these questions, we profiled genome-wide whole-blood DNA methylation levels in two sets of wild baboons: (i) 'wild-feeding' baboons that foraged naturally in a savanna environment and (ii) 'Lodge' baboons that had ready access to spatially concentrated human food scraps, resulting in high feeding efficiency and low daily travel distances. We identified 1014 sites (0.20% of sites tested) that were differentially methylated between wild-feeding and Lodge baboons, providing the first evidence that resource availability shapes the epigenome in a wild mammal. Differentially methylated sites tended to occur in contiguous stretches (i.e., in differentially methylated regions or DMRs), in promoters and enhancers, and near metabolism-related genes, supporting their functional importance in gene regulation. In agreement, reporter assay experiments confirmed that methylation at the largest identified DMR, located in the promoter of a key glycolysis-related gene, was sufficient to causally drive changes in gene expression. Intriguingly, all dispersing males carried a consistent epigenetic signature of their membership in a wild-feeding group, regardless of whether males dispersed into or out of this group as adults. Together, our findings support a role for DNA methylation in mediating ecological effects on phenotypic traits in the wild and emphasize the dynamic environmental sensitivity of DNA methylation levels across the life course.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Jeanne Altmann
- Department of Ecology and Evolution, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
- Institute of Primate Research, National Museums of Kenya, P. O. Box 24481, Karen 00502, Nairobi, Kenya
| | - Susan C. Alberts
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, P. O. Box 24481, Karen 00502, Nairobi, Kenya
| | - Jenny Tung
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, P. O. Box 24481, Karen 00502, Nairobi, Kenya
- Department of Evolutionary Anthropology, Box 90383, Durham, NC 27708, USA
- Duke University Population Research Institute, Box 90420, Durham, NC 27708, USA
| |
Collapse
|
45
|
Abstract
A fundamental initiative for evolutionary biologists is to understand the molecular basis underlying phenotypic diversity. A long-standing hypothesis states that species-specific traits may be explained by differences in gene regulation rather than differences at the protein level. Over the past few years, evolutionary studies have shifted from mere sequence comparisons to integrative analyses in which gene regulation is key to understanding species evolution. DNA methylation is an important epigenetic modification involved in the regulation of numerous biological processes. Nevertheless, the evolution of the human methylome and the processes driving such changes are poorly understood. Here, we review the close interplay between Cytosine-phosphate-Guanine (CpG) methylation and the underlying genome sequence, as well as its evolutionary impact. We also summarize the latest advances in the field, revisiting the main literature on human and nonhuman primates. We hope to encourage the scientific community to address the many challenges posed by the field of comparative epigenomics.
Collapse
|
46
|
Dincer A, Gavin DP, Xu K, Zhang B, Dudley JT, Schadt EE, Akbarian S. Deciphering H3K4me3 broad domains associated with gene-regulatory networks and conserved epigenomic landscapes in the human brain. Transl Psychiatry 2015; 5:e679. [PMID: 26575220 PMCID: PMC5068762 DOI: 10.1038/tp.2015.169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022] Open
Abstract
Regulators of the histone H3-trimethyl lysine-4 (H3K4me3) mark are significantly associated with the genetic risk architecture of common neurodevelopmental disease, including schizophrenia and autism. Typical H3K4me3 is primarily localized in the form of sharp peaks, extending in neuronal chromatin on average only across 500-1500 base pairs mostly in close proximity to annotated transcription start sites. Here, through integrative computational analysis of epigenomic and transcriptomic data based on next-generation sequencing, we investigated H3K4me3 landscapes of sorted neuronal and non-neuronal nuclei in human postmortem, non-human primate and mouse prefrontal cortex (PFC), and blood. To explore whether H3K4me3 peak signals could also extend across much broader domains, we examined broadest domain cell-type-specific H3K4me3 peaks in an unbiased manner with an innovative approach on 41+12 ChIP-seq and RNA-seq data sets. In PFC neurons, broadest H3K4me3 distribution ranged from 3.9 to 12 kb, with extremely broad peaks (~10 kb or broader) related to synaptic function and GABAergic signaling (DLX1, ELFN1, GAD1, IGSF9B and LINC00966). Broadest neuronal peaks showed distinct motif signatures and were centrally positioned in prefrontal gene-regulatory Bayesian networks and sensitive to defective neurodevelopment. Approximately 120 of the broadest H3K4me3 peaks in human PFC neurons, including many genes related to glutamatergic and dopaminergic signaling, were fully conserved in chimpanzee, macaque and mouse cortical neurons. Exploration of spread and breadth of lysine methylation markings could provide novel insights into epigenetic mechanism involved in neuropsychiatric disease and neuronal genome evolution.
Collapse
Affiliation(s)
- A Dincer
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D P Gavin
- Department of Psychiatry, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - K Xu
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B Zhang
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J T Dudley
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E E Schadt
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Ramaswamy K, Yik WY, Wang XM, Oliphant EN, Lu W, Shibata D, Ryder OA, Hacia JG. Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Res Notes 2015; 8:577. [PMID: 26475477 PMCID: PMC4609060 DOI: 10.1186/s13104-015-1567-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023] Open
Abstract
Background Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. Along with the African great apes, orangutans are among the closest living relatives to humans. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved somatic cells obtained from captive orangutans. Results Primary skin fibroblasts from two Sumatran orangutans were transduced with retroviral vectors expressing the human OCT4, SOX2, KLF4, and c-MYC factors. Candidate orangutan iPSCs were characterized by global gene expression and DNA copy number analysis. All were consistent with pluripotency and provided no evidence of large genomic insertions or deletions. In addition, orangutan iPSCs were capable of producing cells derived from all three germ layers in vitro through embryoid body differentiation assays and in vivo through teratoma formation in immune-compromised mice. Conclusions We demonstrate that orangutan skin fibroblasts are capable of being reprogrammed into iPSCs with hallmark molecular signatures and differentiation potential. We suggest that reprogramming orangutan somatic cells in genome resource banks could provide new opportunities for advancing assisted reproductive technologies relevant for species conservation efforts. Furthermore, orangutan iPSCs could have applications for investigating the phenotypic relevance of genomic changes that occurred in the human, African great ape, and/or orangutan lineages. This provides opportunities for orangutan cell culture models that would otherwise be impossible to develop from living donors due to the invasive nature of the procedures required for obtaining primary cells. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1567-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krishna Ramaswamy
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Wing Yan Yik
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Xiao-Ming Wang
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Erin N Oliphant
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Wange Lu
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | - Darryl Shibata
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research , San Diego Zoo Global, San Diego, CA, USA.
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Franchini LF, Pollard KS. Genomic approaches to studying human-specific developmental traits. Development 2015; 142:3100-12. [DOI: 10.1242/dev.120048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes – human and non-human – that can be compared to discover the regulatory machinery of genes involved in human development. This approach has identified thousands of human-specific genome alterations in developmental genes and their regulatory regions. With recent advances in stem cell techniques, genome engineering, and genomics, we can now test these sequences for effects on developmental gene regulation and downstream phenotypes in human cells and tissues.
Collapse
Affiliation(s)
- Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
49
|
Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L, Gage FH, Swigut T, Wysocka J. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 2015; 163:68-83. [PMID: 26365491 DOI: 10.1016/j.cell.2015.08.036] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/06/2015] [Accepted: 07/21/2015] [Indexed: 01/23/2023]
Abstract
cis-regulatory changes play a central role in morphological divergence, yet the regulatory principles underlying emergence of human traits remain poorly understood. Here, we use epigenomic profiling from human and chimpanzee cranial neural crest cells to systematically and quantitatively annotate divergence of craniofacial cis-regulatory landscapes. Epigenomic divergence is often attributable to genetic variation within TF motifs at orthologous enhancers, with a novel motif being most predictive of activity biases. We explore properties of this cis-regulatory change, revealing the role of particular retroelements, uncovering broad clusters of species-biased enhancers near genes associated with human facial variation, and demonstrating that cis-regulatory divergence is linked to quantitative expression differences of crucial neural crest regulators. Our work provides a wealth of candidates for future evolutionary studies and demonstrates the value of "cellular anthropology," a strategy of using in-vitro-derived embryonic cell types to elucidate both fundamental and evolving mechanisms underlying morphological variation in higher primates.
Collapse
Affiliation(s)
- Sara L Prescott
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rajini Srinivasan
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Carolina Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Simonti CN, Capra JA. The evolution of the human genome. Curr Opin Genet Dev 2015; 35:9-15. [PMID: 26338498 DOI: 10.1016/j.gde.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 02/05/2023]
Abstract
Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick.
Collapse
Affiliation(s)
- Corinne N Simonti
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|