1
|
Guodong W, Yinhang W, Xinyue W, Hong S, Jian C, Zhanbo Q, Shuwen H. Fecal occult blood affects intestinal microbial community structure in colorectal cancer. BMC Microbiol 2025; 25:34. [PMID: 39833681 PMCID: PMC11745023 DOI: 10.1186/s12866-024-03721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Gut microbes have been used to predict CRC risk. Fecal occult blood test (FOBT) has been recommended for population screening of CRC. OBJECTIVE To analyze the effects of fecal occult blood test (FOBT) on gut microbes. METHODS Fecal samples from 107 healthy individuals (FOBT-negative) and 111 CRC patients (39 FOBT-negative and 72 FOBT-positive) were included for 16 S ribosomal RNA sequencing. Based on the results of different FOBT, the community structure and diversity of intestinal bacteria in healthy individuals and CRC patients were analyzed. Characteristic gut bacteria were screened, and various machine learning algorithms were applied to construct CRC risk prediction models. RESULTS The gut microbiota of healthy people and CRC patients with different fecal occult blood were mapped. There was no statistical difference in diversity between CRC patients with negative FOBT and positive FOBT. Bacteroides, Blautia and Escherichia-Shigella were more correlated to healthy individuals, while Streptococcus showed higher correlation with CRC patients with negative FOBT. The accuracy of CRC risk prediction model based on the support vector machines (SVM) algorithm was the highest (89.71%). Subsequently, FOBT was included as a characteristic element in the model construction, and the prediction accuracy of the model was all increased. Similarly, the CRC risk prediction model based on SVM algorithm had the highest accuracy (92%). CONCLUSION FOB affects the community composition of gut microbes. When predicting CRC risk based on gut microbiome, considering the influence of FOBT is expected to improve the accuracy of CRC risk prediction.
Collapse
Affiliation(s)
- Wu Guodong
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Wu Xinyue
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Shen Hong
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
- ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire, Deville, Rueil-Malmaison, 92500, France.
| |
Collapse
|
2
|
Ha SM, Lee K, Kim GH, Hurych J, Cinek O, Shim JO. Gut-microbiota-based ensemble model predicts prognosis of pediatric inflammatory bowel disease. iScience 2024; 27:111442. [PMID: 39691780 PMCID: PMC11650326 DOI: 10.1016/j.isci.2024.111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Developing microbiome-based markers for pediatric inflammatory bowel disease (PIBD) is challenging. Here, we evaluated the diagnostic and prognostic potential of the gut microbiome in PIBD through a case-control study and cross-cohort analyses. In a Korean PIBD cohort (24 patients with PIBD, 43 controls), we observed that microbial diversity and composition shifted in patients with active PIBD versus controls and recovered at remission. We employed a differential abundance meta-analysis approach to identify microbial markers consistently associated with active inflammation and remission across seven PIBD cohorts from six countries (n = 1,670) including our dataset. Finally, we trained and tested various machine learning models for their ability to predict a patient's future remission based on baseline bacterial composition. An ensemble model trained with the amplicon sequence variants effectively predicted future remission of PIBD. This research highlights the gut microbiome's potential to guide precision therapy for PIBD.
Collapse
Affiliation(s)
- Sung Min Ha
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 957246, USA
| | - Kihyun Lee
- CJ Bioscience, Seoul 04527, Republic of Korea
| | - Gun-Ha Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
3
|
Xu X, Gao Y, Xiao Y, Yu Y, Huang J, Su W, Li N, Xu C, Gao S, Wang X. Characteristics of the gut microbiota and the effect of Bifidobacterium in very early-onset inflammatory bowel disease patients with IL10RA mutations. Front Microbiol 2024; 15:1479779. [PMID: 39687875 PMCID: PMC11647010 DOI: 10.3389/fmicb.2024.1479779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD) is a distinct subtype of inflammatory bowel disease (IBD) characterized by onset before the age of 6 years, and patients often exhibit more severe clinical features. Interleukin 10 receptor alpha (IL10RA) is a hotspot mutation in the Chinese population and is associated with a poor prognosis closely linked to the onset of IBD. However, limited knowledge exists regarding how the IL10RA mutation influences the host microbiota and its role in disease development. We employed 16S rRNA sequencing to conduct a comprehensive assessment of microbial changes in different types of IBD, employed database to thoroughly examine the influence of Bifidobacterium in IBD and to demonstrate a potential positive effect exerted by Bifidobacterium breve M16V (M16V) through a mouse model. The study demonstrated a significant reduction in the abundance and diversity of the gut microbiota among children with IL10RA mutations compared to those with late-onset pediatric IBD and nonmutated VEO-IBD. Furthermore, the analysis identified genera capable of distinguishing between various types of IBD, with the genus Bifidobacterium emerging as a potential standalone diagnostic indicator and Bifidobacterium may also be involved in related pathways that influence the progression of IBD, such as the biosynthesis of amino acids and inflammation-related pathways. This study corroborated the efficacy of Bifidobacterium in alleviating intestinal inflammation. The impact of IL10RA mutations on VEO-IBD may be mediated by alterations in microbes. M16V demonstrates efficacy in alleviating colitis and holds promise as a novel microbial therapy.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Su
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenshen Gao
- Clinical Research and Development Center of Shanghai Municipal Hospitals, Shanghai Shenkang Hospital Development Center, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Yu J, Duan Y, Zhang M, Li Q, Cao M, Song W, Zhao F, Kwok LY, Zhang H, Li R, Sun Z. Effect of combined probiotics and doxycycline therapy on the gut-skin axis in rosacea. mSystems 2024; 9:e0120124. [PMID: 39475254 PMCID: PMC11575305 DOI: 10.1128/msystems.01201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
Rosacea is a chronic inflammatory skin condition marked by facial erythema, telangiectasia, and acne-like eruptions, affecting millions worldwide. While antibiotics remain a common treatment, prolonged use has significant adverse effects and can lead to antibiotic resistance. This study evaluated the impact of combined probiotics and doxycycline treatment on rosacea, emphasizing the gut-skin axis. Sixty rosacea patients were randomly assigned to the probiotic, placebo, or control groups. After a 2-week doxycycline treatment, participants underwent a 3-month intervention with either a placebo, probiotic, or no further treatment. Clinical outcomes were assessed at baseline and after the 14-week intervention. Our results showed that probiotic administration improved facial skin conditions, alleviated inflammation, and reduced facial skin microbiota diversity while enhancing gut microbiota heterogeneity. Multivariate analysis identified microbial markers distinguishing the probiotic group from the control and placebo groups, and some markers were associated with skin health parameters. After the probiotic intervention, some facial skin-associated taxa, such as Aquabacterium sp., UBA4096 sp. 1, UBA4096 sp. 2, and Yimella indica, decreased in abundance. Additionally, the fecal microbiota of the probiotic group was enriched in specific gut microbes, including Streptococcus parasanguinis, Erysipelatoclostridium ramosum, and Coprobacillus cateniformis, while showing a reduced abundance of Bacteroides vulgatus. These changes were associated with reduced facial sebum levels and a lower physician's global assessment score. Finally, fewer antibiotic resistance genes, particularly tetracycline resistance genes, were detected in the probiotic group compared with the control and placebo groups. Our study supports the existence of a gut-skin axis and the application of probiotics in managing rosacea. IMPORTANCE This research elucidates rosacea management with novel insights into probiotic use alongside doxycycline, showing dual benefits in symptom relief and inflammation reduction in patients. The study maps probiotic-induced shifts in gut and skin microbiota, underscoring microbial shifts correlating with skin health improvements. Crucially, it deciphers the gut-skin axis modulation by probiotics, proposing a method to curb antibiotic resistance in rosacea therapies. This study furnishes robust evidence for probiotics in rosacea, advancing our grasp of the gut-skin relationship.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Duan
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Miao Cao
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Weixin Song
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruiya Li
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Swarte JC, Zhang S, Nieuwenhuis LM, Gacesa R, Knobbe TJ, De Meijer VE, Damman K, Verschuuren EAM, Gan TC, Fu J, Zhernakova A, Harmsen HJM, Blokzijl H, Bakker SJL, Björk JR, Weersma RK. Multiple indicators of gut dysbiosis predict all-cause and cause-specific mortality in solid organ transplant recipients. Gut 2024; 73:1650-1661. [PMID: 38955400 DOI: 10.1136/gutjnl-2023-331441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/12/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Gut microbiome composition is associated with multiple diseases, but relatively little is known about its relationship with long-term outcome measures. While gut dysbiosis has been linked to mortality risk in the general population, the relationship with overall survival in specific diseases has not been extensively studied. In the current study, we present results from an in-depth analysis of the relationship between gut dysbiosis and all-cause and cause-specific mortality in the setting of solid organ transplant recipients (SOTR). DESIGN We analysed 1337 metagenomes derived from faecal samples of 766 kidney, 334 liver, 170 lung and 67 heart transplant recipients part of the TransplantLines Biobank and Cohort-a prospective cohort study including extensive phenotype data with 6.5 years of follow-up. To analyze gut dysbiosis, we included an additional 8208 metagenomes from the general population of the same geographical area (northern Netherlands). Multivariable Cox regression and a machine learning algorithm were used to analyse the association between multiple indicators of gut dysbiosis, including individual species abundances, and all-cause and cause-specific mortality. RESULTS We identified two patterns representing overall microbiome community variation that were associated with both all-cause and cause-specific mortality. The gut microbiome distance between each transplantation recipient to the average of the general population was associated with all-cause mortality and death from infection, malignancy and cardiovascular disease. A multivariable Cox regression on individual species abundances identified 23 bacterial species that were associated with all-cause mortality, and by applying a machine learning algorithm, we identified a balance (a type of log-ratio) consisting of 19 out of the 23 species that were associated with all-cause mortality. CONCLUSION Gut dysbiosis is consistently associated with mortality in SOTR. Our results support the observations that gut dysbiosis is associated with long-term survival. Since our data do not allow us to infer causality, more preclinical research is needed to understand mechanisms before we can determine whether gut microbiome-directed therapies may be designed to improve long-term outcomes.
Collapse
Affiliation(s)
- J Casper Swarte
- Gastroenterology and Hepatology, University Medical Centre, Groningen, Netherlands
| | - Shuyan Zhang
- Gastroenterology and Hepatology, University Medical Centre, Groningen, Netherlands
| | | | - Ranko Gacesa
- Gastroenterology and Hepatology, University Medical Centre, Groningen, Netherlands
- Department of Genetics, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Tim J Knobbe
- University Medical Centre, Groningen, Netherlands
| | | | - Kevin Damman
- University Medical Centre, Groningen, Netherlands
| | | | - Tji C Gan
- University Medical Centre, Groningen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center, Groningen, Netherlands
- Department of Pediatrics, University Medical Center, Groningen, Netherlands
| | | | - Hermie J M Harmsen
- Medical Microbiology, University of Groningen, University Medical Center, Groningen, Netherlands
| | | | | | - Johannes R Björk
- Gastroenterology and Hepatology, University Medical Centre, Groningen, Netherlands
| | - Rinse K Weersma
- Gastroenterology and Hepatology, University Medical Centre, Groningen, Netherlands
| |
Collapse
|
6
|
Amir A, Haberman Y. All (remains) in the family? Using healthy relatives to define Crohn's gut microbiome alterations. Cell Rep Med 2024; 5:101651. [PMID: 39019007 PMCID: PMC11293313 DOI: 10.1016/j.xcrm.2024.101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Gut microbial imbalance is noted in Crohn's disease (CD), but the specific bacteria associated with CD vary between studies. Chen et al.1 pair CD patients with their healthy first-degree relatives to mitigate some of the environmental and genetic effects.
Collapse
Affiliation(s)
- Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel; School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Rodriguez CI, Isobe K, Martiny JBH. Short-term dietary fiber interventions produce consistent gut microbiome responses across studies. mSystems 2024; 9:e0013324. [PMID: 38742890 PMCID: PMC11237734 DOI: 10.1128/msystems.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The composition of the human gut microbiome varies tremendously among individuals, making the effects of dietary or treatment interventions difficult to detect and characterize. The consumption of fiber is important for gut health, yet the specific effects of increased fiber intake on the gut microbiome vary across studies. The variation in study outcomes might be due to inter-individual (or inter-population) variation or to the details of the interventions including the types of fiber, length of study, size of cohort, and molecular approaches. Thus, to identify generally (on average) consistent fiber-induced responses in the gut microbiome of healthy individuals, we re-analyzed 16S rRNA sequencing data from 21 dietary fiber interventions from 12 human studies, which included 2,564 fecal samples from 538 subjects across all interventions. Short-term increases in dietary fiber consumption resulted in highly consistent gut bacterial community responses across studies. Increased fiber consumption explained an average of 1.5% of compositional variation (vs 82% of variation attributed to the individual), reduced alpha-diversity, and resulted in phylogenetically conserved responses in relative abundances among bacterial taxa. Additionally, we identified bacterial clades, at approximately the genus level, that were highly consistent in their response (on average, increasing or decreasing in their relative abundance) to dietary fiber interventions across the studies. IMPORTANCE Our study is an example of the power of synthesizing and reanalyzing 16S rRNA microbiome data from many intervention studies. Despite high inter-individual variation of the composition of the human gut microbiome, dietary fiber interventions cause a consistent response both in the degree of change and the particular taxa that respond to increased fiber.
Collapse
Affiliation(s)
- Cynthia I. Rodriguez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jennifer B. H. Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
8
|
Braun T, Feng R, Amir A, Levhar N, Shacham H, Mao R, Hadar R, Toren I, Algavi Y, Abu-Saad K, Zhuo S, Efroni G, Malik A, Picard O, Yavzori M, Agranovich B, Liu TC, Stappenbeck TS, Denson L, Kalter-Leibovici O, Gottlieb E, Borenstein E, Elinav E, Chen M, Ben-Horin S, Haberman Y. Diet-omics in the Study of Urban and Rural Crohn disease Evolution (SOURCE) cohort. Nat Commun 2024; 15:3764. [PMID: 38704361 PMCID: PMC11069498 DOI: 10.1038/s41467-024-48106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Crohn disease (CD) burden has increased with globalization/urbanization, and the rapid rise is attributed to environmental changes rather than genetic drift. The Study Of Urban and Rural CD Evolution (SOURCE, n = 380) has considered diet-omics domains simultaneously to detect complex interactions and identify potential beneficial and pathogenic factors linked with rural-urban transition and CD. We characterize exposures, diet, ileal transcriptomics, metabolomics, and microbiome in newly diagnosed CD patients and controls in rural and urban China and Israel. We show that time spent by rural residents in urban environments is linked with changes in gut microbial composition and metabolomics, which mirror those seen in CD. Ileal transcriptomics highlights personal metabolic and immune gene expression modules, that are directly linked to potential protective dietary exposures (coffee, manganese, vitamin D), fecal metabolites, and the microbiome. Bacteria-associated metabolites are primarily linked with host immune modules, whereas diet-linked metabolites are associated with host epithelial metabolic functions.
Collapse
Affiliation(s)
- Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Rui Feng
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning, Guangxi, China
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Nina Levhar
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hila Shacham
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ren Mao
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Itamar Toren
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yadid Algavi
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kathleen Abu-Saad
- Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
| | - Shuoyu Zhuo
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Alona Malik
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Orit Picard
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Miri Yavzori
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Bella Agranovich
- Laura and Isaac Perlmutter Metabolomics Center, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lee Denson
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ofra Kalter-Leibovici
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Elhanan Borenstein
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Santa Fe Institute, Santa Fe, NM, USA
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Microbiome & Cancer Division, German National Cancer Center (DKFZ), Heidelberg, Germany
| | - Minhu Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shomron Ben-Horin
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Melo-Marques I, Cardoso SM, Empadinhas N. Bacterial extracellular vesicles at the interface of gut microbiota and immunity. Gut Microbes 2024; 16:2396494. [PMID: 39340209 PMCID: PMC11444517 DOI: 10.1080/19490976.2024.2396494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) are nano-sized lipid-shielded structures released by bacteria and that play an important role in intercellular communication. Their broad taxonomic origins and varying cargo compositions suggest their active participation in significant biological mechanisms. Specifically, they are involved in directly modulating microbial ecosystems, competing with other organisms, contributing to pathogenicity, and influencing the immunity of their hosts. This review examines the mechanisms that underlie the modulatory effects of BEVs on gut dynamics and immunity. Understanding how BEVs modulate microbiota composition and functional imbalances is crucial, as gut dysbiosis is implicated not only in the pathogenesis of various gastrointestinal, metabolic, and neurological diseases, but also in reducing resistance to colonization by enteric pathogens, which is particularly concerning given the current antimicrobial resistance crisis. This review summarizes recent advancements in the field of BEVs to encourage further research into these enigmatic entities. This will facilitate a better understanding of intra- and interkingdom communication phenomena and reveal promising therapeutic approaches.
Collapse
Affiliation(s)
- Inês Melo-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Gur Arie A, Toren I, Hadar R, Braun T, Efroni G, Glick Saar E, Madar Z, Amir A, Zeilig G, Haberman Y. Lack of gut microbiome recovery with spinal cord injury rehabilitation. Gut Microbes 2024; 16:2309682. [PMID: 38324278 PMCID: PMC10854366 DOI: 10.1080/19490976.2024.2309682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating event that significantly changes daily function and quality of life and is linked to bowel and bladder dysfunction and frequent antibiotic treatment. We aimed to study the composition of the gut microbiome in individuals with SCI during the initial sub-acute rehabilitation process and during the chronic phase of the injury. This study included 100 fecal samples from 63 participants (Median age 40 years, 94% males): 13 cases with SCI in the sub-acute phase with 50 longitudinal samples, 18 cases with chronic SCI, and 32 age and gender-matched controls. We show, using complementary methods, that the time from the injury was a dominant factor linked with gut microbiome composition. Surprisingly, we demonstrated a lack of gut microbial recovery during rehabilitation during the sub-acute phase, with further deviation from the non-SCI control group in the chronic ambulatory SCI group. To generalize the results, we were able to show significant similarity of the signal when comparing to a previous cohort with SCI, to subjects from the American Gut Project who reported low physical activity, and to subjects from another population-based cohort who reported less normal stool consistency. Restoration of the microbiome composition may be another desirable measure for SCI recovery in the future, but further research is needed to test whether such restoration is associated with improved neurological outcomes and quality of life.
Collapse
Affiliation(s)
- Ayelet Gur Arie
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
- Department of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Toren
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Glick Saar
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Zecharia Madar
- Department of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Gabriel Zeilig
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
- School of health professions, Ono Academic College, Kiryat Ono, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
11
|
Feng J, Wu Y, Dai P, Wang D, Liu L, Chai B. Gut microbial signatures of patients with primary hepatocellular carcinoma and their healthy first-degree relatives. J Appl Microbiol 2023; 134:lxad221. [PMID: 37777841 DOI: 10.1093/jambio/lxad221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
AIMS The gut microbiome has been recognized as a significant contributor to primary hepatocellular carcinoma (HCC), with mounting evidence indicating associations between bacterial components and cancers of the digestive system. METHODS AND RESULTS Here, to characterize gut bacterial signature in patients with primary HCC and to assess the diagnostic potential of bacterial taxa for primary HCC, 21 HCC patients and 21 healthy first-degree relatives (control group) were enrolled in this study. Bacterial DNA in the fecal samples was quantified by 16S rRNA gene sequencing. We found that 743 operational taxonomic units (OTUs) were shared between patients with primary HCC and healthy controls. Of these, 197 OTUs were unique to patients with primary HCC, while 95 OTUs were unique to healthy subjects. Additionally, we observed significant differences in the abundance of Ruminococcaceae_UCG-014 and Romboutsia between patients with primary HCC and their healthy first-degree relatives. Besides, the relative abundance of Ruminococcaceae_UCG-014 and Prevotella_9 was positively correlated with physiological indicators including AST, ALT, ALB, or TBIL. Signature bacterial taxa could serve as non-invasive biomarkers, of which Romboutsia and Veillonella were identified as differential taxa in fecal samples from patients with HCC compared to healthy controls. Romboutsia showed a strong association with HCC (AUC = 0.802). Additionally, the combination of Romboutsia and Veillonella (AUC = 0.812) or the grouping of Fusobacterium, Faccalibacterium, and Peptostreptococcacae together (AUC = 0.762) exhibited promising outcomes for the diagnosis of HCC. CONCLUSIONS The composition of gut microbes in patients with HCC was found to be significantly altered. Differential taxa Romboutsia, Veillonella, and Peptostreptococcacae could be tested for identification of HCC.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Department of Gastroenterology, Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Yalin Wu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Peng Dai
- Department of Hepat-Bliary-Pancreatic Surgery, Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Dong Wang
- Department of Hepatology, The Third People's Hospital of Taiyuan, Taiyuan 030000, China
| | - Lixin Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Revel-Muroz A, Akulinin M, Shilova P, Tyakht A, Klimenko N. Stability of human gut microbiome: Comparison of ecological modelling and observational approaches. Comput Struct Biotechnol J 2023; 21:4456-4468. [PMID: 37745638 PMCID: PMC10511340 DOI: 10.1016/j.csbj.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
The gut microbiome plays a pivotal role in the human body, and perturbations in its composition have been linked to various disorders. Stability is an essential property of a healthy human gut microbiome, which allows it to maintain its functional richness under the external influences. This property has been explored through two distinct methodologies - mathematical modelling based on ecological principles and statistical analysis drawn from observations in interventional studies. Here we conducted a meta-analysis aimed to compare the two approaches utilising the data from 9 interventional and time series studies encompassing 3512 gut microbiome profiles obtained via 16S rRNA gene sequencing. By employing the previously published compositional Lotka-Volterra method, we modelled the dynamics of the microbial community and evaluated ecological stability measures. These measures were compared to those based on observed microbiome changes. There was a substantial correlation between the outcomes of the two approaches. Particularly, local stability assessed within the ecological paradigm was positively correlated with observational stability measures accounting for the compositional nature of microbiome data. Additionally, we were able to reproduce the previously reported inverse relationship between the community's robustness to microorganism loss and local stability, attributed to the distinct impacts of coefficient characterising the network decomposition on these two stability assessments. Our findings demonstrate harmonisation between the ecological and observational approaches to microbiome analysis, advancing the understanding of healthy gut microbiome concept. This paves the way to develop efficient microbiome-targeting interventions for disease prevention and treatment.
Collapse
Affiliation(s)
- Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Akulinin
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
| | - Polina Shilova
- Department of Biology, Moscow State University, 1–12 Leninskie Gory, Moscow, Russia
| | - Alexander Tyakht
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| |
Collapse
|
13
|
Rodriguez CI, Isobe K, Martiny JBH. Short-term dietary fiber interventions produce consistent gut microbiome responses across studies. RESEARCH SQUARE 2023:rs.3.rs-3283675. [PMID: 37674721 PMCID: PMC10479438 DOI: 10.21203/rs.3.rs-3283675/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background The composition of the human gut microbiome varies tremendously among individuals, making the effects of dietary or treatment interventions difficult to detect and characterize. The consumption of fiber is important for gut health, yet the specific effects of increased fiber intake on the gut microbiome vary across studies. The variation in study outcomes might be due to inter-individual (or inter-population) variation or to the details of the interventions including the types of fiber, length of study, size of cohort, and molecular approaches. Thus, to identify consistent fiber-induced responses in the gut microbiome of healthy individuals, we re-analyzed 16S rRNA sequencing data from 21 dietary fiber interventions from 12 human studies, which included 2564 fecal samples from 538 subjects across all interventions. Results Short-term increases in dietary fiber consumption resulted in highly consistent gut microbiome responses across studies. Increased fiber consumption explained an average of 1.5% of compositional variation (versus 82% of variation attributed to the individual), reduced alpha diversity, and resulted in phylogenetically conserved responses in relative abundances among bacterial taxa. Additionally, we identified bacterial clades, at approximately the genus level, that were highly consistent in their response (increasing or decreasing in their relative abundance) to dietary fiber interventions across the studies. Conclusions Our study is an example of the power of synthesizing and reanalyzing microbiome data from many intervention studies. Despite high inter-individual variation of the composition of the human gut microbiome, dietary fiber interventions cause a consistent response both in the degree of change as well as the particular taxa that respond to increased fiber.
Collapse
|
14
|
Fredriksen S, de Warle S, van Baarlen P, Boekhorst J, Wells JM. Resistome expansion in disease-associated human gut microbiomes. MICROBIOME 2023; 11:166. [PMID: 37507809 PMCID: PMC10386251 DOI: 10.1186/s40168-023-01610-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The resistome, the collection of antibiotic resistance genes (ARGs) in a microbiome, is increasingly recognised as relevant to the development of clinically relevant antibiotic resistance. Many metagenomic studies have reported resistome differences between groups, often in connection with disease and/or antibiotic treatment. However, the consistency of resistome associations with antibiotic- and non-antibiotic-treated diseases has not been established. In this study, we re-analysed human gut microbiome data from 26 case-control studies to assess the link between disease and the resistome. RESULTS The human gut resistome is highly variable between individuals both within and between studies, but may also vary significantly between case and control groups even in the absence of large taxonomic differences. We found that for diseases commonly treated with antibiotics, namely cystic fibrosis and diarrhoea, patient microbiomes had significantly elevated ARG abundances compared to controls. Disease-associated resistome expansion was found even when ARG abundance was high in controls, suggesting ongoing and additive ARG acquisition in disease-associated strains. We also found a trend for increased ARG abundance in cases from some studies on diseases that are not treated with antibiotics, such as colorectal cancer. CONCLUSIONS Diseases commonly treated with antibiotics are associated with expanded gut resistomes, suggesting that historical exposure to antibiotics has exerted considerable selective pressure for ARG acquisition in disease-associated strains. Video Abstract.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| | - Stef de Warle
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Braun T, Sosnovski KE, Amir A, BenShoshan M, VanDussen KL, Karns R, Levhar N, Abbas-Egbariya H, Hadar R, Efroni G, Castel D, Avivi C, Rosen MJ, Grifiths AM, Walters TD, Mack DR, Boyle BM, Ali SA, Moore SR, Schirmer M, Xavier RJ, Kugathasan S, Jegga AG, Weiss B, Mayer C, Barshack I, Ben-Horin S, Ulitsky I, Beucher A, Ferrer J, Hyams JS, Denson LA, Haberman Y. Mucosal transcriptomics highlight lncRNAs implicated in ulcerative colitis, Crohn's disease, and celiac disease. JCI Insight 2023; 8:e170181. [PMID: 37261910 PMCID: PMC10443795 DOI: 10.1172/jci.insight.170181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023] Open
Abstract
Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with nonsatisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long noncoding RNAs (lncRNAs) are attractive candidates, since they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we have highlighted lncRNA expression along the gastrointestinal (GI) tract, demonstrating that, in control samples, lncRNAs have a more location-specific expression in comparison with protein-coding genes. We defined dysregulation of lncRNAs in treatment-naive UC, CD, and celiac diseases using independent test and validation cohorts. Using the Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) inception UC cohort, we defined and prioritized lncRNA linked with UC severity and prospective outcomes, and we highlighted lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelia showed higher sensitivity to dextran sodium sulfate-induced colitis, which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as potential targets.
Collapse
Affiliation(s)
- Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Katya E. Sosnovski
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Marina BenShoshan
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kelli L. VanDussen
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nina Levhar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haya Abbas-Egbariya
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - David Castel
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Michael J. Rosen
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Pediatric IBD and Celiac Disease, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | | | - David R. Mack
- Children’s Hospital of East Ontario, Ottawa, Ontario, Canada
| | | | - Syed Asad Ali
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R. Moore
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | | | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anil G. Jegga
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Computer Science, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Engineering, Cincinnati, Ohio, USA
| | - Batya Weiss
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Mayer
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shomron Ben-Horin
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Igor Ulitsky
- Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony Beucher
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jorge Ferrer
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, the Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Spain
| | - Jeffrey S. Hyams
- Connecticut Children’s Medical Center, Hartford, Connecticut, USA
| | - Lee A. Denson
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Amir A, Ozel E, Haberman Y, Shental N. Achieving pan-microbiome biological insights via the dbBact knowledge base. Nucleic Acids Res 2023; 51:6593-6608. [PMID: 37326027 PMCID: PMC10359611 DOI: 10.1093/nar/gkad527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
16S rRNA amplicon sequencing provides a relatively inexpensive culture-independent method for studying microbial communities. Although thousands of such studies have examined diverse habitats, it is difficult for researchers to use this vast trove of experiments when interpreting their own findings in a broader context. To bridge this gap, we introduce dbBact - a novel pan-microbiome resource. dbBact combines manually curated information from studies across diverse habitats, creating a collaborative central repository of 16S rRNA amplicon sequence variants (ASVs), which are assigned multiple ontology-based terms. To date dbBact contains information from more than 1000 studies, which include 1500000 associations between 360000 ASVs and 6500 ontology terms. Importantly, dbBact offers a set of computational tools allowing users to easily query their own datasets against the database. To demonstrate how dbBact augments standard microbiome analysis we selected 16 published papers, and reanalyzed their data via dbBact. We uncovered novel inter-host similarities, potential intra-host sources of bacteria, commonalities across different diseases and lower host-specificity in disease-associated bacteria. We also demonstrate the ability to detect environmental sources, reagent-borne contaminants, and identify potential cross-sample contaminations. These analyses demonstrate how combining information across multiple studies and over diverse habitats leads to better understanding of underlying biological processes.
Collapse
Affiliation(s)
- Amnon Amir
- Microbiome center, Sheba Medical Center, Israel
| | - Eitan Ozel
- Dept. of Computer Science, The Open University of Israel, Israel
| | - Yael Haberman
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Sheba Medical Center, Israel
| | - Noam Shental
- Dept. of Computer Science, The Open University of Israel, Israel
| |
Collapse
|
17
|
Zhu J, Liu S, Zhang H, Zhao W, Ding J, Dai R, Xu K, He C, Liu J, Yang L, Meng H. Dynamic distribution of gut microbiota during Alzheimer's disease progression in a mice model. APMIS 2023. [PMID: 37365713 DOI: 10.1111/apm.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease that affects more than 44 million people worldwide. The pathogenic mechanisms of AD still remain unclear. Currently, there are numerous studies investigating the microbiota-gut-brain axis in humans and rodents indicated that gut microbiota played a role in neurodegenerative diseases, including AD. However, the underlying relationship between the progress of AD disease and the dynamic distribution of gut microbiota is not well understood. In the present study, APPswe /PS1ΔE9 transgenic mice of different ages and sex were employed. After the evaluation of the AD mice model, gut metagenomic sequencing was conducted to reveal gut microbiota, moreover, probiotics intervention was treated in the AD mice. The results showed that (1) AD mice had reduced microbiota richness and a changed gut microbiota composition, and AD mice gut microbiota richness was correlated with cognitive performance. We have also found some potential AD-related microbes, for example, in AD-prone mice, the genus Mucispirillum was strongly associated with immune inflammation. (2) Probiotics intervention improved cognitive performance and changed gut microbiota richness and composition of AD mice. We revealed the dynamics distribution of gut microbiota and the effect of probiotics on AD in a mice model, which provides an important reference for the pathogenesis of AD, intestinal microbial markers associated with AD, and AD probiotic intervention.
Collapse
Affiliation(s)
- Jianshen Zhu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Shuyun Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Haoran Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
- Shanghai Animal Disease Control Center, Shanghai, China
| | - Wenjing Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jinmei Ding
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ronghua Dai
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ke Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Chuan He
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jiajia Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Lingyu Yang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
18
|
Zhang M, Zheng Y, Sun Z, Cao C, Zhao W, Liu Y, Zhang W, Zhang H. Change in the Gut Microbiome and Immunity by Lacticaseibacillus rhamnosus Probio-M9. Microbiol Spectr 2023; 11:e0360922. [PMID: 36912650 PMCID: PMC10100958 DOI: 10.1128/spectrum.03609-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
With the exploding growth of the global market for probiotics and the rapid awakening of public awareness to manage health by probiotic intervention, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients, which is due to the lack of systematic analysis based on time series multiomics data sets. In this study, we recruited 100 adults from a college in China and performed a random case-control study by using a probiotic (Lacticaseibacillus rhamnosus Probio-M9) as an intervention for 6 weeks, aiming to achieve a comprehensive evaluation and understanding of the beneficial effect of Probio-M9 consumption. By testing advanced blood immunity indicators, sequencing the gut microbiome, and profiling the gut metabolome at baseline and the end of the study, we found that although the probiotic intervention has a limited impact on the human immunity and the gut microbiome and metabolome, the associations between the immunity indicators and multiomics data were strengthened, and further analysis of the gut microbiome's genetic variations revealed inhibited generation of single nucleotide variants (SNVs) by probiotic consumption. Taken together, our findings indicated an underestimated influence of the probiotic, not on altering the microbial composition but on strengthening the association between human immunity and commensal microbes and stabilizing the genetic variations of the gut microbiome. IMPORTANCE Although the global market for probiotics is growing explosively, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients. In this study, we recruited 100 adults from a college in China and performed 6 weeks of intervention for half of the volunteers. By analyzing the time series multiomics data in this study, we found that the probiotic intervention (i) has a limited effect on human immunity or the global structure of the gut microbiome and metabolome, (ii) can largely influence the correlation of the development between multiomics data and immunity, which was not able to be discovered by conventional differential abundance analysis, and (iii) can inhibit the generation of SNVs in the gut microbiome instead of promoting it.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wei Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yangshuo Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
19
|
Li M, Liu J, Zhu J, Wang H, Sun C, Gao NL, Zhao XM, Chen WH. Performance of Gut Microbiome as an Independent Diagnostic Tool for 20 Diseases: Cross-Cohort Validation of Machine-Learning Classifiers. Gut Microbes 2023; 15:2205386. [PMID: 37140125 PMCID: PMC10161951 DOI: 10.1080/19490976.2023.2205386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Cross-cohort validation is essential for gut-microbiome-based disease stratification but was only performed for limited diseases. Here, we systematically evaluated the cross-cohort performance of gut microbiome-based machine-learning classifiers for 20 diseases. Using single-cohort classifiers, we obtained high predictive accuracies in intra-cohort validation (~0.77 AUC), but low accuracies in cross-cohort validation, except the intestinal diseases (~0.73 AUC). We then built combined-cohort classifiers trained on samples combined from multiple cohorts to improve the validation of non-intestinal diseases, and estimated the required sample size to achieve validation accuracies of >0.7. In addition, we observed higher validation performance for classifiers using metagenomic data than 16S amplicon data in intestinal diseases. We further quantified the cross-cohort marker consistency using a Marker Similarity Index and observed similar trends. Together, our results supported the gut microbiome as an independent diagnostic tool for intestinal diseases and revealed strategies to improve cross-cohort performance based on identified determinants of consistent cross-cohort gut microbiome alterations.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jiaying Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Na L Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- College of Life Science, Henan Normal University, Xinxiang, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Hamidou Soumana I, Ryu MH, Leitao Filho FS, Yang J, Orach J, Nislow C, Leung JM, Rider CF, Carlsten C. Exposure to diesel exhaust alters the functional metagenomic composition of the airway microbiome in former smokers. ENVIRONMENTAL RESEARCH 2023; 216:114826. [PMID: 36403657 DOI: 10.1016/j.envres.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 μg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Julia Yang
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Francis Rider
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|