1
|
Zhang F, Zhu M, Chen Y, Wang G, Yang H, Lu X, Li Y, Chang HM, Wu Y, Ma Y, Yuan S, Zhu W, Dong X, Zhao Y, Yu Y, Wang J, Mu L. Harnessing omics data for drug discovery and development in ovarian aging. Hum Reprod Update 2025; 31:240-268. [PMID: 39977580 DOI: 10.1093/humupd/dmaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. OBJECTIVE AND RATIONALE This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. SEARCH METHODS We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. OUTCOMES Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. WIDER IMPLICATIONS The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Fengyu Zhang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ming Zhu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guiquan Wang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmei Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yunlong Ma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuai Yuan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jia Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li X, Loscalzo J, Mahmud AKMF, Aly DM, Rzhetsky A, Zitnik M, Benson M. Digital twins as global learning health and disease models for preventive and personalized medicine. Genome Med 2025; 17:11. [PMID: 39920778 PMCID: PMC11806862 DOI: 10.1186/s13073-025-01435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Ineffective medication is a major healthcare problem causing significant patient suffering and economic costs. This issue stems from the complex nature of diseases, which involve altered interactions among thousands of genes across multiple cell types and organs. Disease progression can vary between patients and over time, influenced by genetic and environmental factors. To address this challenge, digital twins have emerged as a promising approach, which have led to international initiatives aiming at clinical implementations. Digital twins are virtual representations of health and disease processes that can integrate real-time data and simulations to predict, prevent, and personalize treatments. Early clinical applications of DTs have shown potential in areas like artificial organs, cancer, cardiology, and hospital workflow optimization. However, widespread implementation faces several challenges: (1) characterizing dynamic molecular changes across multiple biological scales; (2) developing computational methods to integrate data into DTs; (3) prioritizing disease mechanisms and therapeutic targets; (4) creating interoperable DT systems that can learn from each other; (5) designing user-friendly interfaces for patients and clinicians; (6) scaling DT technology globally for equitable healthcare access; (7) addressing ethical, regulatory, and financial considerations. Overcoming these hurdles could pave the way for more predictive, preventive, and personalized medicine, potentially transforming healthcare delivery and improving patient outcomes.
Collapse
Affiliation(s)
- Xinxiu Li
- Medical Digital Twin Research Group, Department of Clinical Sciences Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - A K M Firoj Mahmud
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75105, Uppsala, Sweden
| | - Dina Mansour Aly
- Medical Digital Twin Research Group, Department of Clinical Sciences Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Andrey Rzhetsky
- Departments of Medicine and Human Genetics, Institute for Genomics and Systems Biology, University of Chicago, Chicago, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA
| | - Mikael Benson
- Medical Digital Twin Research Group, Department of Clinical Sciences Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Wang H, Li X, Li T, Li Z, Sham PC, Zhang YD. MAAT: a new nonparametric Bayesian framework for incorporating multiple functional annotations in transcriptome-wide association studies. Genome Biol 2025; 26:21. [PMID: 39905509 PMCID: PMC11796105 DOI: 10.1186/s13059-025-03485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Transcriptome-wide association study (TWAS) has emerged as a powerful tool for translating the myriad variations identified by genome-wide association studies (GWAS) into regulated genes in the post-GWAS era. While integrating annotation information has been shown to enhance power, current annotation-assisted TWAS tools predominantly focus on epigenomic annotations. When including more annotations, the assumption of a positive correlation between annotation scores and SNPs' effect sizes, as adopted by current methods, often falls short. Here, we propose MAAT expanding the horizons of existing TWAS studies, generating a new model incorporating multiple annotations into TWAS and a new metric indicating the most important annotation.
Collapse
Affiliation(s)
- Han Wang
- College of Science, China Agricultural University, Beijing, China
| | - Xiang Li
- Department of Statistics and Actuarial Science, School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Teng Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Li
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yan Dora Zhang
- Department of Statistics and Actuarial Science, School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Yin M, Feng C, Yu Z, Zhang Y, Li Y, Wang X, Song C, Guo M, Li C. sc2GWAS: a comprehensive platform linking single cell and GWAS traits of human. Nucleic Acids Res 2025; 53:D1151-D1161. [PMID: 39565208 PMCID: PMC11701642 DOI: 10.1093/nar/gkae1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Identifying cell populations associated with risk variants is essential for uncovering cell-specific mechanisms that drive disease development and progression. Integrating genome-wide association studies (GWAS) with single-cell RNA sequencing (scRNA-seq) has become an effective strategy for detecting trait-cell relationships. The accumulation of trait-related single cell data has led to an urgent need for its comprehensively processing. To address this, we developed sc2GWAS (https://bio.liclab.net/sc2GWAS/), which aims to document large-scale GWAS trait-cell regulatory pairs at single-cell resolution and provide comprehensive annotations and enrichment analyses for these related pairs. The current version of sc2GWAS curates a total of 15 078 310 candidate trait-cell pairs from > 6 300 000 individual cells, offering a valuable resource for exploring complex regulatory relationships between traits and cells. We applied strict quality control measures on both scRNA-seq data and GWAS data, ensuring the reliability and accuracy of the datasets for the identification of trait-relevant cells and genes. In addition, sc2GWAS provides ranked lists of trait-relevant genes and extensive (epi) genetic annotations, making it a valuable resource for downstream analyses. We demonstrate the utility of the platform by investigating Alzheimer's disease, where we identified significant associations between the disease and microglial cells, with the APOE gene emerging as particularly significant. This platform facilitates detailed research into complex trait-cell and trait-gene interactions, we anticipate that sc2GWAS will become a comprehensive and valuable platform for exploring GWAS trait-cell regulatory mechanisms.
Collapse
Affiliation(s)
- Mingxue Yin
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Chenchen Feng
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Zhengmin Yu
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Yuexin Zhang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Ye Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Xuan Wang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Chao Song
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chunquan Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Townsend HA, Rosenberger KJ, Vanderlinden LA, Inamo J, Zhang F. Evaluating methods for integrating single-cell data and genetics to understand inflammatory disease complexity. Front Immunol 2024; 15:1454263. [PMID: 39703500 PMCID: PMC11655331 DOI: 10.3389/fimmu.2024.1454263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
Background Understanding genetic underpinnings of immune-mediated inflammatory diseases is crucial to improve treatments. Single-cell RNA sequencing (scRNA-seq) identifies cell states expanded in disease, but often overlooks genetic causality due to cost and small genotyping cohorts. Conversely, large genome-wide association studies (GWAS) are commonly accessible. Methods We present a 3-step robust benchmarking analysis of integrating GWAS and scRNA-seq to identify genetically relevant cell states and genes in inflammatory diseases. First, we applied and compared the results of three recent algorithms, based on pathways (scGWAS), single-cell disease scores (scDRS), or both (scPagwas), according to accuracy/sensitivity and interpretability. While previous studies focused on coarse cell types, we used disease-specific, fine-grained single-cell atlases (183,742 and 228,211 cells) and GWAS data (Ns of 97,173 and 45,975) for rheumatoid arthritis (RA) and ulcerative colitis (UC). Second, given the lack of scRNA-seq for many diseases with GWAS, we further tested the tools' resolution limits by differentiating between similar diseases with only one fine-grained scRNA-seq atlas. Lastly, we provide a novel evaluation of noncoding SNP incorporation methods by testing which enabled the highest sensitivity/accuracy of known cell-state calls. Results We first found that single-cell based tools scDRS and scPagwas called superior numbers of supported cell states that were overlooked by scGWAS. While scGWAS and scPagwas were advantageous for gene exploration, scDRS effectively accounted for batch effect and captured cellular heterogeneity of disease-relevance without single-cell genotyping. For noncoding SNP integration, we found a key trade-off between statistical power and confidence with positional (e.g. MAGMA) and non-positional approaches (e.g. chromatin-interaction, eQTL). Even when directly incorporating noncoding SNPs through 5' scRNA-seq measures of regulatory elements, non disease-specific atlases gave misleading results by not containing disease-tissue specific transcriptomic patterns. Despite this criticality of tissue-specific scRNA-seq, we showed that scDRS enabled deconvolution of two similar diseases with a single fine-grained scRNA-seq atlas and separate GWAS. Indeed, we identified supported and novel genetic-phenotype linkages separating RA and ankylosing spondylitis, and UC and crohn's disease. Overall, while noting evolving single-cell technologies, our study provides key findings for integrating expanding fine-grained scRNA-seq, GWAS, and noncoding SNP resources to unravel the complexities of inflammatory diseases.
Collapse
Affiliation(s)
- Hope A. Townsend
- Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Department of Molecular, Cellular, Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Kaylee J. Rosenberger
- Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Lauren A. Vanderlinden
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
- Department of Biomedical Informatics, Center for Health AI, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Jun Inamo
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
- Department of Biomedical Informatics, Center for Health AI, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Fan Zhang
- Biofrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
- Department of Biomedical Informatics, Center for Health AI, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
6
|
Alías-Segura S, Pazos F, Chagoyen M. Differential expression and co-expression reveal cell types relevant to genetic disorder phenotypes. Bioinformatics 2024; 40:btae646. [PMID: 39468724 PMCID: PMC11549017 DOI: 10.1093/bioinformatics/btae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024] Open
Abstract
MOTIVATION Knowledge of the specific cell types affected by genetic alterations in rare diseases is crucial for advancing diagnostics and treatments. Despite significant progress, the cell types involved in the majority of rare disease manifestations remain largely unknown. In this study, we integrated scRNA-seq data from non-diseased samples with known genetic disorder genes and phenotypic information to predict the specific cell types disrupted by pathogenic mutations for 482 disease phenotypes. RESULTS We found significant phenotype-cell type associations focusing on differential expression and co-expression mechanisms. Our analysis revealed that 13% of the associations documented in the literature were captured through differential expression, while 42% were elucidated through co-expression analysis, also uncovering potential new associations. These findings underscore the critical role of cellular context in disease manifestation and highlight the potential of single-cell data for the development of cell-aware diagnostics and targeted therapies for rare diseases. AVAILABILITY AND IMPLEMENTATION All code generated in this work is available at https://github.com/SergioAlias/sc-coex.
Collapse
Affiliation(s)
- Sergio Alías-Segura
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
- Department of Molecular Biology and Biochemistry, Science Faculty, University of Málaga, Málaga, 29071, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Monica Chagoyen
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
7
|
Hernandez-Cordero A, Thomas L, Smail A, Lim ZQ, Saklatvala JR, Chung R, Curtis CJ, Baum P, Visvanathan S, Burden AD, Cooper HL, Dunnill G, Griffiths CEM, Levell NJ, Parslew R, Reynolds NJ, Wahie S, Warren RB, Wright A, Simpson M, Hveem K, Barker JN, Dand N, Løset M, Smith CH, Capon F. A genome-wide meta-analysis of palmoplantar pustulosis implicates T H2 responses and cigarette smoking in disease pathogenesis. J Allergy Clin Immunol 2024; 154:657-665.e9. [PMID: 38815935 DOI: 10.1016/j.jaci.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Palmoplantar pustulosis (PPP) is an inflammatory skin disorder that mostly affects smokers and manifests with painful pustular eruptions on the palms and soles. Although the disease can present with concurrent plaque psoriasis, TNF and IL-17/IL-23 inhibitors show limited efficacy. There is therefore a pressing need to uncover PPP disease drivers and therapeutic targets. OBJECTIVES We sought to identify genetic determinants of PPP and investigate whether cigarette smoking contributes to disease pathogenesis. METHODS We performed a genome-wide association meta-analysis of 3 North-European cohorts (n = 1,456 PPP cases and 402,050 controls). We then used the scGWAS program to investigate the cell-type specificity of the association signals. We also undertook genetic correlation analyses to examine the similarities between PPP and other immune-mediated diseases. Finally, we applied Mendelian randomization to analyze the causal relationship between cigarette smoking and PPP. RESULTS We found that PPP is not associated with the main genetic determinants of plaque psoriasis. Conversely, we identified genome-wide significant associations with the FCGR3A/FCGR3B and CCHCR1 loci. We also observed 13 suggestive (P < 5 × 10-6) susceptibility regions, including the IL4/IL13 interval. Accordingly, we demonstrated a significant genetic correlation between PPP and TH2-mediated diseases such as atopic dermatitis and ulcerative colitis. We also found that genes mapping to PPP-associated intervals were preferentially expressed in dendritic cells and often implicated in T-cell activation pathways. Finally, we undertook a Mendelian randomization analysis, which supported a causal role of cigarette smoking in PPP. CONCLUSIONS The first genome-wide association study of PPP points to a pathogenic role for deregulated TH2 responses and cigarette smoking.
Collapse
Affiliation(s)
- Ariana Hernandez-Cordero
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Laurent Thomas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alice Smail
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Zhao Qin Lim
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jake R Saklatvala
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Charles J Curtis
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - A David Burden
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Hywel L Cooper
- Portsmouth Dermatology Unit, Portsmouth Hospitals Trust, Portsmouth, United Kingdom
| | | | - Christopher E M Griffiths
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Department of Dermatology, King's College Hospital, King's College London, London, United Kingdom
| | - Nick J Levell
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Richard Parslew
- Department of Dermatology, Royal Liverpool Hospitals, Liverpool, United Kingdom
| | - Nick J Reynolds
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle NIHR Biomedical Research Centre and the Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Shyamal Wahie
- University Hospital of North Durham, Durham, United Kingdom; Darlington Memorial Hospital, Darlington, United Kingdom
| | - Richard B Warren
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Wright
- St Lukes Hospital, Bradford, United Kingdom; Centre for Skin Science, University of Bradford, Bradford, United Kingdom
| | - Michael Simpson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Department of Innovation and Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Nick Dand
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Mari Løset
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Francesca Capon
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Motsinger-Reif AA, Reif DM, Akhtari FS, House JS, Campbell CR, Messier KP, Fargo DC, Bowen TA, Nadadur SS, Schmitt CP, Pettibone KG, Balshaw DM, Lawler CP, Newton SA, Collman GW, Miller AK, Merrick BA, Cui Y, Anchang B, Harmon QE, McAllister KA, Woychik R. Gene-environment interactions within a precision environmental health framework. CELL GENOMICS 2024; 4:100591. [PMID: 38925123 PMCID: PMC11293590 DOI: 10.1016/j.xgen.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Understanding the complex interplay of genetic and environmental factors in disease etiology and the role of gene-environment interactions (GEIs) across human development stages is important. We review the state of GEI research, including challenges in measuring environmental factors and advantages of GEI analysis in understanding disease mechanisms. We discuss the evolution of GEI studies from candidate gene-environment studies to genome-wide interaction studies (GWISs) and the role of multi-omics in mediating GEI effects. We review advancements in GEI analysis methods and the importance of large-scale datasets. We also address the translation of GEI findings into precision environmental health (PEH), showcasing real-world applications in healthcare and disease prevention. Additionally, we highlight societal considerations in GEI research, including environmental justice, the return of results to participants, and data privacy. Overall, we underscore the significance of GEI for disease prediction and prevention and advocate for integrating the exposome into PEH omics studies.
Collapse
Affiliation(s)
- Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - C Ryan Campbell
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kyle P Messier
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA; Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David C Fargo
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Tiffany A Bowen
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Srikanth S Nadadur
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Charles P Schmitt
- Office of the Scientific Director, Office of Data Science, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kristianna G Pettibone
- Program Analysis Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David M Balshaw
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Cindy P Lawler
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shelia A Newton
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Gwen W Collman
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Aubrey K Miller
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Yuxia Cui
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Quaker E Harmon
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kimberly A McAllister
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Rick Woychik
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
9
|
Ganji-Arjenaki M, Kamali Z, Sardari S, de Borst M, Snieder H, Vaez A. Prioritization of Kidney Cell Types Highlights Myofibroblast Cells in Regulating Human Blood Pressure. Kidney Int Rep 2024; 9:1849-1859. [PMID: 38899223 PMCID: PMC11184402 DOI: 10.1016/j.ekir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Blood pressure (BP) is a highly heritable trait with over 2000 underlying genomic loci identified to date. Although the kidney plays a key role, little is known about specific cell types involved in the genetic regulation of BP. Methods Here, we applied stratified linkage disequilibrium score (LDSC) regression to connect BP genome-wide association studies (GWAS) results to specific cell types of the mature human kidney. We used the largest single-stage BP genome-wide analysis to date, including up to 1,028,980 adults of European ancestry, and single-cell transcriptomic data from 14 mature human kidneys, with mean age of 41 years. Results Our analyses prioritized myofibroblasts and endothelial cells, among the total of 33 annotated cell type, as specifically involved in BP regulation (P < 0.05/33, i.e., 0.001515). Enrichment of heritability for systolic BP (SBP) was observed in myofibroblast cells in mature human kidney cortex, and enrichment of heritability for diastolic BP (DBP) was observed in descending vasa recta and peritubular capillary endothelial cells as well as stromal myofibroblast cells. The new finding of myofibroblast, the significant cell type for both BP traits, was consistent in 8 replication efforts using 7 sets of independent data, including in human fetal kidney, in East-Asian (EAS) ancestry, using mouse single-cell RNA sequencing (scRNA-seq) data, and when using another prioritization method. Conclusion Our findings provide a solid basis for follow-up studies to further identify genes and mechanisms in myofibroblast cells that underlie the regulation of BP.
Collapse
Affiliation(s)
- Mahboube Ganji-Arjenaki
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Martin de Borst
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Lai Q, Dannenfelser R, Roussarie JP, Yao V. Disentangling associations between complex traits and cell types with seismic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592534. [PMID: 38765980 PMCID: PMC11100625 DOI: 10.1101/2024.05.04.592534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Integrating single-cell RNA sequencing (scRNA-seq) with Genome-Wide Association Studies (GWAS) can help reveal GWAS-associated cell types, furthering our understanding of the cell-type-specific biological processes underlying complex traits and disease. However, current methods have technical limitations that hinder them from making systematic, scalable, interpretable disease-cell-type associations. In order to rapidly and accurately pinpoint associations, we develop a novel framework, seismic, which characterizes cell types using a new specificity score. We compare seismic with alternative methods across over 1,000 cell type characterizations at different granularities and 28 traits, demonstrating that seismic both corroborates findings and identifies trait-relevant cell groups which are not apparent through other methodologies. Furthermore, as part of the seismic framework, the specific genes driving cell type-trait associations can easily be accessed and analyzed, enabling further biological insights. The advantages of seismic are particularly salient in neurodegenerative diseases such as Parkinson's and Alzheimer's, where disease pathology has not only cell-specific manifestations, but also brain region-specific differences. Interestingly, a case study of Alzheimer's disease reveals the importance of considering GWAS endpoints, as studies relying on clinical diagnoses consistently identify microglial associations, while GWAS with a tau biomarker endpoint reveals neuronal associations. In general, seismic is a computationally efficient, powerful, and interpretable approach for identifying associations between complex traits and cell type-specific expression.
Collapse
Affiliation(s)
- Qiliang Lai
- Department of Computer Science, Rice University
| | | | | | - Vicky Yao
- Department of Computer Science, Rice University
| |
Collapse
|
11
|
Buyukcelebi K, Duval AJ, Abdula F, Elkafas H, Seker-Polat F, Adli M. Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types. Nat Commun 2024; 15:1169. [PMID: 38326302 PMCID: PMC10850163 DOI: 10.1038/s41467-024-45382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Uterine fibroids (UF), that can disrupt normal uterine function and cause significant physical and psychological health problems, are observed in nearly 70% of women of reproductive age. Although heritable genetics is a significant risk factor, specific genetic variations and gene targets causally associated with UF are poorly understood. Here, we performed a meta-analysis on existing fibroid genome-wide association studies (GWAS) and integrated the identified risk loci and potentially causal single nucleotide polymorphisms (SNPs) with epigenomics, transcriptomics, 3D chromatin organization from diverse cell types as well as primary UF patient's samples. This integrative analysis identifies 24 UF-associated risk loci that potentially target 394 genes, of which 168 are differentially expressed in UF tumors. Critically, integrating this data with single-cell gene expression data from UF patients reveales the causal cell types with aberrant expression of these target genes. Lastly, CRISPR-based epigenetic repression (dCas9-KRAB) or activation (dCas9-p300) in a UF disease-relevant cell type further refines and narrows down the potential gene targets. Our findings and the methodological approach indicate the effectiveness of integrating multi-omics data with locus-specific epigenetic editing approaches for identifying gene- and celt type-targets of disease-relevant risk loci.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander J Duval
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Zhang Y, Sun H, Zhang W, Fu T, Huang S, Mou M, Zhang J, Gao J, Ge Y, Yang Q, Zhu F. CellSTAR: a comprehensive resource for single-cell transcriptomic annotation. Nucleic Acids Res 2024; 52:D859-D870. [PMID: 37855686 PMCID: PMC10767908 DOI: 10.1093/nar/gkad874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Large-scale studies of single-cell sequencing and biological experiments have successfully revealed expression patterns that distinguish different cell types in tissues, emphasizing the importance of studying cellular heterogeneity and accurately annotating cell types. Analysis of gene expression profiles in these experiments provides two essential types of data for cell type annotation: annotated references and canonical markers. In this study, the first comprehensive database of single-cell transcriptomic annotation resource (CellSTAR) was thus developed. It is unique in (a) offering the comprehensive expertly annotated reference data for annotating hundreds of cell types for the first time and (b) enabling the collective consideration of reference data and marker genes by incorporating tens of thousands of markers. Given its unique features, CellSTAR is expected to attract broad research interests from the technological innovations in single-cell transcriptomics, the studies of cellular heterogeneity & dynamics, and so on. It is now publicly accessible without any login requirement at: https://idrblab.org/cellstar.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
13
|
Gupta A, Weinand K, Nathan A, Sakaue S, Zhang MJ, Donlin L, Wei K, Price AL, Amariuta T, Raychaudhuri S. Dynamic regulatory elements in single-cell multimodal data implicate key immune cell states enriched for autoimmune disease heritability. Nat Genet 2023; 55:2200-2210. [PMID: 38036783 PMCID: PMC10787644 DOI: 10.1038/s41588-023-01577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
In autoimmune diseases such as rheumatoid arthritis, the immune system attacks the body's own cells. Developing a precise understanding of the cell states where noncoding autoimmune risk variants impart causal mechanisms is critical to developing curative therapies. Here, to identify noncoding regions with accessible chromatin that associate with cell-state-defining gene expression patterns, we leveraged multimodal single-nucleus RNA and assay for transposase-accessible chromatin (ATAC) sequencing data across 28,674 cells from the inflamed synovial tissue of 12 donors. Specifically, we used a multivariate Poisson model to predict peak accessibility from single-nucleus RNA sequencing principal components. For 14 autoimmune diseases, we discovered that cell-state-dependent ('dynamic') chromatin accessibility peaks in immune cell types were enriched for heritability, compared with cell-state-invariant ('cs-invariant') peaks. These dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory T, dendritic and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory elements can help identify precise cell states enriched for disease-critical genetic variation.
Collapse
Affiliation(s)
- Anika Gupta
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kathryn Weinand
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Jinye Zhang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Laura Donlin
- Weill Cornell Medicine, New York, NY, USA
- Hospital for Special Surgery, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tiffany Amariuta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Tseng KC, Crump JG. Craniofacial developmental biology in the single-cell era. Development 2023; 150:dev202077. [PMID: 37812056 PMCID: PMC10617621 DOI: 10.1242/dev.202077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.
Collapse
Affiliation(s)
- Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Cuomo ASE, Nathan A, Raychaudhuri S, MacArthur DG, Powell JE. Single-cell genomics meets human genetics. Nat Rev Genet 2023; 24:535-549. [PMID: 37085594 PMCID: PMC10784789 DOI: 10.1038/s41576-023-00599-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
Single-cell genomic technologies are revealing the cellular composition, identities and states in tissues at unprecedented resolution. They have now scaled to the point that it is possible to query samples at the population level, across thousands of individuals. Combining single-cell information with genotype data at this scale provides opportunities to link genetic variation to the cellular processes underpinning key aspects of human biology and disease. This strategy has potential implications for disease diagnosis, risk prediction and development of therapeutic solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and additional phenotypic data will require advances in data generation and analysis methods. As single-cell genetics begins to emerge as a field in its own right, we review its current state and the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Anna S E Cuomo
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joseph E Powell
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Buenaventura RG, Harvey AC, Burns MP, Main BS. Traumatic brain injury induces an adaptive immune response in the meningeal transcriptome that is amplified by aging. Front Neurosci 2023; 17:1210175. [PMID: 37588516 PMCID: PMC10425597 DOI: 10.3389/fnins.2023.1210175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major cause of disability and mortality, particularly among the elderly, yet our mechanistic understanding of how age renders the post-traumatic brain vulnerable to poor clinical outcomes and susceptible to neurological disease remains poorly understood. It is well established that dysregulated and sustained immune responses contribute to negative outcomes after TBI, however our understanding of the interactions between central and peripheral immune reservoirs is still unclear. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in healthy and disease settings. It has been previously shown that disruption of this system exacerbates inflammation in age related neurodegenerative disorders such as Alzheimer's disease, however we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. Here, we examine the meningeal tissue and its response to brain injury in young (3-months) and aged (18-months) mice. Utilizing a bioinformatic approach, high-throughput RNA sequencing demonstrates alterations in the meningeal transcriptome at sub-acute (7-days) and chronic (1 month) timepoints after injury. We find that age alone chronically exacerbates immunoglobulin production and B cell responses. After TBI, adaptive immune response genes are up-regulated in a temporal manner, with genes involved in T cell responses elevated sub-acutely, followed by increases in B cell related genes at chronic time points after injury. Pro-inflammatory cytokines are also implicated as contributing to the immune response in the meninges, with ingenuity pathway analysis identifying interferons as master regulators in aged mice compared to young mice following TBI. Collectively these data demonstrate the temporal series of meningeal specific signatures, providing insights into how age leads to worse neuroinflammatory outcomes in TBI.
Collapse
Affiliation(s)
| | | | | | - Bevan S. Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|