1
|
Li H, Li G, Gao X, Chen C, Cui Z, Cao X, Su J. Development of a reliable risk prognostic model for lung adenocarcinoma based on the genes related to endotheliocyte senescence. Sci Rep 2025; 15:12604. [PMID: 40221448 PMCID: PMC11993614 DOI: 10.1038/s41598-025-95551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Cellular senescence is a hallmark for cancers, particularly in lung adenocarcinoma (LUAD). This study developed a risk model using senescence signature genes for LUAD patients. Based on the RNA-seq, clinical information and mutation data of LUAD patients collected from the TCGA and GEO database, we obtained 102 endotheliocyte senescence-related genes. The "ConsensusClusterPlus" R package was employed for unsupervised cluster analysis, and the "limma" was used for the differentially expressed gene (DEG) analysis. A prognosis model was created by univariate and multivariate Cox regression analysis combined with Lasso regression utilizing the "survival" and "glmnet" packages. KM survival and receiver operator characteristic curve analyses were conducted applying the "survival" and "timeROC" packages. "MCPcounter" package was used for immune infiltration analysis. Immunotherapy response analysis was performed based on the IMvigor210 and GSE78220 cohort, and drug sensitivity was predicted by the "pRRophetic" package. Cell invasion and migration were tested by carrying out Transwell and wound healing assays. According to the results, a total of 32 genes related to endotheliocyte senescence were screened to assign patients into C1 and C2 subtypes. The C2 subtype showed a significantly worse prognosis and an overall higher somatic mutation frequency, which was associated with increased activation of cancer pathways, including Myc_targets2 and angiogenesis. Then, based on the DEGs between the two subtypes, we constructed a five-gene RiskScore model with a strong classification effectiveness for short- and long-term OS prediction. High- and low-risk groups of LUAD patients were classified by the RiskScore. High-risk patients, characterized by lower immune infiltration, had poorer outcomes in both training and validation datasets. The RiskScore was associated with the immunotherapy response in LUAD. Finally, we found that potential drugs such as Cisplatin can benefit high-risk LUAD patients. In-vitro experiments demonstrated that silencing of Angiopoietin-like 4 (ANGPTL4), Gap Junction Protein Beta 3 (GJB3), Family with sequence similarity 83-member A (FAM83A), and Anillin (ANLN) reduced the number of invasive cells and the wound healing rate, while silencing of solute carrier family 34 member 2 (SLC34A2) had the opposite effect. This study, collectively speaking, developed a prognosis model with senescence signature genes to facilitate the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Hongzhi Li
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China.
| | - Guangming Li
- Department of Infectious Diseases and Hepatology, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Xian Gao
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Chengde Chen
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Zhongfeng Cui
- Department of Clinical Laboratory, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Xiaojiu Cao
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Jing Su
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| |
Collapse
|
2
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
3
|
Zhou X, Shen K, Cao S, Li P, Xiao J, Dong J, Cheng Q, Hu L, Xu Z, Yang L. Polymorphism rs2327430 in TCF21 predicts the risk and prognosis of gastric cancer by affecting the binding between TFAP2A and TCF21. Cancer Cell Int 2024; 24:159. [PMID: 38714991 PMCID: PMC11075239 DOI: 10.1186/s12935-024-03343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Single nuclear polymorphisms (SNPs) have been published to be correlated with multiple diseases. Transcription Factor 21 (TCF21) is a critical transcription factor involved in various types of cancers. However, the association of TCF21 genetic polymorphisms with gastric cancer (GC) susceptibility and prognosis remains unclear. METHODS A case-control study comprising 890 patients diagnosed with GC and an equal number of cancer-free controls was conducted. After rigorous statistical analysis, molecular experiments were carried out to elucidate the functional significance of the SNPs in the context of GC. RESULTS TCF21 rs2327430 (OR = 0.78, P = 0.026) provides protection against GC, while rs4896011 (OR = 1.39, P = 0.005) exhibit significant associations with GC risk. Furthermore, patients with the (TC + CC) genotype of rs2327430 demonstrate a relatively favorable prognosis (OR = 0.47, P = 0.012). Mechanistically, chromatin immunoprecipitation assay and luciferase reporter assay revealed that the C allele of rs2327430 disrupts the binding of Transcription Factor AP-2 Alpha (TFAP2A) to the promoter region of TCF21, resulting in increased expression of TCF21 and inhibition of malignant behaviors in GC cells. CONCLUSION Our findings highlight the significant role of TCF21 SNPs in both the risk and prognosis of GC and provide valuable insights into the underlying molecular mechanisms. Specifically, the disruptive effect of rs2327430 on TCF21 expression and its ability to modulate malignant cell behaviors suggest that rs2327430 may serve as a potential predictive marker for GC risk and prognosis.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Kuan Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Shuqing Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Pengyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jiacheng Dong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Li Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
4
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168335. [PMID: 37939965 DOI: 10.1016/j.scitotenv.2023.168335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
We investigated the presence of aluminium (Al) in human colon cancer samples and its potential association with biological processes involved in cancer progression, such as epithelial to mesenchymal transition (EMT) and cell death. 25 consecutive colon samples were collected from patients undergoing colonic resection. Both neoplastic and normal mucosa were collected from each patient and subjected to histological, ultrastructural and immunohistochemical analyses. Moreover, colon samples from two Al-positive patients underwent multi-omic analyses, including whole genome sequencing and RNA sequencing (RNAseq). Morin staining, used to identify in situ aluminium bioaccumulation, showed the presence of Al in tumor areas of 24 % of patients. Transmission electron microscopy and energy-dispersive X-ray microanalysis confirmed the presence of Al specifically in intracytoplasmic electrondense nanodeposits adjacent to mitochondria of colon cancer cells. Immunohistochemical analyses for vimentin and nuclear β-catenin were performed to highlight the occurrence of the EMT phenomenon in association to Al bioaccumulation. Al-positive samples showed a significant increase in both the number of vimentin-positive and nuclear β-catenin-positive cancer cells compared to Al-negative samples. Moreover, Al-positive samples exhibited a significant decrease in the number of apoptotic cells, as well as the expression of the anti-apoptotic molecule BCL-2. Multi-omic analyses revealed a higher tumor mutational burden (TMB) in Al-positive colon cancers (n = 2) compared to a control cohort (n = 100). Additionally, somatic mutations in genes associated with EMT (GATA3) and apoptosis (TP53) were observed in Al-positive colon cancers. In conclusion, this study provides the first evidence of Al bioaccumulation in colon cancer and its potential role in modulating molecular pathways involved in cancer progression, such as EMT and apoptosis. Understanding the molecular mechanisms underlying Al toxicity might contribute to improve strategies for prevention, early detection, and targeted therapies for the management of colon cancer patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
5
|
Cappello A, Tosetti G, Smirnov A, Ganini C, Yang X, Shi Y, Wang Y, Melino G, Bernassola F, Candi E. p63 orchestrates serine and one carbon metabolism enzymes expression in head and neck cancer. Biol Direct 2023; 18:73. [PMID: 37946250 PMCID: PMC10636826 DOI: 10.1186/s13062-023-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is characterized by high proliferation and limited differentiation. The altered expression of the p53 family members, and specifically of p63, represents a pivotal event in the pathogenesis of HNSCC. Physiologically, p63 affects metabolism through the direct transactivation of the enzyme hexokinase 2, and subsequently controls the proliferation of epithelial cells; nonetheless, its role in cancer metabolism is still largely unclear. The high energetic demand of cancer and the consequent needs of a metabolic reshape, also involve the serine and glycine catabolic and anabolic pathways, including the one carbon metabolism (OCM), to produce energetic compounds (purines) and to maintain cellular homeostasis (glutathione and S-adenosylmethionine). RESULTS The involvement in serine/glycine starvation by other p53 family members has been reported, including HNSCC. Here, we show that in HNSCC p63 controls the expression of the enzymes regulating the serine biosynthesis and one carbon metabolism. p63 binds the promoter region of genes involved in the serine biosynthesis as well as in the one carbon metabolism. p63 silencing in a HNSCC cell line affects the mRNA and protein levels of these selected enzymes. Moreover, the higher expression of TP63 and its target enzymes, negatively impacts on the overall survival of HNSCC patients. CONCLUSION These data indicate a direct role of p63 in the metabolic regulation of HNSCC with significant clinical effects.
Collapse
Affiliation(s)
- Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Giulia Tosetti
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - Carlo Ganini
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
- Division of Medical Oncology, A.O.U. Policlinico di Bari, 70124, Bari, Italy
| | - Xue Yang
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 201805, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
6
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
7
|
Scimeca M, Rovella V, Palumbo V, Scioli MP, Bonfiglio R, Tor Centre, Melino G, Piacentini M, Frati L, Agostini M, Candi E, Mauriello A. Programmed Cell Death Pathways in Cholangiocarcinoma: Opportunities for Targeted Therapy. Cancers (Basel) 2023; 15:3638. [PMID: 37509299 PMCID: PMC10377326 DOI: 10.3390/cancers15143638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Frati
- Institute Pasteur Italy-Cenci Bolognetti Foundation, Via Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed S.p.A., Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
8
|
Blandino G. Activated KRAS, polyamines, iASPP and TME: a multiple liaison in pancreatic cancer. Cell Death Differ 2023; 30:1615-1617. [PMID: 37120687 PMCID: PMC10244394 DOI: 10.1038/s41418-023-01169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Affiliation(s)
- Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| |
Collapse
|
9
|
Li H, Yang L, Wang Y, Wang L, Chen G, Zhang L, Wang D. Integrative analysis of TP53 mutations in lung adenocarcinoma for immunotherapies and prognosis. BMC Bioinformatics 2023; 24:155. [PMID: 37072703 PMCID: PMC10114340 DOI: 10.1186/s12859-023-05268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/02/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The TP53 tumor suppressor gene is one of the most mutated genes in lung adenocarcinoma (LUAD) and plays a vital role in regulating the occurrence and progression of cancer. We aimed to elucidate the association between TP53 mutations, response to immunotherapies and the prognosis of LUAD. METHODS Genomic, transcriptomic, and clinical data of LUAD were downloaded from The Cancer Genome Atlas (TCGA) dataset. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, gene set enrichment analysis (GSEA). Gene set variation analysis (GSVA) were performed to determine the differences in biological pathways. A merged protein-protein interaction (PPI) network was constructed and analyzed. MSIpred was used to analyze the correlation between the expression of the TP53 gene, tumor mutation burden (TMB) and tumor microsatellite instability (MSI). CIBERSORT was used to calculate the abundance of immune cells. Univariate and multivariate Cox regression analyses were used to determine the prognostic value of TP53 mutations in LUAD. RESULTS TP53 was the most frequently mutated in LUAD, with a mutational frequency of 48%. GO and KEGG enrichment analysis, GSEA, and GSVA results showed a significant upregulation of several signaling pathways, including PI3K-AKT mTOR (P < 0.05), Notch (P < 0.05), E2F target (NES = 1.8, P < 0.05), and G2M checkpoint (NES = 1.7, P < 0.05). Moreover, we found a significant correlation between T cells, plasma cells, and TP53 mutations (R2 < 0.01, P = 0.040). Univariate and multivariate Cox regression analyses revealed that the survival prognosis of LUAD patients was related to TP53 mutations (Hazard Ratio (HR) = 0.72 [95% CI, 0.53 to 0.98], P < 0.05), cancer status (P < 0.05), and treatment outcomes (P < 0.05). Lastly, the Cox regression models showed that TP53 exhibited good power in predicting three- and five-year survival rates. CONCLUSIONS TP53 may be an independent predictor of response to immunotherapy in LUAD, and patients with TP53 mutations have higher immunogenicity and immune cell infiltration.
Collapse
Affiliation(s)
- He Li
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Wang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lingchan Wang
- Department of Ultrasound, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Chen
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Li Zhang
- Department of Geriatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Dongchang Wang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023; 18:11. [PMID: 36964575 PMCID: PMC10038780 DOI: 10.1186/s13062-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
11
|
Zhao Z, Luo Q, Liu Y, Jiang K, Zhou L, Dai R, Wang H. Multi-level integrative analysis of the roles of lncRNAs and differential mRNAs in the progression of chronic pancreatitis to pancreatic ductal adenocarcinoma. BMC Genomics 2023; 24:101. [PMID: 36879212 PMCID: PMC9990329 DOI: 10.1186/s12864-023-09209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors and approximately 5% of patients with chronic pancreatitis (CP) inevitably develop PDAC. This study aims explore the key gene regulation involved in the progression of CP to PDAC, with a particular emphasis on the function of lncRNAs. RESULTS A total of 103 pancreatic tissue samples collected from 11 to 92 patients with CP and PDAC, respectively, were included in this study. After normalizing and logarithmically converting the original data, differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEGs) in each dataset were selected. To determine the main functional pathways of differential mRNAs, we further annotated DEGs using gene ontology (GO) and analyzed the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. In addition, the interaction between lncRNA-miRNA-mRNA was clarified and the protein-protein interaction (PPI) network was constructed to screen for key modules and determine hub genes. Finally, quantitative real-time polymerase chain reaction (qPCR) was used to detect the changes in non-coding RNAs and key mRNAs in the pancreatic tissues of patients with CP and PDAC. In this study, 230 lncRNAs and 17,668 mRNAs were included. There were nine upregulated lncRNAs and 188 downregulated lncRNAs. Furthermore, 2334 upregulated differential mRNAs and 10,341 downregulated differential mRNAs were included in the enrichment analysis. From the KEGG enrichment analysis, cytokine-cytokine receptor interaction, calcium signaling pathway, cAMP signaling pathway, and nicotine addiction exhibited significant differences. Additionally, a total of 52 lncRNAs, 104 miRNAs, and 312 mRNAs were included in the construction of a potential lncRNA-miRNA-mRNA regulatory network. PPI network was established and two of the five central DEGs were created in this module, suggesting that lysophosphatidic acid receptor 1 (LPAR1) and regulator of calcineurin 2 (RCAN2) may play significant roles in the progression from CP to PDAC. Finally, the PCR results suggested that LINC01547/hsa-miR-4694-3p/LPAR1 and LINC00482/hsa-miR-6756-3p/RCAN2 play important roles in the carcinogenesis process of CP. CONCLUSION Two signaling axes critical in the progression of CP to PDAC were screened out. Our findings will be useful for novel insights into the molecular mechanism and potential diagnostic or therapeutic biomarkers for CP and PDAC.
Collapse
Affiliation(s)
- Zhirong Zhao
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, 610031, Sichuan, China
- Pancreatic injury and repair Key laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qiang Luo
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yi Liu
- School of Medicine, Jianghan University, 430056, Wuhan, Hubei, China
| | - Kexin Jiang
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, 610031, Sichuan, China
| | - Lichen Zhou
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, 610031, Sichuan, China
| | - Ruiwu Dai
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, 610031, Sichuan, China.
- Pancreatic injury and repair Key laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Kriger D, Novitskaya K, Vasileva G, Lomert E, Aksenov ND, Barlev NA, Tentler D. Alpha-actnin-4 (ACTN4) selectively affects the DNA double-strand breaks repair in non-small lung carcinoma cells. Biol Direct 2022; 17:40. [PMID: 36476259 PMCID: PMC9730676 DOI: 10.1186/s13062-022-00354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND ACTN4 is an actin-binding protein involved in many cellular processes, including cancer development. High ACTN4 expression is often associated with a poor prognosis. However, it has been identified as a positive marker for platinum-based adjuvant chemotherapy for non-small cell lung cancer (NSCLC). The goal of our study was to investigate the involvement of ACTN4 in the NSCLC cells' response to the genotoxic drugs. RESULTS We generated H1299 cells with the ACTN4 gene knock-out (ACTN4 KO), using the CRISPR/Cas9 system. The resistance of the cells to the cisplatin and etoposide was analyzed with the MTT assay. We were also able to estimate the efficiency of DNA repair through the DNA comet assay and gamma-H2AX staining. Possible ACTN4 effects on the non-homologous end joining (NHEJ) and homologous recombination (HR) were investigated using pathway-specific reporter plasmids and through the immunostaining of the key proteins. We found that the H1299 cells with the ACTN4 gene knock-out did not show cisplatin-resistance, but did display a higher resistance to the topoisomerase II inhibitors etoposide and doxorubicin, suggesting that ACTN4 might be somehow involved in the repair of DNA strand breaks. Indeed, the H1299 ACTN4 KO cells repaired etoposide- and doxorubicin-induced DNA breaks more effectively than the control cells. Moreover, the ACTN4 gene knock-out enhanced NHEJ and suppressed HR efficiency. Supporting the data, the depletion of ACTN4 resulted in the faster assembly of the 53BP1 foci with a lower number of the phospho-BRCA1 foci after the etoposide treatment. CONCLUSIONS Thus, we are the first to demonstrate that ACTN4 may influence the resistance of cancer cells to the topoisomerase II inhibitors, and affect the efficiency of the DNA double strand breaks repair. We hypothesize that ACTN4 interferes with the assembly of the NHEJ and HR complexes, and hence regulates balance between these DNA repair pathways.
Collapse
Affiliation(s)
- Daria Kriger
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Ksenia Novitskaya
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Giomar Vasileva
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Ekaterina Lomert
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Nikolai D. Aksenov
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Nikolai A. Barlev
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064 ,grid.428191.70000 0004 0495 7803Nazarbayev University, 020000 Astana, Kazakhstan
| | - Dmitri Tentler
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| |
Collapse
|
13
|
Panatta E, Butera A, Celardo I, Leist M, Melino G, Amelio I. p53 regulates expression of nuclear envelope components in cancer cells. Biol Direct 2022; 17:38. [PMID: 36461070 PMCID: PMC9716746 DOI: 10.1186/s13062-022-00349-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Nuclear organisation and architecture are essential for the maintenance of genomic integrity as well as for the epigenetic regulations and gene expression. Disruption of lamin B1, major structural and functional member of the nuclear lamina, is observed in human laminopathies and in sporadic cancers, and leads to chromosomal rearrangements and alterations of gene expression. The tumour suppressor p53 has been shown to direct specific transcriptional programmes by regulating lamin A/C, however its relationship with lamin B1 has remained elusive. Here, we show that loss of p53 correlates with increased expression of members belonging to the nuclear pore complex and nuclear lamina and directly regulates transcription of lamin B1. We show that the genomic loci of a fraction of p53-dependent genes physically interact with lamin B1 and Nup210. This observation provides a possible mechanistic explanation for the p53-depedent changes of chromatin accessibility, with the consequent influence of expression and rearrangement of these genomic sites in pancreatic cancer. Overall, these data suggest a potential functional and biochemical regulatory network connecting p53 and nuclear architecture.
Collapse
Affiliation(s)
- Emanuele Panatta
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessio Butera
- grid.9811.10000 0001 0658 7699Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Celardo
- grid.9811.10000 0001 0658 7699Division of in-Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- grid.9811.10000 0001 0658 7699Division of in-Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerry Melino
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivano Amelio
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy ,grid.9811.10000 0001 0658 7699Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
14
|
Guida AM, Sensi B, Formica V, D'Angelillo RM, Roselli M, Del Vecchio Blanco G, Rossi P, Capolupo GT, Caricato M, Sica GS. Total neoadjuvant therapy for the treatment of locally advanced rectal cancer: a systematic minireview. Biol Direct 2022; 17:16. [PMID: 35698084 PMCID: PMC9195214 DOI: 10.1186/s13062-022-00329-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Colorectal carcinoma is the second leading cause of cancer-related deaths, and indeed, rectal cancer accounting for approximately one third of newly diagnosed patients. Gold standard in the treatment of rectal cancer is a multimodality approach, aiming at a good control of the local disease. Distant recurrences are the major cause of mortality. Currently, Locally Advanced Rectal Cancer (LARC) patients undergo a combined treatment of chemotherapy and radiotherapy, followed by surgery. Eventually, more chemotherapy, namely adjuvant chemotherapy (aCT), may be necessary. Total Neoadjuvant Therapy (TNT) is an emerging approach aimed to reduce distant metastases and improve local control. Several ongoing studies are analyzing whether this new approach could improve oncological outcomes. Published results were encouraging, but the heterogeneity of protocols in use, makes the comparison and interpretation of data rather complex. One of the major concerns regarding TNT administration is related to its effect on larger and more advanced cancers that might not undergo similar down-staging as smaller, early-stage tumors. This minireview, based on a systematic literature search of randomized clinical trials and meta-analysis, summarizes current knowledge on TNT. The aim was to confirm or refute whether or not current practice of TNT is based on relevant evidence, to establish the quality of that evidence, and to address any uncertainty or variation in practice that may be occurring. A tentative grouping of general study characteristics, clinical features and treatments characteristics has been undertaken to evaluate if the reported studies are sufficiently homogeneous in terms of subjects involved, interventions, and outcomes to provide a meaningful idea of which patients are more likely to gain from this treatment.
Collapse
Affiliation(s)
- Andrea M Guida
- Department of Surgery, Minimally Invasive Unit, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Bruno Sensi
- Department of Surgery, Minimally Invasive Unit, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Vincenzo Formica
- Department of Systems Medicine, Medical Oncology Unit, Policlinico Tor Vergata, Rome, Italy
| | - Rolando M D'Angelillo
- Department of Biomedicine and Prevention, Radiation Oncology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology Unit, Policlinico Tor Vergata, Rome, Italy
| | | | - Piero Rossi
- Department of Surgery, Minimally Invasive Unit, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gabriella T Capolupo
- Department of Colorectal Surgery, Colorectal Surgery Unit, Campus Bio-Medico University, 00128, Rome, Italy
| | - Marco Caricato
- Department of Colorectal Surgery, Colorectal Surgery Unit, Campus Bio-Medico University, 00128, Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, Minimally Invasive Unit, University of Rome Tor Vergata, 00133, Rome, Italy.
- Department of Surgery, Policlinico Tor Vergata, University of Rome, Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
| |
Collapse
|
15
|
Ganini C, Montanaro M, Scimeca M, Palmieri G, Anemona L, Concetti L, Melino G, Bove P, Amelio I, Candi E, Mauriello A. No Time to Die: How Kidney Cancer Evades Cell Death. Int J Mol Sci 2022; 23:6198. [PMID: 35682876 PMCID: PMC9181490 DOI: 10.3390/ijms23116198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The understanding of the pathogenesis of renal cell carcinoma led to the development of targeted therapies, which dramatically changed the overall survival rate. Nonetheless, despite innovative lines of therapy accessible to patients, the prognosis remains severe in most cases. Kidney cancer rarely shows mutations in the genes coding for proteins involved in programmed cell death, including p53. In this paper, we show that the molecular machinery responsible for different forms of cell death, such as apoptosis, ferroptosis, pyroptosis, and necroptosis, which are somehow impaired in kidney cancer to allow cancer cell growth and development, was reactivated by targeted pharmacological intervention. The aim of the present review was to summarize the modality of programmed cell death in the pathogenesis of renal cell carcinoma, showing in vitro and in vivo evidence of their potential role in controlling kidney cancer growth, and highlighting their possible therapeutic value.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Giampiero Palmieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Livia Concetti
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| |
Collapse
|
16
|
Fang X, Wang H, Tan X, Ye T, Xu Y, Fan J. Elevated Serum Regulator of Calcineurin 2 is Associated With an Increased Risk of Non-Alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:840764. [PMID: 35370729 PMCID: PMC8967172 DOI: 10.3389/fphar.2022.840764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The promoting effect of the regulator of calcineurin 2 (RCAN2) in hepatic steatosis has been observed in animal studies. However, the association of RCAN2 with non-alcoholic fatty liver disease (NAFLD) in humans remains unclear. This study aimed to evaluate the expression of RCAN2 in the liver of mice with hepatic steatosis and in the serum of NAFLD patients and to explore the relationship between serum RCAN2 levels and NAFLD. Methods: The mRNA and protein expression of RCAN2 were detected by quantitative real-time PCR (qRT-PCR) and Western blot. NAFLD was diagnosed by abdominal ultrasonography. Circulating RCAN2 levels were measured by ELISA kits. The relationship between serum RCAN2 levels and NAFLD was assessed. Results: qRT-PCR and Western blot analysis showed that compared with the corresponding controls, the mRNA and protein expression of RCAN2 were significantly increased in the liver tissues of db/db and mice on a high-fat diet. Serum RCAN2 levels were markedly elevated in NAFLD patients compared with non-NAFLD subjects. Binary logistic regression analysis showed that serum RCAN2 levels were significantly associated with NAFLD. Receiver operation characteristic (ROC) curve analysis showed that serum RCAN2 might act as a predictive biomarker for NAFLD [area under the curve (AUC) = 0.663, 95% CI = 0.623–0.702], and the serum RCAN2/(AST/ALT) ratio displayed improved predictive accuracy (AUC = 0.816, 95% CI = 0.785–0.846). Conclusion: Elevated serum RCAN2 levels were associated with an increased risk of NAFLD. Serum RCAN2, especially the serum RCAN2/(AST/ALT) ratio, might be a candidate diagnostic marker for NAFLD.
Collapse
Affiliation(s)
- Xia Fang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jiahao Fan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Butera A, Roy M, Zampieri C, Mammarella E, Panatta E, Melino G, D’Alessandro A, Amelio I. p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biol Direct 2022; 17:6. [PMID: 35255936 PMCID: PMC8902766 DOI: 10.1186/s13062-022-00319-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Adaptation of the lipid metabolism participates in cancer pathogenesis, facilitating energy storage and influencing cell fate and control of molecular signalling. The tumour suppressor protein p53 is a molecular hub of cell metabolism, supporting antioxidant capabilities and counteracting oncogene-induced metabolic switch. Despite extensive work has described the p53-dependent metabolic pathways, a global profiling of p53 lipidome is still missing. By high-throughput untargeted lipidomic analysis of pancreatic ductal adenocarcinoma (PDAC) cells, we profile the p53-dependent lipidome, revealing intracellular and secreted lysophospholipids as one of the most affected class. Lysophospholipids are hydrolysed forms of phospholipids that results from phospholipase activity, which can function as signalling molecules, exerting non-cell-autonomous effects and instructing cancer microenvironment and immunity. Here, we reveal that p53 depletion reduces abundance of intracellular lysophosphatidyl-choline, -ethanolamine and -serine and their secretion in the extracellular environment. By integrating this with genomic and transcriptomic studies from in vitro models and human PDAC patients, we identified potential clinically relevant candidate p53-dependent phospholipases. In particular PLD3, PLCB4 and PLCD4 expression is regulated by p53 and chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) indicates a direct transcriptional control on their chromatin accessible genomic loci. Consistently, PLD3, PLCB4 and PLCD4 expression correlates with p53 mutational status in PDAC patients, and these genes display prognostic significance. Overall, our data provide insights into lipidome rewiring driven by p53 loss and identify alterations of lysophospholipids as a potential molecular mechanism for p53-mediated non-cell-autonomous molecular signalling that instructs cancer microenvironment and immunity during PDAC pathogenesis.
Collapse
Affiliation(s)
- Alessio Butera
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Micaela Roy
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Carlotta Zampieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Mammarella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
18
|
Wang H, Fang X, Ren Q, Zeng Y, Tan X, Ye T, Fan J, Xu Y. Association Between Circulating Regulator of Calcineurin 2 Concentrations With Overweight and Obesity. Front Endocrinol (Lausanne) 2022; 13:857841. [PMID: 35733783 PMCID: PMC9208054 DOI: 10.3389/fendo.2022.857841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Regulator of calcineurin 2 (RCAN2) has been reported to promote food intake and weight gain in animal studies. However, its effect on body weight in humans is unclear. OBJECTIVE This study aimed to investigate the relationship between serum RCAN2 concentrations and participants with overweight/obesity. METHODS A cross-sectional study was performed in 872 Chinese adults, including 348 participants with normal weight (NW), 397 participants with overweight (OW), and 127 participants with obesity (OB). All participants were divided into NW, OW and OB groups according to their body mass index (BMI). Serum RCAN2 concentrations were determined by enzyme-linked immunosorbent assay. RESULTS Serum RCAN2 concentrations gradually increased with the increase of BMI (p < 0.001). The percentages of OW/OB gradually increased in tandem with increasing tertiles of RCAN2 (p < 0.001). Additionally, serum RCAN2 concentrations were significantly correlated with a series of anthropometric and metabolic parameters, predominantly including body weight, BMI, SBP, DBP, total cholesterol, triglycerides, HDL-C, LDL-C (all p < 0.05). Furthermore, logistic regression analysis showed that the risk of OW/OB was significantly increased with the increase of serum RCAN2 concentrations. Receiver operation characteristic (ROC) curve analysis revealed that serum RCAN2, especially serum RCAN2/(AST/ALT) ratio, might serve as a candidate biomarker for obesity. CONCLUSION Serum RCAN2 concentrations were increased in subjects with OW/OB. The increased serum RCAN2 concentrations were associated with the increased risks of OW/OB.
Collapse
Affiliation(s)
- Hongya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Xia Fang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiahao Fan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jiahao Fan, ; Yong Xu,
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- *Correspondence: Jiahao Fan, ; Yong Xu,
| |
Collapse
|