1
|
Grossman AS, Mucci NC, Kauffman SJ, Rafi J, Goodrich-Blair H. Bioinformatic discovery of type 11 secretion system (T11SS) cargo across the Proteobacteria. Microb Genom 2025; 11. [PMID: 40397007 DOI: 10.1099/mgen.0.001406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Type 11 secretion systems (T11SS) are broadly distributed amongst Proteobacteria, with more than 3,000 T11SS family outer membrane proteins (OMPs) comprising ten major sequence similarity network clusters. Of these, only seven, all from animal-associated cluster 1, have been experimentally verified as secretins of cargo, including adhesins, haemophores and metal-binding proteins. To identify novel cargo of a more diverse set of T11SS, we identified gene families co-occurring in gene neighbourhoods with either cluster 1 or marine microbe-associated cluster 3 T11SS OMP genes. We developed bioinformatic controls to ensure that perceived co-occurrences are specific to T11SS, and not general to OMPs. We found that both cluster 1 and cluster 3 T11SS OMPs frequently co-occur with single-carbon metabolism and nucleotide synthesis pathways, but that only cluster 1 T11SS OMPs had significant co-occurrence with metal and haem pathways, as well as with mobile genetic islands, potentially indicating the diversified function of this cluster. Cluster 1 T11SS co-occurrences included 2,556 predicted cargo proteins, unified by the presence of a C-terminal β-barrel domain, which fall into 141 predicted UniRef50 clusters and approximately ten different architectures: four similar to known cargo and six uncharacterized types. We experimentally demonstrate T11SS-dependent secretion of an uncharacterized cargo type with homology to plasmin-sensitive protein. Unexpectedly, genes encoding marine cluster 3 T11SS OMPs only rarely co-occurred with the C-terminal β-barrel domain and instead frequently co-occurred with DUF1194-containing genes. Overall, our results show that with sufficiently large-scale and controlled genomic data, T11SS-dependent cargo proteins can be accurately predicted.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
- Present address: The ADA Forsyth Institute, 100 Chestnut St, Somerville, MA 02143, USA
| | - Nicholas C Mucci
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Sarah J Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Jahirul Rafi
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| |
Collapse
|
2
|
Li J, Xia R, Huang WC, Gu J, Li M. DUF99 family proteins are novel endonucleases that cleave deoxyuridine on DNA substrates. J Biol Chem 2024; 300:107901. [PMID: 39426726 PMCID: PMC11585767 DOI: 10.1016/j.jbc.2024.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
DNA deamination occurs constantly in a cell and causes DNA damage. As this damage can be deleterious, organisms have evolved many systems to eliminate it, such as Endonuclease V (Endo V). DUF99 family protein contains a domain of unknown function similar to Endo V but has not been experimentally characterized to date. Here, we show that DUF99 family proteins cleave the 3'-side of deoxyuridine (dU) on DNA substrates. Based on phylogenetic analysis, we designated this new protein family as Endonuclease dU (Endo_dU). We also observed that Endo_dU coding gene frequently colocalizes with that of uracil-DNA glycosylase (UDG) in halophilic archaea, and we further performed gene knockout of Endo_dU gene on Haloferax volcanii. The transcription level of UDG gene on Endo_dU knockout strain was increased when induced by sodium bisulfite. Thus, we hypothesize that Endo_dU establishes a new endonuclease family with broad phylogenetic distribution and may participate in DNA repair.
Collapse
Affiliation(s)
- Jinquan Li
- Archaeal Biology Centre, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Runyue Xia
- Archaeal Biology Centre, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wen-Cong Huang
- Archaeal Biology Centre, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jiazheng Gu
- Archaeal Biology Centre, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Centre, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Yang J, Sun N, Wang W, Zhang R, Sun S, Li B, Shi Y, Zeng J, Jia S. Genomic analysis and mechanisms exploration of a stress tolerance and high-yield pullulan producing strain. Front Genet 2024; 15:1469600. [PMID: 39371418 PMCID: PMC11449735 DOI: 10.3389/fgene.2024.1469600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Pullulan is a kind of natural polymer, which is widely used in medicine and food because of its solubility, plasticity, edible, non-toxicity and good biocompatibility. It is of great significance to improve the yield of pullulan by genetic modification of microorganisms. It was previously reported that Aureobasidium melanogenum TN3-1 isolated from honey-comb could produce high-yield of pullulan, but the molecular mechanisms of its production of pullulan had not been completely solved. In this study, the reported strains of Aureobasidium spp. were further compared and analyzed at genome level. It was found that genome duplication and genome genetic variations might be the crucial factors for the high yield of pullulan and stress resistance. This particular phenotype may be the result of adaptive evolution, which can adapt to its environment through genetic variation and adaptive selection. In addition, the TN3-1 strain has a large genome, and the special regulatory sequences of its specific genes and promoters may ensure a unique characteristics. This study is a supplement of the previous studies, and provides basic data for the research of microbial genome modification in food and healthcare applications.
Collapse
Affiliation(s)
- Jing Yang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenru Wang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruihua Zhang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Sun
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Biqi Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Shi
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junfeng Zeng
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shulei Jia
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Lu X, Li Y, Akhtar M, Liu C, Ma T, Min W, Bai X, She Y, Chen L, Tian L, Li P, Luo C. A DUF966 gene family member OsDSR3 positively regulates alkali stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112072. [PMID: 38513731 DOI: 10.1016/j.plantsci.2024.112072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Rice growth and production are severely constrained by alkali stress. However, the mechanism underlying the rice tolerance to alkali stress is unclear. OsDSR3, a novel gene from the domains of unknown function 966 (DUF966) family, was identified and characterized for its function in the response of rice to alkali stress. The result of this study clearly showed that alkali stress significantly induced OsDSR3 expression level. Moreover, the expression of OsDSR3 was up-regulated by drought, salt, cold, H2O2 and abscisic acid (ABA), and down-regulated by gibberellic acid (GA3), and 2,4-Dichlorophenoxyacetic acid (2,4-D) treatments. Subcellular localization exhibited that OsDSR3 was detected in the nucleus and membrane. OsDSR3-overexpressing (OsDSR3-OE) plants showed higher tolerance to alkali stress than the wild-type (WT). In contrast, OsDSR3 knockout (OsDSR3-KO) mutants were more vulnerable to alkali stress. The differentially expressed genes (DEGs) among OsDSR3-OE and WT seedlings were mainly enriched in porphyrin and chlorophyll, starch and sucrose, and carotenoid metabolic pathways. Among these DEGs, 26 were identified as potential alkali stress-responsive genes, including several up-regulated genes like OsHAK5, OsGRX23 and OsNIR2. Consistent with the expression profiles of metabolic pathways-related genes, most of the metabolite contents and metabolite synthases activities were improved in OsDSR3-OE lines and decreased in OsDSR3-KO lines compared to WT. This may explain the higher tolerance of OE lines and lower tolerance of KO lines to alkali stress. These findings suggested that OsDSR3 positively regulates rice tolerance to alkali stress, which will help to elucidate the molecular mechanism underlying rice alkali tolerance.
Collapse
Affiliation(s)
- Xuping Lu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Li
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Maryam Akhtar
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Weifang Min
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaorong Bai
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yangmengfei She
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Liang Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lei Tian
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Peifu Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
5
|
Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. PROTOPLASMA 2024; 261:397-410. [PMID: 38158398 DOI: 10.1007/s00709-023-01917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Domains of unknown function (DUFs), which are deposited in the protein family database (Pfam), are protein domains with conserved amino acid sequences and uncharacterized functions. Proteins with the same DUF were classified as DUF families. Although DUF families are generally not essential for the survival of plants, they play roles in plant development and adaptation. Characterizing the functions of DUFs is important for deciphering biological puzzles. DUFs were generally studied through forward and reverse genetics. Some novelty approaches, especially the determination of crystal structures and interaction partners of the DUFs, should attract more attention. This review described the identification of DUF genes by genome-wide and transcriptome-wide analyses, summarized the function of DUF-containing proteins, and addressed the prospects for future studies in DUFs in plants.
Collapse
Affiliation(s)
- Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Maryam Akhtar
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Weifang Min
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xiaorong Bai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
6
|
de Oliveira Silva YR, Zheng D, Peters SC, Fisher OS. Stabilization of a Cu-binding site by a highly conserved tryptophan residue. J Inorg Biochem 2024; 253:112501. [PMID: 38342077 DOI: 10.1016/j.jinorgbio.2024.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Copper serves as an essential cofactor for nearly all living organisms. There are still many gaps remaining in our knowledge of how Gram-positive bacteria import copper and maintain homeostasis. To obtain a better understanding of how these processes work, here we focus on the ycnKJI operon responsible for regulating copper levels in the Gram-positive bacterium Bacillus subtilis. This operon encodes three Cu-related proteins: a copper-dependent transcriptional repressor (YcnK), a putative copper importer (YcnJ), and a copper-binding protein of unknown function (YcnI). We previously found that YcnI's extracellular Domain of Unknown Function 1775 (DUF1775) houses a monohistidine brace motif that coordinates a single Cu(II) ion. The Cu(II) binding site includes a highly conserved tryptophan residue. Here, we investigate the role of that tryptophan and the ability of the protein to interact with other oxidation states of Cu. We find that YcnI exhibits strong preference for binding Cu in the oxidized Cu(II) state, and that the conserved tryptophan residue is not essential for the interaction. We determine the structure of a tryptophan variant to 1.95 Å resolution that indicates that the tryptophan is needed to stabilize the metal binding interaction, and find that this variant has weaker affinity for Cu(II) than the wild-type protein. Together, these data provide further insights into the DUF1775 domain family and reveal the role of the conserved tryptophan residue.
Collapse
Affiliation(s)
| | - Dia Zheng
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA 18015, USA
| | - Stephen C Peters
- Department of Earth and Environmental Sciences, Lehigh University, 1 W Packer Ave, Bethlehem, PA 18015, USA
| | - Oriana S Fisher
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
7
|
Guo S, Lv L, Zhao Y, Wang J, Lu X, Zhang M, Wang R, Zhang Y, Guo X. Using High-Throughput Phenotyping Analysis to Decipher the Phenotypic Components and Genetic Architecture of Maize Seedling Salt Tolerance. Genes (Basel) 2023; 14:1771. [PMID: 37761911 PMCID: PMC10530905 DOI: 10.3390/genes14091771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Soil salinization is a worldwide problem that limits agricultural production. It is important to understand the salt stress tolerance ability of maize seedlings and explore the underlying related genetic resources. In this study, we used a high-throughput phenotyping platform with a 3D laser sensor (Planteye F500) to identify the digital biomass, plant height and normalized vegetation index under normal and saline conditions at multiple time points. The result revealed that a three-leaf period (T3) was identified as the key period for the phenotypic variation in maize seedlings under salt stress. Moreover, we mapped the salt-stress-related SNPs and identified candidate genes in the natural population via a genome-wide association study. A total of 44 candidate genes were annotated, including 26 candidate genes under normal conditions and 18 candidate genes under salt-stressed conditions. This study demonstrates the feasibility of using a high-throughput phenotyping platform to accurately, continuously quantify morphological traits of maize seedlings in different growing environments. And the phenotype and genetic information of this study provided a theoretical basis for the breeding of salt-resistant maize varieties and the study of salt-resistant genes.
Collapse
Affiliation(s)
- Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Lujia Lv
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA (DeoxyriboNucleic Acid) Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ronghuan Wang
- Beijing Key Laboratory of Maize DNA (DeoxyriboNucleic Acid) Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
8
|
KDF1 Novel Variant Causes Unique Dental and Oral Epithelial Defects. Int J Mol Sci 2022; 23:ijms232012465. [PMID: 36293320 PMCID: PMC9604338 DOI: 10.3390/ijms232012465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022] Open
Abstract
Keratinocyte differentiation factor 1 (KDF1) is a recently identified and rare candidate gene for human tooth agenesis; however, KDF1-related morphological characteristics and pathological changes in dental tissue and the oral epithelium remain largely unknown. Here, we employed whole-exome sequencing (WES) and Sanger sequencing to screen for the suspected variants in a cohort of 151 tooth agenesis patients, and we segregated a novel KDF1 heterozygous missense variation, c.920G>C (p.R307P), in a non-syndromic tooth agenesis family. Essential bioinformatics analyses and tertiary structural predictions were performed to analyze the structural changes and functional impacts of the novel KDF1 variant. The subsequent functional assessment using a TOP-flash/FOP-flash luciferase reporter system demonstrated that KDF1 variants suppressed the activation of canonical Wnt signaling in 293T cells. To comprehensively investigate the KDF1-related oral morphological anomalies, we performed scanning electron microscopy and ground section of the lower right lateral deciduous incisor extracted from #285 proband, and histopathological assessment of the gingiva. The phenotypic analyses revealed a series of tooth morphological anomalies related to the KDF1 variant R307P, including a shovel-shaped lingual surface of incisors and cornicione-shaped marginal ridges with anomalous morphological occlusal grooves of premolars and molars. Notably, keratinized gingival epithelium abnormalities were revealed in the proband and characterized by epithelial dyskeratosis with residual nuclei, indistinct stratum granulosum, epithelial hyperproliferation, and impaired epithelial differentiation. Our findings revealed new developmental anomalies in the tooth and gingival epithelium of a non-syndromic tooth agenesis individual with a novel pathogenic KDF1 variant, broadening the phenotypic spectrum of KDF1-related disorders and providing new evidence for the crucial role of KDF1 in regulating human dental and oral epithelial development.
Collapse
|
9
|
Wang X, Li J, Sun J, Gu S, Wang J, Su C, Li Y, Ma D, Zhao M, Chen W. Mining Beneficial Genes for Salt Tolerance From a Core Collection of Rice Landraces at the Seedling Stage Through Genome-Wide Association Mapping. FRONTIERS IN PLANT SCIENCE 2022; 13:847863. [PMID: 35557725 PMCID: PMC9087808 DOI: 10.3389/fpls.2022.847863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Rice is a salt-sensitive plant. High concentration of salt will hinder the absorption of water and nutrients and ultimately affect the yield. In this study, eight seedling-stage salt-related traits within a core collection of rice landraces were evaluated under salinity stress (100 mM NaCl) and normal conditions in a growth chamber. Genome-wide association study (GWAS) was performed with the genotypic data including 2,487,353 single-nucleotide polymorphisms (SNPs) detected in the core collection. A total of 65 QTLs significantly associated with salt tolerance (ST) were identified by GWAS. Among them, a co-localization QTL qTL4 associated with the SKC, RN/K, and SNC on chromosome 6, which explained 14.38-17.94% of phenotypic variation, was selected for further analysis. According to haplotype analysis, qRT-PCR analysis, and sequence alignment, it was finally determined that 4 candidate genes (LOC_Os06g47720, LOC_Os06g47820, LOC_Os06g47850, LOC_Os06g47970) were related to ST. The results provide useful candidate genes for marker assisted selection for ST in the rice molecular breeding programs.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Strube Research GmbH & Co. KG, Söllingen, Germany
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuang Gu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jingbo Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chang Su
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yueting Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Minghui Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Tian X, Niu X, Chang Z, Zhang X, Wang R, Yang Q, Li G. DUF1005 Family Identification, Evolution Analysis in Plants, and Primary Root Elongation Regulation of CiDUF1005 From Caragana intermedia. Front Genet 2022; 13:807293. [PMID: 35422842 PMCID: PMC9001952 DOI: 10.3389/fgene.2022.807293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Proteins with a domain of unknown function (DUF) represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. In particular, members of the DUF1005 family in plants have a 411-amino-acid conserved domain, and this family has not been described previously. In this study, a total of 302 high-confidence DUF1005 family members were identified from 58 plant species, and none were found in the four algae that were selected. Thus, this result showed that DUF1005s might belong to a kind of plant-specific gene family, and this family has not been evolutionarily expanded. Phylogenetic analysis showed that the DUF1005 family genes could be classified into four subgroups in 58 plant species. The earliest group to emerge was Group I, including a total of 100 gene sequences, and this group was present in almost all selected species spanning from mosses to seed plants. Group II and Group III, with 69 and 74 members, respectively, belong to angiosperms. Finally, with 59 members, Group IV was the last batch of genes to emerge, and this group is unique to dicotyledons. Expression pattern analysis of the CiDUF1005, a member of the DUF1005 family from Caragana intermedia, showed that CiDUF1005 genes were differentially regulated under various treatments. Compared to the wild type, transgenic lines with heterologous CiDUF1005 expression in Arabidopsis thaliana had longer primary roots and more lateral roots. These results expanded our knowledge of the evolution of the DUF1005 family in plants and will contribute to elucidating biological functions of the DUF1005 family in the future.
Collapse
Affiliation(s)
- Xiaona Tian
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaocui Niu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ziru Chang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Yang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
11
|
Kader MA, Ahammed A, Khan MS, Ashik SAA, Islam MS, Hossain MU. Hypothetical protein predicted to be tumor suppressor: a protein functional analysis. Genomics Inform 2022; 20:e6. [PMID: 35399005 PMCID: PMC9002001 DOI: 10.5808/gi.21073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/08/2022] [Indexed: 12/22/2022] Open
Abstract
Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.
Collapse
Affiliation(s)
- Md Abdul Kader
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Akash Ahammed
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sharif Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Sheikh Abdullah Al Ashik
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | | | | |
Collapse
|
12
|
Kumar G, Srinivasan N, Sandhya S. Profiles of Natural and Designed Protein-Like Sequences Effectively Bridge Protein Sequence Gaps: Implications in Distant Homology Detection. Methods Mol Biol 2022; 2449:149-167. [PMID: 35507261 DOI: 10.1007/978-1-0716-2095-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sequence-based approaches are fundamental to guide experimental investigations in obtaining structural and/or functional insights into uncharacterized protein families. Powerful profile-based sequence search methods rely on a sequence space continuum to identify non-trivial relationships through homology detection. The computational design of protein-like sequences that serve as "artificial linkers" is useful in identifying relationships between distant members of a structural fold. Such sequences act as intermediates and guide homology searches between distantly related proteins. Here, we describe an approach that represents natural intermediate sequences and designed protein-like sequences as HMM (Hidden Markov Models) profiles, to improve the sensitivity of existing search methods. Searches made within the "Profile database" were shown to recognize the parent structural fold for 90% of the search queries at query coverage better than 60%. For 1040 protein families with no available structure, fold associations were made through searches in the database of natural and designed sequence profiles. Most of the associations were made with the Alpha-alpha superhelix, Transmembrane beta-barrels, TIM barrel, and Immunoglobulin-like beta-sandwich folds. For 11 domain families of unknown functions, we provide confident fold associations using the profiles of designed sequences and a consensus from other fold recognition methods. For two DUFs (Domain families of Unknown Functions), we performed detailed functional annotation through comparisons with characterized templates of families of known function.
Collapse
Affiliation(s)
- Gayatri Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India.
| |
Collapse
|
13
|
Ying S. Genome-Wide Identification and Transcriptional Analysis of Arabidopsis DUF506 Gene Family. Int J Mol Sci 2021; 22:11442. [PMID: 34768874 PMCID: PMC8583954 DOI: 10.3390/ijms222111442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The Domain of unknown function 506 (DUF506) family, which belongs to the PD-(D/E)XK nuclease superfamily, has not been functionally characterized. In this study, 266 DUF506 domain-containing genes were identified from algae, mosses, and land plants showing their wide occurrence in photosynthetic organisms. Bioinformatics analysis identified 211 high-confidence DUF506 genes across 17 representative land plant species. Phylogenetic modeling classified three groups of plant DUF506 genes that suggested functional preservation among the groups based on conserved gene structure and motifs. Gene duplication and Ka/Ks evolutionary rates revealed that DUF506 genes are under purifying positive selection pressure. Subcellular protein localization analysis revealed that DUF506 proteins were present in different organelles. Transcript analyses showed that 13 of the Arabidopsis DUF506 genes are ubiquitously expressed in various tissues and respond to different abiotic stresses and ABA treatment. Protein-protein interaction network analysis using the STRING-DB, AtPIN (Arabidopsis thaliana Protein Interaction Network), and AI-1 (Arabidopsis Interactome-1) tools indicated that AtDUF506s potentially interact with iron-deficiency response proteins, salt-inducible transcription factors, or calcium sensors (calmodulins), implying that DUF506 genes have distinct biological functions including responses to environmental stimuli, nutrient-deficiencies, and participate in Ca(2+) signaling. Current results provide insightful information regarding the molecular features of the DUF506 family in plants, to support further functional characterizations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLC, Ardmore, OK 73401, USA
| |
Collapse
|
14
|
TIM29 is required for enhanced stem cell activity during regeneration in the flatworm Macrostomum lignano. Sci Rep 2021; 11:1166. [PMID: 33441924 PMCID: PMC7806878 DOI: 10.1038/s41598-020-80682-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
TIM29 is a mitochondrial inner membrane protein that interacts with the protein import complex TIM22. TIM29 was shown to stabilize the TIM22 complex but its biological function remains largely unknown. Until recently, it was classified as one of the Domain of Unknown Function (DUF) genes, with a conserved protein domain DUF2366 of unclear function. Since characterizing DUF genes can provide novel biological insight, we used previously established transcriptional profiles of the germline and stem cells of the flatworm Macrostomum lignano to probe conserved DUFs for their potential role in germline biology, stem cell function, regeneration, and development. Here, we demonstrate that DUF2366/TIM29 knockdown in M. lignano has very limited effect during the normal homeostatic condition but prevents worms from adapting to a highly proliferative state required for regeneration.
Collapse
|
15
|
Welkos S, Blanco I, Okaro U, Chua J, DeShazer D. A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence 2020; 11:1041-1058. [PMID: 32835600 PMCID: PMC7549894 DOI: 10.1080/21505594.2020.1806675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Burkholderia pseudomallei: is the etiological agent of the disease melioidosis and is a Tier 1 select agent. It survives and replicates inside phagocytic cells by escaping from the endocytic vacuole, replicating in the cytosol, spreading to other cells via actin polymerization and promoting the fusion of infected and uninfected host cells to form multinucleated giant cells. In this study, we utilized a proteomics approach to identify bacterial proteins produced inside RAW264.7 murine macrophages and host proteins produced in response to B. pseudomallei infection. Cells infected with B. pseudomallei strain K96243 were lysed and the lysate proteins digested and analyzed using nanoflow reversed-phase liquid chromatography and tandem mass spectrometry. Approximately 160 bacterial proteins were identified in the infected macrophages, including BimA, TssA, TssB, Hcp1 and TssM. Several previously uncharacterized B. pseudomallei proteins were also identified, including BPSS1996 and BPSL2748. Mutations were constructed in the genes encoding these novel proteins and their relative virulence was assessed in BALB/c mice. The 50% lethal dose for the BPSS1996 mutant was approximately 55-fold higher than that of the wild type, suggesting that BPSS1996 is required for full virulence. Sera from B. pseudomallei-infected animals reacted with BPSS1996 and it was found to localize to the bacterial surface using indirect immunofluorescence. Finally, we identified 274 host proteins that were exclusively present or absent in infected RAW264.7 cells, including chemokines and cytokines involved in controlling the initial stages of infection.
Collapse
Affiliation(s)
- Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Irma Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Udoka Okaro
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
16
|
Rahman A, Susmi TF, Yasmin F, Karim ME, Hossain MU. Functional annotation of an ecologically important protein from Chloroflexus aurantiacus involved in polyhydroxyalkanoates (PHA) biosynthetic pathway. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Short, Rich, and Powerful: a New Family of Arginine-Rich Small Proteins Have Outsized Impact in Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00450-20. [PMID: 32839178 DOI: 10.1128/jb.00450-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to minute size and limited sequence complexity, small proteins can be challenging to identify but are emerging as important regulators of diverse processes in bacteria. In this issue of the Journal of Bacteriology, Kraus and coworkers (A. Kraus, M. Weskamp, J. Zierles, M. Balzer, et al., J Bacteriol 202:e00309-20, 2020, https://doi.org/10.1128/JB.00309-20) report a comprehensive analysis of a fascinating subfamily of arginine-rich small proteins in Agrobacterium tumefaciens, conserved among Alphaproteobacteria Their findings reveal that these small proteins are under complex regulation and have a disproportionately large impact on metabolism and behavior.
Collapse
|
18
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
19
|
Wang L, Wang M, Shi X, Yang J, Qian C, Liu Q, Zong L, Liu X, Zhu Z, Tang D, Zhang X. Investigation into archaeal extremophilic lifestyles through comparative proteogenomic analysis. J Biomol Struct Dyn 2020; 39:7080-7092. [PMID: 32820705 DOI: 10.1080/07391102.2020.1808531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Archaea are a group of primary life forms on Earth and could thrive in many unique environments. Their successful colonization of extreme niches requires corresponding adaptations at proteogenomic level in order to maintain stable cellular structures and active physiological functions. Although some studies have already investigated the extremophilic lifestyles of archaeal species based on genomic features and protein structures, there is a lack of comparative proteogenomic analysis in a large scale. In this study, we explored 686 high-quality archaeal genomes (proteomes) sourced from the Pathosystems Resource Integration Center (PATRIC) database. General patterns of genomic features such as genome size, coding capacity (coding genes and non-coding regions), and G + C contents were re-confirmed. Protein domain distribution patterns were then identified across archaeal species. Domains with unknown functions (DUFs) and mini proteins were investigated in terms of their distributions due to their importance in archaeal physiological functions. In addition, physicochemical properties of protein sequences, such as stability, hydrophobicity, isoelectric point, aromaticity and amino acid compositions in corresponding archaeal groups were compared. Unique features associated with extremophilic lifestyles were observed, which suggested that evolutionary adaptations to different extreme environments had intrinsic impacts on archaeal protein features. Taken together, this systematic study facilitates a better understanding of the mechanisms behind the extremophilic lifestyles of archaeal species, which will further contribute to the evolutionary explorations of archaeal adaptations both experimentally and theoretically in the future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengmeng Wang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyi Shi
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianye Yang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenlu Qian
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghua Liu
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lixin Zong
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daoquan Tang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Computer Science, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Yang Q, Niu X, Tian X, Zhang X, Cong J, Wang R, Zhang G, Li G. Comprehensive genomic analysis of the DUF4228 gene family in land plants and expression profiling of ATDUF4228 under abiotic stresses. BMC Genomics 2020; 21:12. [PMID: 31900112 PMCID: PMC6942412 DOI: 10.1186/s12864-019-6389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023] Open
Abstract
Background Domain of unknown function (DUF) proteins represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. The DUF4228 gene family is one of these families in plants that has not been described previously. Results In this study, we performed an extensive comparative analysis of DUF4228 proteins and determined their phylogeny in the plant lineage. A total of 489 high-confidence DUF4228 family members were identified from 14 land plant species, which sub-divided into three distinct phylogenetic groups: group I, group II and group III. A highly conserved DUF4228 domain and motif distribution existed in each group, implying their functional conservation. To reveal the possible biological functions of these DUF4228 genes, 25 ATDUF4228 sequences from Arabidopsis thaliana were selected for further analysis of characteristics such as their chromosomal position, gene duplications and gene structures. Ka/Ks analysis identified seven segmental duplication events, while no tandemly duplication gene pairs were found in A. thaliana. Some cis-elements responding to abiotic stress and phytohormones were identified in the upstream sequences of the ATDUF4228 genes. Expression profiling of the ATDUF4228 genes under abiotic stresses (mainly osmotic, salt and cold) and protein-protein interaction prediction suggested that some ATDUF4228 genes are may be involved in the pathways of plant resistance to abiotic stresses. Conclusion These results expand our knowledge of the evolution of the DUF4228 gene family in plants and will contribute to the elucidation of the biological functions of DUF4228 genes in the future.
Collapse
Affiliation(s)
- Qi Yang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaocui Niu
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaona Tian
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingyu Cong
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Guosheng Zhang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China.
| | - Guojing Li
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
21
|
Lv M, Hou D, Zhang L, Fan J, Li C, Chen W, Sun Y, Dong Y, Xu J, Cai L, Gao X, Zhu J, Huang Z, Xu Z, Li L. Molecular characterization and function analysis of the rice OsDUF1191 family. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1684843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Miaomiao Lv
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Dejia Hou
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, PR China
| | - Lin Zhang
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Jiangbo Fan
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Chunliu Li
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Wenqian Chen
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Yihao Sun
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Yilun Dong
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Jinghong Xu
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu, PR China
| | - Liangjun Cai
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu, PR China
| | - Xiaoling Gao
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Jianqing Zhu
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Zhengjian Huang
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Zhengjun Xu
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Lihua Li
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| |
Collapse
|
22
|
Adam S, Klein A, Surup F, Koehnke J. The structure of CgnJ, a domain of unknown function protein from the crocagin gene cluster. Acta Crystallogr F Struct Biol Commun 2019; 75:205-211. [PMID: 30839296 PMCID: PMC6404859 DOI: 10.1107/s2053230x19000712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/16/2019] [Indexed: 12/28/2022] Open
Abstract
Natural products often contain interesting new chemical entities that are introduced into the structure of a compound by the enzymatic machinery of the producing organism. The recently described crocagins are novel polycyclic peptides which belong to the class of ribosomally synthesized and post-translationally modified peptide natural products. They have been shown to bind to the conserved prokaryotic carbon-storage regulator A in vitro. In efforts to understand crocagin biosynthesis, the putative biosynthetic genes were expressed and purified. Here, the first crystal structure of a protein from the crocagin-biosynthetic gene cluster, CgnJ, a domain of unknown function protein, is reported. Possible functions of this protein were explored by structural and sequence homology analyses. Even though the sequence homology to proteins in the Protein Data Bank is low, the protein shows significant structural homology to a protein with known function within the competency system of Bacillus subtilis, ComJ, leading to the hypothesis of a similar role of the protein within the producing organism.
Collapse
Affiliation(s)
- Sebastian Adam
- Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland, Universität des Saarlandes Gebäude E8.1, 66123 Saarbrücken, Germany
| | - Andreas Klein
- Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland, Universität des Saarlandes Gebäude E8.1, 66123 Saarbrücken, Germany
| | - Frank Surup
- Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jesko Koehnke
- Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland, Universität des Saarlandes Gebäude E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
23
|
Bhagavat R, Sankar S, Srinivasan N, Chandra N. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure. Structure 2019. [PMID: 29514079 DOI: 10.1016/j.str.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-ligand interactions form the basis of most cellular events. Identifying ligand binding pockets in proteins will greatly facilitate rationalizing and predicting protein function. Ligand binding sites are unknown for many proteins of known three-dimensional (3D) structure, creating a gap in our understanding of protein structure-function relationships. To bridge this gap, we detect pockets in proteins of known 3D structures, using computational techniques. This augmented pocketome (PocketDB) consists of 249,096 pockets, which is about seven times larger than what is currently known. We deduce possible ligand associations for about 46% of the newly identified pockets. The augmented pocketome, when subjected to clustering based on similarities among pockets, yielded 2,161 site types, which are associated with 1,037 ligand types, together providing fold-site-type-ligand-type associations. The PocketDB resource facilitates a structure-based function annotation, delineation of the structural basis of ligand recognition, and provides functional clues for domains of unknown functions, allosteric proteins, and druggable pockets.
Collapse
Affiliation(s)
- Raghu Bhagavat
- National Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
| | - Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Narayanaswamy Srinivasan
- National Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- National Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India; Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
24
|
Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol 2018; 18:177. [PMID: 30400856 PMCID: PMC6219164 DOI: 10.1186/s12866-018-1320-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The ambient temperature of all habitats is a key physical property that shapes the biology of microbes inhabiting them. The optimal growth temperature (OGT) of a microbe, is therefore a key piece of data needed to understand evolutionary adaptations manifested in their genome sequence. Unfortunately there is no growth temperature database or easily downloadable dataset encompassing the majority of cultured microorganisms. We are thus limited in interpreting genomic data to identify temperature adaptations in microbes. Results In this work I significantly contribute to closing this gap by mining data from major culture collection centres to obtain growth temperature data for a nonredundant set of 21,498 microbes. The dataset (10.5281/zenodo.1175608) contains mainly bacteria and archaea and spans psychrophiles, mesophiles, thermophiles and hyperthermophiles. Using this data a full 43% of all protein entries in the UniProt database can be annotated with the growth temperature of the species from which they originate. I validate the dataset by showing a Pearson correlation of up to 0.89 between growth temperature and mean enzyme optima, a physiological property directly influenced by the growth temperature. Using the temperature dataset I correlate the genomic occurance of enzyme functional annotations with growth temperature. I identify 319 enzyme functions that either increase or decrease in occurrence with temperature. Eight metabolic pathways were statistically enriched for these enzyme functions. Furthermore, I establish a correlation between 33 domains of unknown function (DUFs) with growth temperature in microbes, four of which (DUF438, DUF1524, DUF1957 and DUF3458_C) were significant in both archaea and bacteria. Conclusions The growth temperature dataset enables large-scale correlation analysis with enzyme function- and domain-level annotations. Growth-temperature dependent changes in their occurrence highlight potential evolutionary adaptations. A few of the identified changes are previously known, such as the preference for menaquinone biosynthesis through the futalosine pathway in bacteria growing at high temperatures. Others represent important starting points for future studies, such as DUFs where their occurrence change with temperature. The growth temperature dataset should become a valuable community resource and will find additional, important, uses in correlating genomic, transcriptomic, proteomic, metabolomic, phenotypic or taxonomic properties with temperature in future studies. Electronic supplementary material The online version of this article (10.1186/s12866-018-1320-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin K M Engqvist
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
25
|
Kumar G, Mudgal R, Srinivasan N, Sandhya S. Use of designed sequences in protein structure recognition. Biol Direct 2018; 13:8. [PMID: 29776380 PMCID: PMC5960202 DOI: 10.1186/s13062-018-0209-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. Results We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. Conclusion The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as ‘linkers’, where natural linkers between distant proteins are unavailable. Reviewers This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian. Electronic supplementary material The online version of this article (10.1186/s13062-018-0209-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gayatri Kumar
- Lab 103, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Richa Mudgal
- Lab 103, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.,Present address: Institute for Research in Biomedicine (IRB), Parc Cientific de Barcelona, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Narayanaswamy Srinivasan
- Lab 103, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| | - Sankaran Sandhya
- Lab 103, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
26
|
Aučynaitė A, Rutkienė R, Gasparavičiūtė R, Meškys R, Urbonavičius J. A gene encoding a DUF523 domain protein is involved in the conversion of 2-thiouracil into uracil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:49-56. [PMID: 29194984 DOI: 10.1111/1758-2229.12605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Modified nucleotides are present in many RNA species in all Domains of Life. While the biosynthetic pathways of such nucleotides are well studied, much less is known about the degradation of RNAs and the return to the metabolism of modified nucleotides, their respective nucleosides or heterocyclic bases. Using an E. coli uracil auxotroph, we screened the metagenomic libraries for genes, which would allow the conversion of 2-thiouracil to uracil and thereby lead to the growth on a defined synthetic medium. We show that a gene encoding a protein consisting of previously uncharacterized Domain of Unknown Function 523 (DUF523) is responsible for such phenotype. We have purified this recombinant protein and demonstrated that it contains a FeS cluster. The substitution of cysteines, which have been predicted to form such clusters, with alanines abolished the growth phenotype. We conclude that DUF523 is involved in the conversion of 2-thiouracil into uracil in vivo.
Collapse
Affiliation(s)
- Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
27
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
28
|
Yang Y, Yoo CG, Guo HB, Rottmann W, Winkeler KA, Collins CM, Gunter LE, Jawdy SS, Yang X, Guo H, Pu Y, Ragauskas AJ, Tuskan GA, Chen JG. Overexpression of a Domain of Unknown Function 266-containing protein results in high cellulose content, reduced recalcitrance, and enhanced plant growth in the bioenergy crop Populus. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:74. [PMID: 28344649 PMCID: PMC5364563 DOI: 10.1186/s13068-017-0760-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/18/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Domain of Unknown Function 266 (DUF266) is a plant-specific domain. DUF266-containing proteins (DUF266 proteins) have been categorized as 'not classified glycosyltransferases (GTnc)' due to amino acid similarity with GTs. However, little is known about the function of DUF266 proteins. RESULTS Phylogenetic analysis revealed that DUF266 proteins are only present in the land plants including moss and lycophyte. We report the functional characterization of one member of DUF266 proteins in Populus, PdDUF266A. PdDUF266A was ubiquitously expressed with high abundance in the xylem. In Populus transgenic plants overexpressing PdDUF266A (OXPdDUF266A), the glucose and cellulose contents were significantly higher, while the lignin content was lower than that in the wild type. Degree of polymerization of cellulose in OXPdDUF266A transgenic plants was also higher, whereas cellulose crystallinity index remained unchanged. Gene expression analysis indicated that cellulose biosynthesis-related genes such as CESA and SUSY were upregulated in mature leaf and xylem of OXPdDUF266A transgenic plants. Moreover, PdDUF266A overexpression resulted in an increase of biomass production. Their glucose contents and biomass phenotypes were further validated via heterologous expression of PdDUF266A in Arabidopsis. Results from saccharification treatment demonstrated that the rate of sugar release was increased by approximately 38% in the OXPdDUF266A transgenic plants. CONCLUSIONS These results suggest that the overexpression of PdDUF266A can increase cellulose content, reduce recalcitrance, and enhance biomass production, and that PdDUF266A is a promising target for genetic manipulation for biofuel production.
Collapse
Affiliation(s)
- Yongil Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Hao-Bo Guo
- Department of Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| | | | | | | | - Lee E. Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sara S. Jawdy
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xiaohan Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Hong Guo
- Department of Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| | - Yunqiao Pu
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Chemical and Biomolecular Engineering & Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996 USA
| | - Gerald A. Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jin-Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
29
|
Yang SQ, Li WQ, Miao H, Gan PF, Qiao L, Chang YL, Shi CH, Chen KM. REL2, A Gene Encoding An Unknown Function Protein which Contains DUF630 and DUF632 Domains Controls Leaf Rolling in Rice. RICE (NEW YORK, N.Y.) 2016; 9:37. [PMID: 27473144 PMCID: PMC4967057 DOI: 10.1186/s12284-016-0105-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/07/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice leaves are important energy source for the whole plant. An optimal structure will be beneficial for rice leaves to capture light energy and exchange gas, thus increasing the yield of rice. Moderate leaf rolling and relatively erect plant architecture may contribute to high yield of rice, but the relevant molecular mechanism remains unclear. RESULTS In this study, we identified and characterized a rolling and erect leaf mutant in rice and named it as rel2. Histological analysis showed that the rel2 mutant has increased number of bulliform cells and reduced size of middle bulliform cells. We firstly mapped REL2 to a 35-kb physical region of chromosome 10 by map-based cloning strategy. Further analysis revealed that REL2 encodes a protein containing DUF630 and DUF632 domains. In rel2 mutant, the mutation of two nucleotide substitutions in DUF630 domain led to the loss-of-function of REL2 locus and the function of REL2 could be confirmed by complementary expression of REL2 in rel2 mutant. Further studies showed that REL2 protein is mainly distributed along the plasma membrane of cells and the REL2 gene is relatively higher expressed in younger leaves of rice. The results from quantitative RT-PCR analysis indicated that REL2 functioning in the leaf shape formation might have functional linkage with many genes associated with the bulliform cells development, auxin synthesis and transport, etc. CONCLUSIONS REL2 is the DUF domains contained protein which involves in the control of leaf rolling in rice. It is the plasma membrane localization and its functions in the control of leaf morphology might involve in multiple biological processes such as bulliform cell development and auxin synthesis and transport.
Collapse
Affiliation(s)
- Shuai-Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Hai Miao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yan-Li Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Chun-Hai Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
30
|
Wong TY, Kuo J. A new drug design strategy: Killing drug resistant bacteria by deactivating their hypothetical genes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:276-292. [PMID: 27901648 DOI: 10.1080/10590501.2016.1236605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite that a bacterial genome is complicated by large numbers of horizontally transferred (HT) genes and function unknown hypothetical (FUN) genes, the Genic-Transcriptional-Stop-Signals-Ratio (TSSR) of a genome shows that HT and FUN genes are complementary to all other genes in the genome. When HT or certain FUN genes are omitted from the Escherichia coli K-12 genome, its Genomic-TSSR value becomes totally incomparable to other E. coli strains. The Genic-TSSR correlation tree of a pathogen shows that some FUN genes would form a unique cluster. Removing these genes by site-specific mutation or gene-knockout should lead to the demise of this pathogen.
Collapse
Affiliation(s)
- Tit-Yee Wong
- a Department of Biological Sciences , Bioinformatics Program, University of Memphis , Memphis , Tennessee , USA
| | - Jimmy Kuo
- b Department of Planning and Research , National Museum of Marine Biology and Aquarium , Pingtung , Taiwan, Republic of China
| |
Collapse
|
31
|
Yang J, Suzuki M, McCarty DR. Essential role of conserved DUF177A protein in plastid 23S rRNA accumulation and plant embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5447-5460. [PMID: 27574185 PMCID: PMC5049393 DOI: 10.1093/jxb/erw311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DUF177 proteins are nearly universally conserved in bacteria and plants except the Chlorophyceae algae. Thus far, duf177 mutants in bacteria have not established a function. In contrast, duf177a mutants have embryo lethal phenotypes in maize and Arabidopsis. In maize inbred W22, duf177a mutant embryos arrest at an early transition stage, whereas the block is suppressed in the B73 inbred background, conditioning an albino seedling phenotype. Background-dependent embryo lethal phenotypes are characteristic of maize plastid gene expression mutants. Consistent with the plastid gene expression hypothesis, quantitative real-time PCR revealed a significant reduction of 23S rRNA in an Escherichia coli duf177 knockout. Plastid 23S rRNA contents of duf177a mutant tissues were also markedly reduced compared with the wild-type, whereas plastid 16S, 5S, and 4.5S rRNA contents were less affected, indicating that DUF177 is specifically required for accumulation of prokaryote-type 23S rRNA. An AtDUF177A-green fluorescent protein (GFP) transgene controlled by the native AtDUF177A promoter fully complemented the Arabidopsis atduf177a mutant. Transient expression of AtDUF177A-GFP in Nicotiana benthamiana leaves showed that the protein was localized in chloroplasts. The essential role of DUF177A in chloroplast-ribosome formation is reminiscent of IOJAP, another highly conserved ribosome-associated protein, suggesting that key mechanisms controlling ribosome formation in plastids evolved from non-essential pathways for regulation of the prokaryotic ribosome.
Collapse
Affiliation(s)
- Jiani Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Lobb B, Doxey AC. Novel function discovery through sequence and structural data mining. Curr Opin Struct Biol 2016; 38:53-61. [DOI: 10.1016/j.sbi.2016.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 01/30/2023]
|
33
|
Sandhya S, Mudgal R, Kumar G, Sowdhamini R, Srinivasan N. Protein sequence design and its applications. Curr Opin Struct Biol 2016; 37:71-80. [PMID: 26773478 DOI: 10.1016/j.sbi.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/14/2023]
Abstract
Design of proteins has far-reaching potentials in diverse areas that span repurposing of the protein scaffold for reactions and substrates that they were not naturally meant for, to catching a glimpse of the ephemeral proteins that nature might have sampled during evolution. These non-natural proteins, either in synthesized or virtual form have opened the scope for the design of entities that not only rival their natural counterparts but also offer a chance to visualize the protein space continuum that might help to relate proteins and understand their associations. Here, we review the recent advances in protein engineering and design, in multiple areas, with a view to drawing attention to their future potential.
Collapse
Affiliation(s)
- Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Richa Mudgal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560 012, India
| | - Gayatri Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences-TIFR, UAS-GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|