1
|
Galbraith K, Wu J, Sikkink K, Mohamed H, Reid D, Perez-Arreola M, Belton JM, Nomikou S, Melnyk S, Yang Y, Liechty BL, Jour G, Tsirigos A, Hermel DJ, Beck A, Sigal D, Dahl NA, Vibhakar R, Schmitt A, Snuderl M. Detection of Gene Fusions and Rearrangements in Formalin-Fixed, Paraffin-Embedded Solid Tumor Specimens Using High-Throughput Chromosome Conformation Capture. J Mol Diagn 2025; 27:346-359. [PMID: 40023492 DOI: 10.1016/j.jmoldx.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Chromosomal structural variants (SVs) are major contributors to cancer development. Although multiple methods exist for detecting SVs, they are limited in throughput, such as fluorescent in situ hybridization and targeted panels, and use RNA, which degrades in formalin-fixed, paraffin-embedded (FFPE) blocks and is unable to detect SVs that do not produce a fusion transcript. High-throughput chromosome conformation capture (Hi-C) is a DNA-based next-generation sequencing (NGS) method that preserves the spatial conformation of the genome, capturing long-range genetic interactions and SVs. Herein, a retrospective study analyzing 71 FFPE specimens from 10 different solid tumors was performed. Results showed high concordance (98%) with clinical fluorescent in situ hybridization and RNA NGS in detecting known SVs. Furthermore, Hi-C provided insight into the mechanism of SV formation, including chromothripsis and extrachromosomal DNA, and detected rearrangements between genes and regulatory regions, all of which are undetectable by RNA NGS. Lastly, SVs were detected in 71% of cases in which previous clinical methods failed to identify a driver. Of these, 14% were clinically actionable based on current medical guidelines, and an additional 14% were not in medical guidelines but involve targetable biomarkers. Current data suggest that Hi-C is a robust and accurate method for genome-wide SV analyses from FFPE tissue and can be incorporated into current clinical NGS workflows.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York.
| | - Jamin Wu
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | | | - Hussein Mohamed
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Derek Reid
- Arima Genomics, Inc., Carlsbad, California
| | | | | | | | | | - Yiying Yang
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Benjamin L Liechty
- Department of Pathology, Weill Cornell School of Medicine, New York, New York
| | - George Jour
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York; Division of Precision Medicine, Department of Medicine, NYU School of Medicine, New York, New York; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - David J Hermel
- Scripps Clinic/Scripps Cancer Center, La Jolla, California
| | - Alyssa Beck
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Darren Sigal
- Scripps Clinic/Scripps Cancer Center, La Jolla, California
| | - Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Matija Snuderl
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York; Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York.
| |
Collapse
|
2
|
Lawrence SS, Yamashita H, Shuman L, Raman JD, Joshi M, Yochum GS, Wu XR, Al-Ahmadie HA, Warrick JI, Walter V, DeGraff DJ. Interferon-γ/Janus Kinase 1/STAT1 Signaling Represses Forkhead Box A1 and Drives a Basal Transcriptional State in Muscle-Invasive Bladder Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:1013-1030. [PMID: 39986350 DOI: 10.1016/j.ajpath.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
During progression, luminal muscle-invasive bladder cancer (MIBC) can transition to the aggressive basal-squamous (Ba/Sq) subtype. Reduced expression of forkhead box A1 (FOXA1) in the urothelium is a hallmark and driver of the Ba/Sq transcriptional state and squamous differentiation. Ba/Sq tumors are highly inflamed; however, the specific inflammatory pathways contributing to the Ba/Sq state are unknown. In this study, transcriptomic analyses of The Cancer Genome Atlas MIBC cohort were performed to determine whether immune response gene signatures were associated with MIBC molecular states. Results showed that Ba/Sq MIBCs were enriched for the interferon-γ (IFN-γ)-dominant signature. Ba/Sq MIBCs exhibited increased IFN-γ/Janus kinase (JAK)/STAT pathway activity, corresponding to reduced FOXA1 regulon activity. Immunohistochemistry of MIBC specimens demonstrated that JAK1 expression was significantly increased in tumor areas with squamous differentiation. IFN-γ treatment of luminal MIBC cell lines significantly decreased the expression of luminal transcriptional drivers, including FOXA1, and increased the expression of Ba/Sq markers in a STAT1-dependent manner. RNA-sequencing analyses identified IFN-γ as a driver of the Ba/Sq state. The ability of IFN-γ to repress FOXA1 in luminal cells was abrogated by ruxolitinib inhibition of JAK1/2 activity. Additionally, pharmacologic inhibition or genetic ablation of JAK1 restored FOXA1 expression in Ba/Sq MIBC cells. These findings are the first to identify IFN-γ as an epithelial cell-extrinsic mechanism to repress FOXA1 and drive the Ba/Sq state in MIBC.
Collapse
Affiliation(s)
- Shamara S Lawrence
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lauren Shuman
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jay D Raman
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Monika Joshi
- Division of Hematology-Oncology, Department of Medicine, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Gregory S Yochum
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Molecular and Precision Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University Grossman School of Medicine, New York, New York; Veterans Affairs New York Harbor Healthcare System, New York, New York
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua I Warrick
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Vonn Walter
- Department of Molecular and Precision Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
3
|
Choppavarapu L, Fang K, Liu T, Ohihoin AG, Jin VX. Hi-C profiling in tissues reveals 3D chromatin-regulated breast tumor heterogeneity informing a looping-mediated therapeutic avenue. Cell Rep 2025; 44:115450. [PMID: 40112000 DOI: 10.1016/j.celrep.2025.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
The limitations of Hi-C (high-throughput chromosome conformation capture) profiling in in vitro cell culture include failing to recapitulate disease-specific physiological properties and lacking a clinically relevant disease microenvironment. In this study, we conduct Hi-C profiling in a pilot cohort of 12 breast tissues comprising two normal tissues, five ER+ breast primary tumors, and five tamoxifen-treated recurrent tumors. We demonstrate 3D chromatin-regulated breast tumor heterogeneity and identify a looping-mediated target gene, CA2, which might play a role in driving tamoxifen resistance. The inhibition of CA2 impedes tumor growth both in vitro and in vivo and reverses chromatin looping. The disruption of CA2 looping reduces tamoxifen-resistant cancer cell proliferation, decreases CA2 mRNA and protein expression, and weakens the looping interaction. Our study thus provides mechanistic and functional insights into the role of 3D chromatin architecture in regulating breast tumor heterogeneity and informs a new looping-mediated therapeutic avenue for treating breast cancer.
Collapse
Affiliation(s)
- Lavanya Choppavarapu
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kun Fang
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tianxiang Liu
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aigbe G Ohihoin
- Cell and Developmental Biology PhD program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Victor X Jin
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
4
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
5
|
Xu X, Gan J, Gao Z, Li R, Huang D, Lin L, Luo Y, Yang Q, Xu J, Li Y, Fang Q, Peng T, Wang Y, Xu Z, Huang A, Hong H, Lei F, Huang W, Leng J, Li T, Bo X, Chen H, Li C, Gu J. 3D genome landscape of primary and metastatic colorectal carcinoma reveals the regulatory mechanism of tumorigenic and metastatic gene expression. Commun Biol 2025; 8:365. [PMID: 40038385 PMCID: PMC11880527 DOI: 10.1038/s42003-025-07647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Colorectal carcinoma (CRC) is a deadly cancer with an aggressive nature, and how CRC tumor cells manage to translocate and proliferate in a new tissue environment remains not fully understood. Recently, higher-order chromatin structures and spatial genome organization are increasingly implicated in diseases including cancer, but in-depth studies of three-dimensional genome (3D genome) of metastatic cancer are currently lacking, preventing the understanding of the roles of genome organization during metastasis. Here we perform multi-omics profiling of matched normal colon, primary tumor, lymph node metastasis, liver metastasis and normal liver tissue from CRC patients using Hi-C, ATAC-seq and RNA-seq technologies. We find that widespread alteration of 3D chromatin structure is accompanied by dysregulation of genes including SPP1 during the tumorigenesis or metastasis of CRC. Remarkably, the hierarchy of topological associating domain (TAD) changes dynamically, which challenges the traditional view that the TAD structure between tumor and normal tissue is conservative. In addition, we define compartment stability score to measure large-scale alteration in metastatic tumors. To integrate multi-omics data and recognize candidate genes driving cancer metastasis, a pipeline is developed based on Hi-C, RNA-seq and ATAC-seq data. And three candidate genes ARL4C, FLNA, and RGCC are validated to be associated with CRC cell migration and invasion using in vitro knockout experiments. Overall, these data resources and results offer new insights into the involvement of 3D genome in cancer metastasis.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Academy of Military Medical Sciences, Beijing, China
| | - Jingbo Gan
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Ruifeng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Dandan Huang
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Lin Lin
- Academy of Military Medical Sciences, Beijing, China
| | - Yawen Luo
- Academy of Military Medical Sciences, Beijing, China
| | - Qian Yang
- Academy of Military Medical Sciences, Beijing, China
| | - Jingxuan Xu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing, China
| | - Qing Fang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Ting Peng
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Yaqi Wang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zihan Xu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haopeng Hong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fuming Lei
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Wensheng Huang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Jianjun Leng
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
- Department of Hepatopancreatobiliary Surgery, Peking University Shougang Hospital, Beijing, China
| | - Tingting Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing, China.
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China.
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Peking University International Cancer Institute, Beijing, China.
| |
Collapse
|
6
|
Yang J, Zhou F, Luo X, Fang Y, Wang X, Liu X, Xiao R, Jiang D, Tang Y, Yang G, You L, Zhao Y. Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies. Cell Death Discov 2025; 11:84. [PMID: 40032852 DOI: 10.1038/s41420-025-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
7
|
Acedo-Terrades A, Perera-Bel J, Nonell L. The importance of data transformation in RNA-Seq preprocessing for bladder cancer subtyping. BMC Res Notes 2025; 18:61. [PMID: 39930545 PMCID: PMC11812149 DOI: 10.1186/s13104-025-07138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE RNA-Seq provides an accurate quantification of gene expression levels and it is widely used for molecular subtype classification in cancer, with special importance in prognosis. However, the reliability and validity of these analyses can significantly be influenced by how data are processed. In this study we evaluate how RNA-Seq preprocessing methods influence molecular subtype classification in bladder cancer. By benchmarking various aligners, quantifiers and methods of normalization and transformation, we stress the importance of preprocessing choices for accurate and consistent subtype classification. RESULTS Our findings highlight that log-transformation plays a crucial role in centroid-based classifiers such as consensusMIBC and TCGAclas, while distribution-free algorithms like LundTax offer robustness to preprocessing variations. Non log-transformed data resulted in low classification rates and poor agreement with reference classifications in consensusMIBC and TCGAclas classifiers. Additionally, LundTax consistently demonstrated better separation among subtypes, compared to consensusMIBC and TCGAclas, regardless of preprocessing methods. Nonetheless, the study is limited by the lack of a true reference for objective assessment of the accuracy of the assigned subtypes. Hence, future work will be necessary to determine the robustness and scalability of the obtained results.
Collapse
Affiliation(s)
| | | | - Lara Nonell
- Bioinformatics Unit, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
8
|
Schmitt AD, Sikkink K, Ahmed AA, Melnyk S, Reid D, Van Meter L, Guest EM, Lansdon LA, Pastinen T, Pushel I, Yoo B, Farooqi MS. Evaluation of Hi-C Sequencing for Detection of Gene Fusions in Hematologic and Solid Tumor Pediatric Cancer Samples. Cancers (Basel) 2024; 16:2936. [PMID: 39272793 PMCID: PMC11394547 DOI: 10.3390/cancers16172936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Hi-C sequencing is a DNA-based next-generation sequencing method that preserves the 3D genome conformation and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate Hi-C as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens. Archived viable and non-viable frozen leukemic cells and formalin-fixed paraffin-embedded (FFPE) tumor specimens were analyzed. Pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to Hi-C to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases without known genomic rearrangements based on prior clinical diagnostic testing was evaluated to determine whether Hi-C could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, we observed 100% concordance between Hi-C and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study provides an institutional proof of principle evaluation of Hi-C sequencing to medical diagnostic testing as it identified several clinically relevant rearrangements, including those that were missed by current clinical testing workflows.
Collapse
Affiliation(s)
| | - Kristin Sikkink
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Atif A Ahmed
- Department of Pathology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Shadi Melnyk
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Derek Reid
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Logan Van Meter
- Arima Genomics, 6354 Corte Del Abeto, Carlsbad, CA 92011, USA
| | - Erin M Guest
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Lisa A Lansdon
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Tomi Pastinen
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Irina Pushel
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Byunggil Yoo
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Midhat S Farooqi
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA
- Department of Pathology & Laboratory Medicine, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
9
|
Wang X, Yue F. Hijacked enhancer-promoter and silencer-promoter loops in cancer. Curr Opin Genet Dev 2024; 86:102199. [PMID: 38669773 DOI: 10.1016/j.gde.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Recent work has shown that besides inducing fusion genes, structural variations (SVs) can also contribute to oncogenesis by disrupting the three-dimensional genome organization and dysregulating gene expression. At the chromatin-loop level, SVs can relocate enhancers or silencers from their original genomic loci to activate oncogenes or repress tumor suppressor genes. On a larger scale, different types of alterations in topologically associating domains (TADs) have been reported in cancer, such as TAD expansion, shuffling, and SV-induced neo-TADs. Furthermore, the transformation from normal cells to cancerous cells is usually coupled with active or repressive compartmental switches, and cancer-specific compartments have been proposed. This review discusses the sites, and the other latest advances in studying how SVs disrupt higher-order genome structure in cancer, which in turn leads to oncogene dysregulation. We also highlight the clinical implications of these changes and the challenges ahead in this field.
Collapse
Affiliation(s)
- Xiaotao Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
10
|
Schmitt AD, Sikkink K, Ahmed AA, Melnyk S, Reid D, Van Meter L, Guest EM, Lansdon LA, Pastinen T, Pushel I, Yoo B, Farooqi MS. Evaluation of Hi-C sequencing for the detection of gene fusions in hematologic and solid pediatric cancer samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.10.24306838. [PMID: 38765974 PMCID: PMC11100933 DOI: 10.1101/2024.05.10.24306838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome and has shown promise in detecting genomic rearrangements in translational research studies. To evaluate HiC as a potential clinical diagnostic platform, analytical concordance with routine laboratory testing was assessed using primary pediatric leukemia and sarcoma specimens previously positive for clinically significant genomic rearrangements. Archived specimen types tested included viable and nonviable frozen leukemic cells, as well as formalin-fixed paraffin-embedded (FFPE) tumor tissues. Initially, pediatric acute myeloid leukemia (AML) and alveolar rhabdomyosarcoma (A-RMS) specimens with known genomic rearrangements were subjected to HiC analysis to assess analytical concordance. Subsequently, a discovery cohort consisting of AML and acute lymphoblastic leukemia (ALL) cases with no known genomic rearrangements based on prior clinical diagnostic testing were evaluated to determine whether HiC could detect rearrangements. Using a standard sequencing depth of 50 million raw read-pairs per sample, or approximately 5X raw genomic coverage, 100% concordance was observed between HiC and previous clinical cytogenetic and molecular testing. In the discovery cohort, a clinically relevant gene fusion was detected in 45% of leukemia cases (5/11). This study demonstrates the value of HiC sequencing to medical diagnostic testing as it identified several clinically significant rearrangements, including those that might have been missed by current clinical testing workflows. Key points HiC sequencing is a DNA-based next-generation sequencing method that preserves the 3D conformation of the genome, facilitating detection of genomic rearrangements.HiC was 100% concordant with clinical diagnostic testing workflows for detecting clinically significant genomic rearrangements in pediatric leukemia and rhabdomyosarcoma specimens.HiC detected clinically significant genomic rearrangements not previously detected by prior clinical cytogenetic and molecular testing.HiC performed well with archived non-viable and viable frozen leukemic cell samples, as well as archived formalin-fixed paraffin-embedded tumor tissue specimens.
Collapse
|
11
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. Unveiling Alterations of Epigenetic Modifications and Chromatin Architecture Leading to Lipid Metabolic Reprogramming during the Evolutionary Trastuzumab Adaptation of HER2-Positive Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309424. [PMID: 38460162 PMCID: PMC11095153 DOI: 10.1002/advs.202309424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Indexed: 03/11/2024]
Abstract
Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yijia Hua
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Xueqi Yan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yaozhou He
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Tianyu Zeng
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Jue Gong
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Ziyi Fu
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Wei Li
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yongmei Yin
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| |
Collapse
|
12
|
Yoon I, Kim U, Jung KO, Song Y, Park T, Lee DS. 3C methods in cancer research: recent advances and future prospects. Exp Mol Med 2024; 56:788-798. [PMID: 38658701 PMCID: PMC11059347 DOI: 10.1038/s12276-024-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, Hi-C technology has revolutionized cancer research by elucidating the mystery of three-dimensional chromatin organization and its role in gene regulation. This paper explored the impact of Hi-C advancements on cancer research by delving into high-resolution techniques, such as chromatin loops, structural variants, haplotype phasing, and extrachromosomal DNA (ecDNA). Distant regulatory elements interact with their target genes through chromatin loops. Structural variants contribute to the development and progression of cancer. Haplotype phasing is crucial for understanding allele-specific genomic rearrangements and somatic clonal evolution in cancer. The role of ecDNA in driving oncogene amplification and drug resistance in cancer cells has also been revealed. These innovations offer a deeper understanding of cancer biology and the potential for personalized therapies. Despite these advancements, challenges, such as the accurate mapping of repetitive sequences and precise identification of structural variants, persist. Integrating Hi-C with multiomics data is key to overcoming these challenges and comprehensively understanding complex cancer genomes. Thus, Hi-C is a powerful tool for guiding precision medicine in cancer research and treatment.
Collapse
Affiliation(s)
- Insoo Yoon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Uijin Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yousuk Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Taesoo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
13
|
Li T, Jiang Y, Bai Y, Jiang K, Du G, Chen P, Luo C, Li L, Qiao J, Shen J. A review for the impacts of circadian disturbance on urological cancers. Sleep Biol Rhythms 2024; 22:163-180. [PMID: 38524168 PMCID: PMC10959858 DOI: 10.1007/s41105-023-00500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/18/2023] [Indexed: 03/26/2024]
Abstract
Circadian rhythm is an internal timing system and harmonizes a variety of cellular, behavioral, and physiological processes to daily environment. Circadian disturbance caused by altered life style or disrupted sleep patterns inevitably contributes to various disorders. As the rapidly increased cancer occurrences and subsequent tremendous financial burdens, more researches focus on reducing the morbidity rather than treating it. Recently, many epidemiologic studies demonstrated that circadian disturbance was tightly related to the occurrence and development of cancers. For urinary system, numerous clinical researches observed the incidence and progress of prostate cancer were influenced by nightshift work, sleep duration, chronotypes, light exposure, and meal timing, this was also proved by many genetic and fundamental findings. Although the epidemiological studies regarding the relationship between circadian disturbance and kidney/bladder cancers were relative limited, some basic researches still claimed circadian disruption was closely correlated to these two cancers. The role of circadian chemotherapy on cancers of prostate, kidney, and bladder were also explored, however, it has not been regularly recommended considering the limited evidence and poor standard protocols. Finally, the researches for the impacts of circadian disturbance on cancers of adrenal gland, penis, testis were not found at present. In general, a better understanding the relationship between circadian disturbance and urological cancers might help to provide more scientific work schedules and rational lifestyles which finally saving health resource by reducing urological tumorigenesis, however, the underlying mechanisms are complex which need further exploration.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guangshi Du
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, China
| | - Peng Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Li
- Gastrointestinal Surgery Center, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Qiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Shen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
15
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
16
|
Stephenson-Gussinye A, Furlan-Magaril M. Chromosome conformation capture technologies as tools to detect structural variations and their repercussion in chromatin 3D configuration. Front Cell Dev Biol 2023; 11:1219968. [PMID: 37457299 PMCID: PMC10346842 DOI: 10.3389/fcell.2023.1219968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
3D genome organization regulates gene expression in different physiological and pathological contexts. Characterization of chromatin structure at different scales has provided information about how the genome organizes in the nuclear space, from chromosome territories, compartments of euchromatin and heterochromatin, topologically associated domains to punctual chromatin loops between genomic regulatory elements and gene promoters. In recent years, chromosome conformation capture technologies have also been used to characterize structural variations (SVs) de novo in pathological conditions. The study of SVs in cancer, has brought information about transcriptional misregulation that relates directly to the incidence and prognosis of the disease. For example, gene fusions have been discovered arising from chromosomal translocations that upregulate oncogenes expression, and other types of SVs have been described that alter large genomic regions encompassing many genes. However, studying SVs in 2D cannot capture all their regulatory implications in the genome. Recently, several bioinformatic tools have been developed to identify and classify SVs from chromosome conformation capture data and clarify how they impact chromatin structure in 3D, resulting in transcriptional misregulation. Here, we review recent literature concerning bioinformatic tools to characterize SVs from chromosome conformation capture technologies and exemplify their vast potential to rebuild the 3D landscape of genomes in cancer. The study of SVs from the 3D perspective can produce essential information about drivers, molecular targets, and disease evolution.
Collapse
|
17
|
Cao XM, Kang WD, Xia TH, Yuan SB, Guo CA, Wang WJ, Liu HB. High expression of the circadian clock gene NPAS2 is associated with progression and poor prognosis of gastric cancer: A single-center study. World J Gastroenterol 2023; 29:3645-3657. [PMID: 37398880 PMCID: PMC10311614 DOI: 10.3748/wjg.v29.i23.3645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The prognostic assessment of patients after surgical resection of gastric cancer (GC) patients is critical. However, the role of the circadian clock gene NPAS2 expression in GC remains unknown.
AIM To explore the relationship between NPAS2 and the survival prognosis of GC patients and clarify its role in evaluating GC prognosis.
METHODS The tumor tissues and clinical data of 101 patients with GC were collected retrospectively. Immunohistochemical staining (IHC) was used to detect the expression of NPAS2 protein in GC and adjacent tissues. Univariate and multivariate Cox regression analysis was used to determine the independent prognostic factors of GC, and a nomogram prediction model was established. The receiver operating characteristic (ROC) curve, the ROC area under the curve, the calibration curve, and C-index were used to evaluate the predictive effectiveness of the model. Kaplan Meier analysis was used to compare the risk stratification of subgroups according to the median score in the nomogram model of each patient.
RESULTS Microarray IHC analysis showed that the positive rate of NPAS2 protein expression in GC tissues was 65.35%, which was significantly higher than 30.69% in adjacent tissues. The high expression of NPAS2 was correlated with tumor-node-metastasis (TNM) stage (P < 0.05), pN stage (P < 0.05), metastasis (P < 0.05), venous invasion (P < 0.05), lymphatic invasion (P < 0.05), and lymph node positive (P < 0.05) of GC. Kaplan Meier survival analysis showed that the 3-year overall survival (OS) of patients with high NPAS2 expression was significantly shortened (P < 0.0001). Univariate and multivariate COX regression analysis showed that TNM stage (P = 0.009), metastasis (P = 0.009), and NPAS2 expression (P = 0.020) were independent prognostic factors of OS in GC patients for 3 years. The nomogram prediction model based on independent prognostic factors has a C-Index of 0.740 (95%CI: 0.713-0.767). Furthermore, subgroup analysis showed that the 3-year OS time of the high-risk group was significantly lower than that of the low-risk group (P < 0.0001).
CONCLUSION NPAS2 is highly expressed in GC tissues and is closely related to worse OS in patients. Therefore, the evaluation of NPAS2 expression may be a potential marker for GC prognosis evaluation. Notably, the nomogram model based on NPAS2 can improve the accuracy of GC prognosis prediction and assist clinicians in postoperative patient management and decision-making.
Collapse
Affiliation(s)
- Xiao-Meng Cao
- Department of General Surgery, Gansu Provincial Hospital of TCM, Lanzhou 730050, Gansu Province, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| | - Wen-Di Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tian-Hong Xia
- Clinical Medicine College, Ningxia Medical University, Clinical Medicine college, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shao-Bin Yuan
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| | - Chang-An Guo
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Wen-Jie Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Hong-Bin Liu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China.
| |
Collapse
|
18
|
Wang S, Luo Z, Liu W, Hu T, Zhao Z, Rosenfeld MG, Song X. The 3D genome and its impacts on human health and disease. LIFE MEDICINE 2023; 2:lnad012. [PMID: 39872109 PMCID: PMC11749360 DOI: 10.1093/lifemedi/lnad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 01/29/2025]
Abstract
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.
Collapse
Affiliation(s)
- Siqi Wang
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhengyu Luo
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiguang Liu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tengfei Hu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Neyret-Kahn H, Fontugne J, Meng XY, Groeneveld CS, Cabel L, Ye T, Guyon E, Krucker C, Dufour F, Chapeaublanc E, Rapinat A, Jeffery D, Tanguy L, Dixon V, Neuzillet Y, Lebret T, Gentien D, Davidson I, Allory Y, Bernard-Pierrot I, Radvanyi F. Epigenomic mapping identifies an enhancer repertoire that regulates cell identity in bladder cancer through distinct transcription factor networks. Oncogene 2023; 42:1524-1542. [PMID: 36944729 PMCID: PMC10162941 DOI: 10.1038/s41388-023-02662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Muscle-invasive bladder cancer (BLCA) is an aggressive disease. Consensus BLCA transcriptomic subtypes have been proposed, with two major Luminal and Basal subgroups, presenting distinct molecular and clinical characteristics. However, how these distinct subtypes are regulated remains unclear. We hypothesized that epigenetic activation of distinct super-enhancers could drive the transcriptional programs of BLCA subtypes. Through integrated RNA-sequencing and epigenomic profiling of histone marks in primary tumours, cancer cell lines, and normal human urothelia, we established the first integrated epigenetic map of BLCA and demonstrated the link between subtype and epigenetic control. We identified the repertoire of activated super-enhancers and highlighted Basal, Luminal and Normal-associated SEs. We revealed super-enhancer-regulated networks of candidate master transcription factors for Luminal and Basal subgroups including FOXA1 and ZBED2, respectively. FOXA1 CRISPR-Cas9 mutation triggered a shift from Luminal to Basal phenotype, confirming its role in Luminal identity regulation and induced ZBED2 overexpression. In parallel, we showed that both FOXA1 and ZBED2 play concordant roles in preventing inflammatory response in cancer cells through STAT2 inhibition. Our study furthers the understanding of epigenetic regulation of muscle-invasive BLCA and identifies a co-regulated network of super-enhancers and associated transcription factors providing potential targets for the treatment of this aggressive disease.
Collapse
Affiliation(s)
- Hélène Neyret-Kahn
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France.
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France.
| | - Jacqueline Fontugne
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université Versailles St-Quentin, Université Paris-Saclay, F-78180, Montigny-le-Bretonneux, France
| | - Xiang Yu Meng
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
- College of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi, 445000, China
| | - Clarice S Groeneveld
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
- Université de Paris, Centre de Recherche des Cordeliers, Paris, France
| | - Luc Cabel
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Centre National de Recherche Scientifique (CNRS) UMR7104, Université de Strasbourg,1 rue Laurent Fries, 67404, Illkirch, France
| | - Elodie Guyon
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Department of Pathology, Institut Curie, Paris, France
| | - Clémentine Krucker
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Florent Dufour
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Elodie Chapeaublanc
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Audrey Rapinat
- Department of Translational Research, Genomics Platform, Institut Curie, PSL Research University, Paris, France
| | - Daniel Jeffery
- Urology Medico-Scientific Program, Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Laura Tanguy
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Victoria Dixon
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Yann Neuzillet
- Université Versailles St-Quentin, Université Paris-Saclay, F-78180, Montigny-le-Bretonneux, France
- Department of Urology, Hôpital Foch, Suresnes, France
| | - Thierry Lebret
- Université Versailles St-Quentin, Université Paris-Saclay, F-78180, Montigny-le-Bretonneux, France
- Department of Urology, Hôpital Foch, Suresnes, France
| | - David Gentien
- Department of Translational Research, Genomics Platform, Institut Curie, PSL Research University, Paris, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Genétique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, 67404, Illkirch Cedex, France
| | - Yves Allory
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université Versailles St-Quentin, Université Paris-Saclay, F-78180, Montigny-le-Bretonneux, France
| | - Isabelle Bernard-Pierrot
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - François Radvanyi
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| |
Collapse
|
20
|
Maslova A, Plotnikov V, Nuriddinov M, Gridina M, Fishman V, Krasikova A. Hi-C analysis of genomic contacts revealed karyotype abnormalities in chicken HD3 cell line. BMC Genomics 2023; 24:66. [PMID: 36750787 PMCID: PMC9906895 DOI: 10.1186/s12864-023-09158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Karyotype abnormalities are frequent in immortalized continuous cell lines either transformed or derived from primary tumors. Chromosomal rearrangements can cause dramatic changes in gene expression and affect cellular phenotype and behavior during in vitro culture. Structural variations of chromosomes in many continuous mammalian cell lines are well documented, but chromosome aberrations in cell lines from other vertebrate models often remain understudied. The chicken LSCC-HD3 cell line (HD3), generated from erythroid precursors, was used as an avian model for erythroid differentiation and lineage-specific gene expression. However, karyotype abnormalities in the HD3 cell line were not assessed. In the present study, we applied high-throughput chromosome conformation capture to analyze 3D genome organization and to detect chromosome rearrangements in the HD3 cell line. RESULTS We obtained Hi-C maps of genomic interactions for the HD3 cell line and compared A/B compartments and topologically associating domains between HD3 and several other cell types. By analysis of contact patterns in the Hi-C maps of HD3 cells, we identified more than 25 interchromosomal translocations of regions ≥ 200 kb on both micro- and macrochromosomes. We classified most of the observed translocations as unbalanced, leading to the formation of heteromorphic chromosomes. In many cases of microchromosome rearrangements, an entire microchromosome together with other macro- and microchromosomes participated in the emergence of a derivative chromosome, resembling "chromosomal fusions'' between acrocentric microchromosomes. Intrachromosomal inversions, deletions and duplications were also detected in HD3 cells. Several of the identified simple and complex chromosomal rearrangements, such as between GGA2 and GGA1qter; GGA5, GGA4p and GGA7p; GGA4q, GGA6 and GGA19; and duplication of the sex chromosome GGAW, were confirmed by FISH. CONCLUSIONS In the erythroid progenitor HD3 cell line, in contrast to mature and immature erythrocytes, the genome is organized into distinct topologically associating domains. The HD3 cell line has a severely rearranged karyotype with most of the chromosomes engaged in translocations and can be used in studies of genome structure-function relationships. Hi-C proved to be a reliable tool for simultaneous assessment of the spatial genome organization and chromosomal aberrations in karyotypes of birds with a large number of microchromosomes.
Collapse
Affiliation(s)
- A. Maslova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - V. Plotnikov
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - M. Nuriddinov
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - M. Gridina
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - V. Fishman
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - A. Krasikova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
21
|
Wang J, Xue Y, He Y, Quan H, Zhang J, Gao YQ. Characterization of network hierarchy reflects cell state specificity in genome organization. Genome Res 2023; 33:247-260. [PMID: 36828586 PMCID: PMC10069467 DOI: 10.1101/gr.277206.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.
Collapse
Affiliation(s)
- Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Zhang
- Changping Laboratory, Beijing, 102206, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; .,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.,Changping Laboratory, Beijing, 102206, China
| |
Collapse
|
22
|
Abstract
In the past decade, we have seen the emergence of sequence-based methods to understand chromosome organization. With the confluence of in situ approaches to capture information on looping, topological domains, and larger chromatin compartments, understanding chromatin-driven disease is becoming feasible. Excitingly, recent advances in single molecule imaging with capacity to reconstruct “bulk-cell” features of chromosome conformation have revealed cell-to-cell chromatin structural variation. The fundamental question motivating our analysis of the literature is, can altered chromatin structure drive tumorigenesis? As our community learns more about rare disease, including low mutational frequency cancers, understanding “chromatin-driven” pathology will illuminate the regulatory structures of the genome. We describe recent insights into altered genome architecture in human cancer, highlighting multiple pathways toward disruptions of chromatin structure, including structural variation, noncoding mutations, metabolism, and de novo mutations to architectural regulators themselves. Our analysis of the literature reveals that deregulation of genome structure is characteristic in distinct classes of chromatin-driven tumors. As we begin to integrate the findings from single cell imaging studies and chromatin structural sequencing, we will be able to understand the diversity of cells within a common diagnosis, and begin to define structure–function relationships of the misfolded genome.
Collapse
|
23
|
Hosseini K, Beirami SM, Forouhandeh H, Vahed SZ, Eyvazi S, Ramazani F, Tarhriz V, Ardalan M. The role of circadian gene timeless in gastrointestinal cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Xiao Q, Xiao Y, Li LY, Chen MK, Wu M. Multifaceted regulation of enhancers in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194839. [PMID: 35750313 DOI: 10.1016/j.bbagrm.2022.194839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Enhancer is one kind of cis-elements regulating gene transcription, whose activity is tightly controlled by epigenetic enzymes and histone modifications. Active enhancers are classified into typical enhancers, super-enhancers and over-active enhancers, according to the enrichment and location of histone modifications. Epigenetic factors control the level of histone modifications on enhancers to determine their activity, such as histone methyltransferases and acetylases. Transcription factors, cofactors and mediators co-operate together and are required for enhancer functions. In turn, abnormalities in these trans-acting factors affect enhancer activity. Recent studies have revealed enhancer dysregulation as one of the important features for cancer. Variations in enhancer regions and mutations of enhancer regulatory genes are frequently observed in cancer cells, and altering the activity of onco-enhancers is able to repress oncogene expression, and suppress tumorigenesis and metastasis. Here we summarize the recent discoveries about enhancer regulation in cancer and discuss their potential application in diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Yong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Ming-Kai Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
25
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Prognostic significance of AP-2α/γ targets as cancer therapeutics. Sci Rep 2022; 12:5497. [PMID: 35361846 PMCID: PMC8971500 DOI: 10.1038/s41598-022-09494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Identifying genes with prognostic importance could improve cancer treatment. An increasing number of reports suggest the existence of successful strategies based on seemingly "untargetable" transcription factors. In addition to embryogenesis, AP-2 transcription factors are known to play crucial roles in cancer development. Members of this family can be used as prognostic factors in oncological patients, and AP-2α/γ transcription factors were previously investigated in our pan-cancer comparative study using their target genes. The present study investigates tumors that were previously found similar with an emphasis on the possible role of AP-2 factors in specific cancer types. The RData workspace was loaded back to R environment and 3D trajectories were built via Monocle3. The genes that met the requirement of specificity were listed using top_markers(), separately for mutual and unique targets. Furthermore, the candidate genes had to meet the following requirements: correlation with AP-2 factor (through Correlation AnalyzeR) and validated prognostic importance (using GEPIA2 and subsequently KM-plotter or LOGpc). Eventually, the ROC analysis was applied to confirm their predictive value; co-dependence of expression was visualized via BoxPlotR. Some similar tumors were differentiated by AP-2α/γ targets with prognostic value. Requirements were met by only fifteen genes (EMX2, COL7A1, GRIA1, KRT1, KRT14, SLC12A5, SEZ6L, PTPRN, SCG5, DPP6, NTSR1, ARX, COL4A3, PPEF1 and TMEM59L); of these, the last four were excluded based on ROC curves. All the above genes were confronted with the literature, with an emphasis on the possible role played by AP-2 factors in specific cancers. Following ROC analysis, the genes were verified using immunohistochemistry data and progression-related signatures. Staining differences were observed, as well as co-dependence on the expression of e.g. CTNNB1, ERBB2, KRAS, SMAD4, EGFR or MKI67. In conclusion, prognostic value of targets suggested AP-2α/γ as candidates for novel cancer treatment. It was also revealed that AP-2 targets are related to tumor progression and that some mutual target genes could be inversely regulated.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
26
|
Liu M, Zhao YT, Lv YY, Xu T, Li D, Xiong YC, Xin WJ, Lin SY. Metformin Relieves Bortezomib-Induced Neuropathic Pain by Regulating AMPKa2-Mediated Autophagy in the Spinal Dorsal Horn. Neurochem Res 2022; 47:1878-1887. [PMID: 35278160 DOI: 10.1007/s11064-022-03571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
Chemotherapy-induced neuropathic pain is a major clinical problem with limited treatment options. Here, we show that metformin relieves bortezomib (BTZ)-evoked induction and maintenance of neuropathic pain by preventing the reduction in the expression of Beclin-1, an autophagy marker, in the spinal dorsal horn. Application of rapamycin or 3-methyladenine, autophagy inducer and inhibitor, respectively, affected the mechanical allodynia differently. Co-application of 3-methyladenine and metformin partially inhibited the effect of metformin in recovering Beclin-1 expression and in reducing the pain behavior in rats subjected to BTZ treatment. BTZ treatment also reduced the expression of AMPKa2 in the dorsal horn, which was recovered by metformin treatment. Overexpression of AMPKa2 attenuated the BTZ-evoked reduction in Beclin-1 expression and mechanical allodynia, whereas intrathecal injection of AMPKa2 siRNA decreased the Beclin-1 expression and induced mechanical allodynia in naive rats. Moreover, BTZ treatment increased the GATA3 expression in the dorsal horn, and GATA3 siRNA attenuated the AMPKa2 downregulation and mechanical allodynia induced by BTZ. Chromatin immunoprecipitation further showed that BTZ induced an increased recruitment of GATA3 to multiple sites in the AMPKa2 promoter region. Furthermore, decreased acetylation and increased methylation of histone H3 in the AMPKa2 promoter in the spinal dorsal horn was detected after BTZ treatment. Our findings suggest that metformin may regulate AMPKa2-mediated autophagy in the dorsal horn and alleviate the behavioral hypersensitivity induced by BTZ.
Collapse
Affiliation(s)
- Meng Liu
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, China
| | - Yu-Ting Zhao
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China
| | - You-You Lv
- Department of Anesthesia, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ting Xu
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China
| | - Dai Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Chang Xiong
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Jun Xin
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China
| | - Su-Yan Lin
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
27
|
Chen H, Tu S, Yuan C, Tian F, Zhang Y, Sun Y, Shao Z. HyperChIP: identification of hypervariable signals across ChIP-seq or ATAC-seq samples. Genome Biol 2022; 23:62. [PMID: 35227282 PMCID: PMC8883642 DOI: 10.1186/s13059-022-02627-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Identifying genomic regions with hypervariable ChIP-seq or ATAC-seq signals across given samples is essential for large-scale epigenetic studies. In particular, the hypervariable regions across tumors from different patients indicate their heterogeneity and can contribute to revealing potential cancer subtypes and the associated epigenetic markers. We present HyperChIP as the first complete statistical tool for the task. HyperChIP uses scaled variances that account for the mean-variance dependence to rank genomic regions, and it increases the statistical power by diminishing the influence of true hypervariable regions on model fitting. A pan-cancer case study illustrates the practical utility of HyperChIP.
Collapse
|
28
|
Identification of the gene expression changes and gene regulatory aspects in ELF3 mutant bladder cancer. Mol Biol Rep 2022; 49:3135-3147. [PMID: 35199247 DOI: 10.1007/s11033-022-07145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recent genome-wide studies revealed the molecular subtypes and mutational landscape of bladder cancer, which is the 10th most common cancer causing many deaths. ELF3 is one of the frequently mutated genes in bladder cancer with 14% alteration rate. It mainly functions as an epithelial transcription factor and its proper function is critical for the urothelium development. However, the impact of ELF3 mutations in bladder cancer is currently unknown. METHODS AND RESULTS In this study, we analysed the gene expression data available for primary bladder cancer and bladder cancer cell lines according to the mutation status of ELF3. Our results show that de-regulated genes common in cell lines and primary tissue are primarily involved in ameboidal type cell migration and cell-cell junction organization. Additionally, we identify that ELF3-mutant cases in primary samples significantly overexpress PIK3C2B and ELF3 and PIK3C2B and ELF3 are significantly co-mutated in many cancer types. Our integrative analysis with existing Hi-C data further revealed the genes proximally located to ELF3, including PIK3C2B to be upregulated in ELF3 mutant cases, potentially as a result of truncated ELF3 protein product and subsequent changes in regulatory interactions. CONCLUSIONS Our results provide important insights about how ELF3 mutation contributes to bladder tumorigenesis and uncover previously unknown dependencies.
Collapse
|
29
|
Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers (Basel) 2021; 13:cancers13236040. [PMID: 34885146 PMCID: PMC8656749 DOI: 10.3390/cancers13236040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Urinary bladder cancer is one of the ten major cancers worldwide, with higher incidences in males, in smokers, and in highly industrialized countries. New therapies beyond cytotoxic chemotherapy are urgently needed to improve treatment of these tumors. A better understanding of the mechanisms underlying their development may help in this regard. Recently, it was discovered that a group of proteins regulating the state of chromatin and thus gene expression is exceptionally and frequently affected by gene mutations in bladder cancers. Altered function of these mutated chromatin regulators must therefore be fundamental in their development, but how and why is poorly understood. Here we review the current knowledge on changes in chromatin regulators and discuss their possible consequences for bladder cancer development and options for new therapies. Abstract Urothelial carcinoma (UC) is the most frequent histological type of cancer in the urinary bladder. Genomic changes in UC activate MAPK and PI3K/AKT signal transduction pathways, which increase cell proliferation and survival, interfere with cell cycle and checkpoint control, and prevent senescence. A more recently discovered additional category of genetic changes in UC affects chromatin regulators, including histone-modifying enzymes (KMT2C, KMT2D, KDM6A, EZH2), transcription cofactors (CREBBP, EP300), and components of the chromatin remodeling complex SWI/SNF (ARID1A, SMARCA4). It is not yet well understood how these changes contribute to the development and progression of UC. Therefore, we review here the emerging knowledge on genomic and gene expression alterations of chromatin regulators and their consequences for cell differentiation, cellular plasticity, and clonal expansion during UC pathogenesis. Our analysis identifies additional relevant chromatin regulators and suggests a model for urothelial carcinogenesis as a basis for further mechanistic studies and targeted therapy development.
Collapse
|
30
|
Lin Y, Li C, Xiong W, Fan L, Pan H, Li Y. ARSD, a novel ERα downstream target gene, inhibits proliferation and migration of breast cancer cells via activating Hippo/YAP pathway. Cell Death Dis 2021; 12:1042. [PMID: 34725332 PMCID: PMC8560752 DOI: 10.1038/s41419-021-04338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
Advanced breast cancer (BC), especially basal like triple-negative BC (TNBC), is a highly malignant tumor without viable treatment option, highlighting the urgent need to seek novel therapeutic targets. Arylsulfatase D (ARSD), localized at Xp22.3, is a female-biased gene due to its escaping from X chromosome inactivation (XCI). Unfortunately, no systematic investigation of ARSD on BC has been reported. In this study, we observed that ARSD expression was positively related to ERα status either in BC cells or tissue specimens, which were associated with good prognosis. Furthermore, we found a set of hormone-responsive lineage-specific transcription factors, FOXA1, GATA3, ERα, directly drove high expression of ARSD through chromatin looping in luminal subtype BC cells. Opposingly, ARSD still subjected to XCI in TNBC cells mediated by Xist, CpG islands methylation, and inhibitory histone modification. Unexpectedly, we also found that ectopic ARSD overexpression could inhibit proliferation and migration of TNBC cells by activating Hippo/YAP pathway, indicating that ARSD may be a molecule brake on ERα signaling pathway, which restricted ERα to be an uncontrolled active status. Combined with other peoples' researches that Hippo signaling maintained ER expression and ER + BC growth, we believed that there should exist a regulative feedback loop formation among ERα, ARSD, and Hippo/YAP pathway. Collectively, our findings will help filling the knowledge gap about the influence of ARSD on BC and providing evidence that ARSD may serve as a potential marker to predict prognosis and as a therapeutic target.
Collapse
Affiliation(s)
- Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Chun Li
- Faculty of Health science, Hull York Medical School, University of Hull, Hull, UK, HU6 7RX
| | - Wei Xiong
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Liping Fan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
31
|
Hawley JR, Zhou S, Arlidge C, Grillo G, Kron KJ, Hugh-White R, van der Kwast TH, Fraser M, Boutros PC, Bristow RG, Lupien M. Reorganization of the 3D genome pinpoints non-coding drivers of primary prostate tumors. Cancer Res 2021; 81:5833-5848. [PMID: 34642184 DOI: 10.1158/0008-5472.can-21-2056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is a heterogeneous disease whose progression is linked to genome instability. However, the impact of this instability on the non-coding genome and its three-dimensional organization to aid progression is unclear. Using primary benign and tumor tissue, we find a high concordance in higher order three-dimensional genome organization. This concordance argues for constraints to the topology of prostate tumor genomes. Nonetheless, we identified changes in focal chromatin interactions, typical of loops bridging non-coding cis-regulatory elements, and showed how structural variants can induce these changes to guide cis-regulatory element hijacking. Such events resulted in opposing differential expression of genes found at antipodes of rearrangements. Collectively, these results argue that changes to focal chromatin interactions, as opposed to higher order genome organization, allow for aberrant gene regulation and are repeatedly mediated by structural variants in primary prostate cancer.
Collapse
Affiliation(s)
- James R Hawley
- Medical Biophysics, University of Toronto, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research
| | - Stanley Zhou
- Medical Biophysics, University of Toronto, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research
| | | | - Giacomo Grillo
- Medical Biophysics, University of Toronto, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research
| | | | | | | | | | | | | | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network
| |
Collapse
|
32
|
Peng LU, Bai G, Pang Y. Roles of NPAS2 in circadian rhythm and disease. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1257-1265. [PMID: 34415290 DOI: 10.1093/abbs/gmab105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
NPAS2, a circadian rhythm gene encoding the neuronal PAS domain protein 2 (NPAS2), has received widespread attention because of its complex functions in cells and diverse roles in disease progression, especially tumorigenesis. NPAS2 binds with DNA at E-box sequences and forms heterodimers with another circadian protein, brain and muscle ARNT-like protein 1 (BMAL1). Nucleotide variations of the NPAS2 gene have been shown to influence the overall survival and risk of death of cancer patients, and differential expression of NPAS2 has been linked to patient outcomes in breast cancer, lung cancer, non-Hodgkin's lymphoma, and other diseases. Here, we review the latest advances in our understanding of NPAS2 with the aim of drawing attention to its potential clinical applications and prospects.
Collapse
Affiliation(s)
- L u Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Gaigai Bai
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|