1
|
Piálek J, Ďureje Ľ, Hiadlovská Z, Kreisinger J, Aghová T, Bryjová A, Čížková D, de Bellocq JG, Hejlová H, Janotová K, Martincová I, Orth A, Piálková J, Pospíšilová I, Rousková L, Bímová BV, Pfeifle C, Tautz D, Bonhomme F, Forejt J, Macholán M, Klusáčková P. Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. Sci Rep 2025; 15:12060. [PMID: 40199997 PMCID: PMC11978780 DOI: 10.1038/s41598-025-86505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/10/2025] [Indexed: 04/10/2025] Open
Abstract
The house mouse, Mus musculus, is a widely used animal model in biomedical research, with classical laboratory strains (CLS) being the most frequently employed. However, the limited genetic variability in CLS hinders their applicability in evolutionary studies. Wild-derived strains (WDS), on the other hand, provide a suitable resource for such investigations. This study quantifies genetic and phenotypic data of 101 WDS representing 5 species, 3 subspecies, and 8 natural Y consomic strains and compares them with CLS. Genetic variability was estimated using whole mtDNA sequences, the Prdm9 gene, and copy number variation at two sex chromosome-linked genes. WDS exhibit a large natural variation with up to 2173 polymorphic sites in mitogenomes, whereas CLS display 92 sites. Moreover, while CLS have two Prdm9 alleles, WDS harbour 46 different alleles. Although CLS resemble M. m. domesticus and M. m. musculus WDS, they differ from them in 10 and 14 out of 16 phenotypic traits, respectively. The results suggest that WDS can be a useful tool in evolutionary and biomedical studies with great potential for medical applications.
Collapse
Affiliation(s)
- Jaroslav Piálek
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| | - Ľudovít Ďureje
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatiana Aghová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Bryjová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Dagmar Čížková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Helena Hejlová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Janotová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Martincová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- ZOO Prague, Prague, Czech Republic
| | - Annie Orth
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jana Piálková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Pospíšilová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Rousková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Barbora Vošlajerová Bímová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - François Bonhomme
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Jiří Forejt
- Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Miloš Macholán
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Klusáčková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Miao X, Huang Z, Liu J, Zhang L, Feng Y, Zhang Y, Li D, Ning Z. Genomically Selected Genes Associated with a High Rate of Egg Production in Puan Panjiang Black-Bone Chickens. Animals (Basel) 2025; 15:363. [PMID: 39943134 PMCID: PMC11816201 DOI: 10.3390/ani15030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Puan Panjiang black-bone chickens are renowned for their distinctive traits, deep black coloration, and high-quality protein content, making them a focus of genetic research due to their unique egg-laying abilities. In this study, 110 Puan Panjiang black-bone chickens were used to investigate the effects of natural and artificial selection influencing egg production. Whole-genome resequencing data from red junglefowl (RJF) and high-egg-production (HEP) and low-egg-production (LEP) groups of Puan Panjiang black-bone chickens revealed significant genetic variants associated with egg production traits. Additionally, transcriptome analysis of 47 samples from ovary stroma, small white follicles (SWFs), small yellow follicles (SYFs), and liver tissues from 6 HEP and 6 LEP groups identified differentially expressed genes. Notably, differences in egg production were linked to small yellow follicles rather than ovary stroma or SWFs. Key candidate genes, including TRIM7, CASR, SPTBN5, GAL1, ZP1, IL4I1, and CCL19, were identified as potential contributors to egg-laying performance. This study underscores the genetic diversity within this breed and provides valuable insights for future breeding programs to enhance egg production, supporting the sustainable development of this local resource.
Collapse
Affiliation(s)
- Xiaomeng Miao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.)
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Zhiying Huang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Jia Liu
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China
| | - Li Zhang
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.)
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.)
| |
Collapse
|
3
|
Gu L, Wu F, Zheng X, Zhang X, Chen Y, Lu L, Liu X, Mo S, Chao Z, He Z, Shang Y, Wei D, Wei S, Chen Y, Xu T. Molecular genetic identification of Wuzhishan ant chicken, a newly discovered resource in China. Front Vet Sci 2024; 11:1319854. [PMID: 38962700 PMCID: PMC11221338 DOI: 10.3389/fvets.2024.1319854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction The Wuzhishan ant (MY) chicken exhibits significant differences from other chicken breeds. However, the molecular genetic relationship between the MY breed and other chicken breeds has not been assessed. Methods Whole-genome resequencing was used to compare genetic diversity, nucleotide diversity, the fixation index, the linkage disequilibrium coefficient, and phylogenetic tree relationships between the MY breed and the Wenchang (WC), Danzhou (DZ), Bawangling (BW), and Longsheng Feng (LF) breeds. Results A total of 21,586,378 singlenucleotide polymorphisms and 4,253,341 insertions/deletions were screened out among the five breeds. The MY breed had the second highest genomic genetic diversity and nucleotide diversity and the lowest LD coefficient among the five breeds. Moreover, the phylogenetic tree analysis showed that individual birds of each breed clustered together with those of their respective breeds. Discussion Our data indicated that the MY breed is distinct from the other breeds and can be considered a new genetic resource.
Collapse
Affiliation(s)
- Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Fanghu Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiaohui Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yanmin Chen
- Wuzhishan Animal Science and Veterinary Medicine and Fishery Service Center, Wuzhishan Agricultural and Rural Bureau, Wuzhishan, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangxiang Liu
- Wuzhishan Animal Science and Veterinary Medicine and Fishery Service Center, Wuzhishan Agricultural and Rural Bureau, Wuzhishan, China
| | - Shuhui Mo
- Wuzhishan Animal Science and Veterinary Medicine and Fishery Service Center, Wuzhishan Agricultural and Rural Bureau, Wuzhishan, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Zhongchun He
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yuanyuan Shang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dong Wei
- Wuzhishan Ant Chicken Cooperative, Wuzhishan, China
| | - Sheng Wei
- Wuzhishan Ant Chicken Cooperative, Wuzhishan, China
| | - Youyi Chen
- Wuzhishan Animal Science and Veterinary Medicine and Fishery Service Center, Wuzhishan Agricultural and Rural Bureau, Wuzhishan, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
4
|
Tang FL, Xie LW, Tang LF, Lu HY, Zhu RQ, Wang DF, Tian Y, Cai S, Li M. Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside) confers protection against ionizing radiation-induced intestinal epithelial injury in vitro and in vivo. Int Immunopharmacol 2024; 129:111637. [PMID: 38335653 DOI: 10.1016/j.intimp.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The small intestine exhibits remarkable sensitivity to ionizing radiation (IR), which significantly hampers the effectiveness of radiotherapy in the treatment of abdominal and pelvic tumors. Unfortunately, no effective medications are available to treat radiation-induced intestinal damage (RIID). Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), is a coumarin derivative extracted from the Chinese herb Cortex Fraxini. Several studies have underscored the anti-inflammatory, antibacterial, antioxidant, and immunomodulatory properties of fraxin. However, the efficacy of fraxin at preventing or mitigating RIID remains unclear. Thus, the present study aimed to investigate the protective effects of fraxin against RIID in vitro and in vivo and to elucidate the underlying mechanisms. The study findings revealed that fraxin markedly ameliorated intestinal injuries induced by 13 Gy whole abdominal irradiation (WAI), which was accompanied by a significant increase in the population of Lgr5+ intestinal stem cells (ISCs) and Ki67+ progeny. Furthermore, fraxin mitigated WAI-induced intestinal barrier damage, and reduced oxidative stress and intestinal inflammation in mice. Transcriptome sequencing of fraxin-treated mice revealed upregulation of IL-22, a pleiotropic cytokine involved in regulating the function of intestinal epithelial cells. Moreover, in both human intestinal epithelial cells and ex vivo cultured mouse intestinal organoids, fraxin effectively ameliorated IR-induced damage by promoting the expression of IL-22. The radioprotective effects of fraxin were partially negated in the presence of an IL-22-neutralizing antibody. In summary, fraxin is demonstrated to possess the ability to alleviate RIID and maintain intestinal homeostasis, suggesting that fraxin might serve as a strategy for mitigating accidental radiation exposure- or radiotherapy-induced RIID.
Collapse
Affiliation(s)
- Feng-Ling Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Li-Wei Xie
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Lin-Feng Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hai-Yan Lu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Rui-Qiu Zhu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou 215123, China
| | - Ye Tian
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Shang Cai
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Boeckx C. What made us "hunter-gatherers of words". Front Neurosci 2023; 17:1080861. [PMID: 36845441 PMCID: PMC9947416 DOI: 10.3389/fnins.2023.1080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
This paper makes three interconnected claims: (i) the "human condition" cannot be captured by evolutionary narratives that reduce it to a recent 'cognitive modernity', nor by narratives that eliminates all cognitive differences between us and out closest extinct relatives, (ii) signals from paleogenomics, especially coming from deserts of introgression but also from signatures of positive selection, point to the importance of mutations that impact neurodevelopment, plausibly leading to temperamental differences, which may impact cultural evolutionary trajectories in specific ways, and (iii) these trajectories are expected to affect the language phenotypes, modifying what is being learned and how it is put to use. In particular, I hypothesize that these different trajectories influence the development of symbolic systems, the flexible ways in which symbols combine, and the size and configurations of the communities in which these systems are put to use.
Collapse
Affiliation(s)
- Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|