1
|
Huang Y, Yang D, Liao S, Guan X, Zhou F, Liu Y, Wang Y, Zhang Y. Ginsenoside Rg1 protects the blood-brain barrier and myelin sheath to prevent postoperative cognitive dysfunction in aged mice. Neuroreport 2024; 35:925-935. [PMID: 39166417 DOI: 10.1097/wnr.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In this study, the postoperative cognitive dysfunction (POCD) mouse model was established to observe the changes in inflammation, blood-brain barrier permeability, and myelin sheath, and we explore the effect of ginsenoside Rg1 pretreatment on improving POCD syndrome. The POCD model of 15- to 18-month-old mice was carried out with internal fixation of tibial fractures under isoflurane anesthesia. Pretreatment was performed by continuous intraperitoneal injection of ginsenoside Rg1(40 mg/kg/day) for 14 days before surgery. The cognitive function was detected by the Morris water maze. The contents of interleukin-1β and tumor necrosis factor-α in the hippocampus, cortex, and serum were detected by ELISA. The permeability of blood-brain barrier was observed by Evans blue. The mRNA levels and protein expression levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin basic protein (MBP), beta-catenin, and cyclin D1 in the hippocampus were analyzed by quantitative PCR and western blotting. The protein expression levels of ZO-1 and Wnt1 in the hippocampus were analyzed by western blotting. Finally, the localizations of CNPase and MBP in the hippocampus were detected by immunofluorescence. Ginsenoside Rg1 can prevent POCD, peripheral and central inflammation, and blood-brain barrier leakage, and reverse the downregulation of ZO-1, CNPase, MBP, and Wnt pathway-related molecules in aged mice. Preclinical studies suggest that ginsenoside Rg1 improves postoperative cognitive function in aged mice by protecting the blood-brain barrier and myelin sheath, and its specific mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yao Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Dianping Yang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Sijing Liao
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Xilin Guan
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Feiran Zhou
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yan Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yong Wang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
- Department of Anesthesiology, Heiiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
2
|
Hu GW, Xu GH, Lang HL, Zhao YZ, Xiao RJ, Sun J, Chen Y. Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes. Neural Regen Res 2023; 18:609-617. [DOI: 10.4103/1673-5374.350205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
3
|
Liu LF, Hu Y, Liu YN, Shi DW, Liu C, Da X, Zhu SH, Zhu QY, Zhang JQ, Xu GH. Reactive oxygen species contribute to delirium-like behavior by activating CypA/MMP9 signaling and inducing blood-brain barrier impairment in aged mice following anesthesia and surgery. Front Aging Neurosci 2022; 14:1021129. [PMID: 36337710 PMCID: PMC9629746 DOI: 10.3389/fnagi.2022.1021129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative delirium (POD) is common in the elderly and is associated with poor clinical outcomes. Reactive oxygen species (ROS) and blood-brain barrier (BBB) damage have been implicated in the development of POD, but the association between these two factors and the potential mechanism is not clear. Cyclophilin A (CypA) is a specifically chemotactic leukocyte factor that can be secreted in response to ROS, which activates matrix metalloproteinase 9 (MMP9) and mediates BBB breakdown. We, therefore, hypothesized that ROS may contribute to anesthesia/surgery-induced BBB damage and delirium-like behavior via the CypA/MMP9 pathway. To test these hypotheses, 16-month-old mice were subjected to laparotomy under 3% sevoflurane anesthesia (anesthesia/surgery) for 3 h. ROS scavenger (N-acetyl-cysteine) and CypA inhibitor (Cyclosporin A) were used 0.5 h before anesthesia/surgery. A battery of behavior tests (buried food test, open field test, and Y maze test) was employed to evaluate behavioral changes at 24 h before and after surgery in the mice. Levels of tight junction proteins, CypA, MMP9, postsynaptic density protein (PSD)-95, and synaptophysin in the prefrontal cortex were assessed by western blotting. The amounts of ROS and IgG in the cortex of mice were observed by fluorescent staining. The concentration of S100β in the serum was detected by ELISA. ROS scavenger prevented the reduction in TJ proteins and restored the permeability of BBB as well as reduced the levels of CypA/MMP9, and further alleviated delirium-like behavior induced by anesthesia/surgery. Furthermore, the CypA inhibitor abolished the increased levels of CypA/MMP, which reversed BBB damage and ameliorated delirium-like behavior caused by ROS accumulation. Our findings demonstrated that ROS may participate in regulating BBB permeability in aged mice with POD via the CypA/MMP9 pathway, suggesting that CypA may be a potential molecular target for preventing POD.
Collapse
Affiliation(s)
- Li-fang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Yun Hu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Yi-nuo Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - De-wen Shi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Chang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Xin Da
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Si-hui Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Qian-yun Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Ji-qian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Guang-hong Xu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
- *Correspondence: Guang-hong Xu,
| |
Collapse
|
4
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Compounds in the Fight against COVID-19. Antioxidants (Basel) 2022; 11:antiox11061053. [PMID: 35739949 PMCID: PMC9220020 DOI: 10.3390/antiox11061053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 coronavirus pandemic outbreak in 2019 resulted in the need to search for an effective and safe strategy for treating infected patients, relieving symptoms, and preventing severe disease. SARS-CoV-2 is an RNA virus that can cause acute respiratory failure and thrombosis, as well as impair circulatory system function. Permanent damage to the heart muscle or other cardiovascular disorders may occur during or after the infection. The severe course of the disease is associated with the release of large amounts of pro-inflammatory cytokines. Due to their documented anti-inflammatory, antioxidant, and antiviral effects, reactive sulfur compounds, including hydrogen sulfide (H2S), lipoic acid (LA), N-acetylcysteine (NAC), glutathione (GSH), and some other lesser-known sulfur compounds, have attracted the interest of scientists for the treatment and prevention of the adverse effects of diseases caused by SARS-CoV-2. This article reviews current knowledge about various endogenous or exogenous reactive sulfur compounds and discusses the possibility, or in some cases the results, of their use in the treatment or prophylaxis of COVID-19.
Collapse
|
5
|
Sun J, Zhou X, Wu J, Xiao R, Chen Y, Lu Y, Lang H. Ligustilide enhances hippocampal neural stem cells activation to restore cognitive function in the context of postoperative cognitive dysfunction. Eur J Neurosci 2021; 54:5000-5015. [PMID: 34192824 DOI: 10.1111/ejn.15363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
Ligustilide exerts potential neuroprotective effects against various cerebral ischaemic insults and neurodegenerative disorders. However, the function and mechanisms of LIG-mediated hippocampal neural stem cells (H-NSCs) activation as well as cognitive recovery in the context of post-operative cognitive dysfunction (POCD) remain elusive and need to be explored. Mice were subjected to transient global cerebral ischaemia and reperfusion (tGCI/R) injury and treated with LIG (80 mg/kg) or vehicle for 1 month. Morris water maze test and western blot were employed to assess cognitive function. Nissl staining and immunofluorescence (IF) staining were used to detect H-NSCs proliferation and neurogenesis in hippocampus. Subsequently, primary H-NSCs were treated with LIG, and the level of H-NSCs proliferation and neuronal-differentiation was examined by IF staining for Edu and β-Tubulin III. The protein levels of ERK1/2, β-catenin, NICD, TLR4, Akt and FoxO1 were examined using western blotting. Finally, pretreatment with the ERK agonist SCH772984 was performed to observe the change in ERK expression. LIG treatment promoted H-NSCs proliferation and neurogenesis, increased the number of neurons in the hippocampal subfields, and ultimately reversed cognitive impairment in tGCI/R injury. Furthermore, LIG also promoted primary H-NSCs proliferation and neuronal-differentiation, as well as ERK1/2 phosphorylation. Pretreatment with SCH772984 effectively reversed the ability of LIG to induce ERK1/2 phosphorylation and promote H-NSCs proliferation and neuronal-differentiation. LIG can promote cognitive recovery after tGCI/R injury by activating ERK1/2 in H-NSCs to promote their proliferation and neurogenesis in the hippocampus. Therefore, LIG has potential for use in the prevention and/or treatment of POCD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Nanchang University, Fuzhou, China
| | - Jusheng Wu
- Department of Anesthesiology, The Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| | - Renjie Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yimei Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Scicutella A. The pharmacotherapeutic management of postoperative delirium: an expert update. Expert Opin Pharmacother 2020; 21:905-916. [PMID: 32156151 DOI: 10.1080/14656566.2020.1738388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Postoperative delirium is a common sequela in older adults in the peri-operative period leading to poor outcomes with a complex pathophysiology which has led to a variety of different pharmacologic agents employed in attempts to prevent and treat this syndrome. No pharmacologic agent has been approved to treat this disorder, but this review discusses the pharmacologic strategies which have been tried based on the hypotheses of the causation of the syndrome including neurotransmitter imbalance, inflammation, and oxidative stress. AREAS COVERED Systematic reviews and meta-analyses of randomized clinical trials (RCTs) were included via search of electronic databases specifically for the terms postoperative delirium and pharmacologic treatments. With this approach, the recurrent topics of analgesia and sedation, antipsychotics, acetylcholinesterase inhibitors (AchE-Is), inflammation, and melatonin were emphasized and provided the outline for this review. EXPERT OPINION Research evidence does not support any particular agent in any of the pharmacologic classes reviewed. However, there is some potential benefit with dexmedetomidine, melatonin, and the monitoring of anesthetic agents all of which need further clinical trials to validate these conclusions. Exploration of ways to improve studies and the application of novel pharmacologic agents may offer future benefit.
Collapse
Affiliation(s)
- Angela Scicutella
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell , Hempstead, NY, USA.,Psychiatry, SUNY Health Science Center at Brooklyn - Behavioral Health , Brooklyn, NY, USA
| |
Collapse
|
7
|
Abstract
Background: Patient satisfaction with anesthesia after surgical treatment is a complex concept that includes not only the level of satisfaction with the anesthesia itself but also the presence of fears, worries, depression, evaluation of the anesthesiologists' work, as well as cognitive dysfunction as a possible negative consequence of anesthesia. Objective: Conducting a comprehensive analysis of patients' satisfaction with anesthesia. Methods: Questionnaire of patients' satisfaction with anesthesia (Sinbukhova E.V., Lubnin A.Yu.), State-Trait Anxiety Inventory in the adaptation by Y.L. Hanin, Assessment of Depression, The Montreal Cognitive Assessment (MoCA), and Frontal Assessment Battery. Population consisted of 202 patients. Results: Satisfaction with anesthesia: assessment “good and higher” with primary anesthesia – 59.7% of patients with repeated – 70% of patients. The most common factors that reduce the assessment of patients' satisfaction with anesthesia are: strong excitement before surgery about operation and anesthesia, no postoperative visit of the anesthesiologist, no visit of the anesthesiologist before the operation, not enough attention of anesthesiologist in the surgery room before anesthesia, nausea, vomiting, pain, dizziness, general discomfort, and thirst. MoCA cognitive assessment before and after anesthesia: P < 2.2 e–16 (significant decrease). Depression: major depression in 52% of patients, subclinical depression in 22.8%. Conclusion: Regular survey of patients' satisfaction should help to improve the quality of medical care. The strong excitement of the patient about the upcoming anesthesia and surgery, and the presence of a high level of anxiety and depression can be factors of reducing the patients' satisfaction with anesthesia. It requires psychological support of patients at the stage of surgical treatment.
Collapse
Affiliation(s)
- Elena Sinbukhova
- "N. N. Burdenko National Medical Research Center of Neurosurgery" of Ministry of Health of the Russia Federation, Moscow, Russia
| | - Andrey Lubnin
- "N. N. Burdenko National Medical Research Center of Neurosurgery" of Ministry of Health of the Russia Federation, Moscow, Russia
| |
Collapse
|
8
|
Stevens JL, McKenna H, Gurusamy KS, Van Schoor J, Grocott MPW, Jell G, Martin D. Perioperative antioxidants for adults undergoing elective non-cardiac surgery. Hippokratia 2018. [DOI: 10.1002/14651858.cd013174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jia Liu Stevens
- Royal Free NHS Trust Hospital, University College London; Division of Surgery & Interventional Science; Pond Street London UK NW3 2QG
| | - Helen McKenna
- Royal Free NHS Trust Hospital, University College London; Division of Surgery & Interventional Science; Pond Street London UK NW3 2QG
| | - Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| | - Jason Van Schoor
- Royal Free NHS Trust Hospital, University College London; Division of Surgery & Interventional Science; Pond Street London UK NW3 2QG
| | - Michael PW Grocott
- Faculty of Medicine, University of Southampton; Critical Care Group, Clinical and Experimental Sciences; Tremona Road Southampton Hampshire UK SO16 6YD
| | - Gavin Jell
- University College London; Division of Surgery & Interventional Science, Royal Free NHS Trust Hospital; Pond Street London UK NW3 2QG
| | - Daniel Martin
- University College London and Royal Free Hospital; Perioperative & Critical Care Medicine; London UK NW3 2QG
| |
Collapse
|
9
|
Bhatti J, Nascimento B, Akhtar U, Rhind SG, Tien H, Nathens A, da Luz LT. Systematic Review of Human and Animal Studies Examining the Efficacy and Safety of N-Acetylcysteine (NAC) and N-Acetylcysteine Amide (NACA) in Traumatic Brain Injury: Impact on Neurofunctional Outcome and Biomarkers of Oxidative Stress and Inflammation. Front Neurol 2018; 8:744. [PMID: 29387038 PMCID: PMC5776005 DOI: 10.3389/fneur.2017.00744] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Background No new therapies for traumatic brain injury (TBI) have been officially translated into current practice. At the tissue and cellular level, both inflammatory and oxidative processes may be exacerbated post-injury and contribute to further brain damage. N-acetylcysteine (NAC) has the potential to downregulate both processes. This review focuses on the potential neuroprotective utility of NAC and N-acetylcysteine amide (NACA) post-TBI. Methods Medline, Embase, Cochrane Library, and ClinicalTrials.gov were searched up to July 2017. Studies that examined clinical and laboratory effects of NAC and NACA post-TBI in human and animal studies were included. Risk of bias was assessed in human and animal studies according to the design of each study (randomized or not). The primary outcome assessed was the effect of NAC/NACA treatment on functional outcome, while secondary outcomes included the impact on biomarkers of inflammation and oxidation. Due to the clinical and methodological heterogeneity observed across studies, no meta-analyses were conducted. Results Our analyses revealed only three human trials, including two randomized controlled trials (RCTs) and 20 animal studies conducted using standardized animal models of brain injury. The two RCTs reported improvement in the functional outcome post-NAC/NACA administration. Overall, the evidence from animal studies is more robust and demonstrated substantial improvement of cognition and psychomotor performance following NAC/NACA use. Animal studies also reported significantly more cortical sparing, reduced apoptosis, and lower levels of biomarkers of inflammation and oxidative stress. No safety concerns were reported in any of the studies included in this analysis. Conclusion Evidence from the animal literature demonstrates a robust association for the prophylactic application of NAC and NACA post-TBI with improved neurofunctional outcomes and downregulation of inflammatory and oxidative stress markers at the tissue level. While a growing body of scientific literature suggests putative beneficial effects of NAC/NACA treatment for TBI, the lack of well-designed and controlled clinical investigations, evaluating therapeutic outcomes, prognostic biomarkers, and safety profiles, limits definitive interpretation and recommendations for its application in humans at this time.
Collapse
Affiliation(s)
- Junaid Bhatti
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Barto Nascimento
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Umbreen Akhtar
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Shawn G Rhind
- Defense Research and Development Canada (DRDC), Toronto Research Centre, Toronto, ON, Canada
| | - Homer Tien
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Avery Nathens
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Luis Teodoro da Luz
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Safavynia SA, Goldstein PA. The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving From Hypothesis to Treatment. Front Psychiatry 2018; 9:752. [PMID: 30705643 PMCID: PMC6345198 DOI: 10.3389/fpsyt.2018.00752] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of the surgical experience and is common in the elderly and patients with preexisting neurocognitive disorders. Animal and human studies suggest that neuroinflammation from either surgery or anesthesia is a major contributor to the development of POCD. Moreover, a large and growing body of literature has focused on identifying potential risk factors for the development of POCD, as well as identifying candidate treatments based on the neuroinflammatory hypothesis. However, variability in animal models and clinical cohorts makes it difficult to interpret the results of such studies, and represents a barrier for the development of treatment options for POCD. Here, we present a broad topical review of the literature supporting the role of neuroinflammation in POCD. We provide an overview of the cellular and molecular mechanisms underlying the pathogenesis of POCD from pre-clinical and human studies. We offer a brief discussion of the ongoing debate on the root cause of POCD. We conclude with a list of current and hypothesized treatments for POCD, with a focus on recent and current human randomized clinical trials.
Collapse
Affiliation(s)
- Seyed A Safavynia
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Neuroscience Graduate Program, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
11
|
Needham M, Webb C, Bryden D. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth 2017; 119:i115-i125. [DOI: 10.1093/bja/aex354] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Knols RH, Swanenburg J, De Bon D, Gennaro F, Wolf M, Krüger B, Bettex D, de Bruin ED. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly. Front Syst Neurosci 2017; 11:85. [PMID: 29234277 PMCID: PMC5712300 DOI: 10.3389/fnsys.2017.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) (n = 5) and EEG power (n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1-7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8-10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001) lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000), but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25-0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the feasibility of the COPHYCON in a clinical setting.
Collapse
Affiliation(s)
- Ruud H. Knols
- Directorate of Research and Education, Physiotherapy & Occupational Therapy Research Center, University Hospital Zurich, Zurich, Switzerland
| | - Jaap Swanenburg
- Directorate of Research and Education, Physiotherapy & Occupational Therapy Research Center, University Hospital Zurich, Zurich, Switzerland
- Department of Chiropractic Medicine, Faculty of Medicine, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | - Dino De Bon
- Directorate of Research and Education, Physiotherapy & Occupational Therapy Research Center, University Hospital Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Bernard Krüger
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Dominique Bettex
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
14
|
|