1
|
Ramzy S, Alshehri S, Abduljabbar MH, Althobaiti YS, Alzhrani RM, Almalki AH. An environmentally sustainable synchronous spectrofluorimetric method coupled with second derivative signal processing for simultaneous determination of velpatasvir and simeprevir in pharmaceutical and plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125202. [PMID: 39332169 DOI: 10.1016/j.saa.2024.125202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Velpatasvir and simeprevir are two direct acting antivirals that are often used in combination with sofosbuvir to treat HCV infections. Herein, an environmentally benign spectrofluorimetric method was developed for simultaneous quantification of velpatasvir and simeprevir in pharmaceutical and plasma samples. To address the issue of overlapping fluorescence spectra presented by these compounds, this method integrates synchronous fluorescence and second-derivative spectroscopy. By employing the second derivative of the synchronous fluorescence spectra measured at Δλ of 140 nm, the accurate determination of velpatasvir at 400 nm and simeprevir at 426 nm was achieved without any interference. Different experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully optimized. The plots of second-derivative amplitudes against concentrations showed linearity in the range of 5-400 ng/mL for velpatasvir and 80-800 ng/mL for simeprevir. The method was very sensitive, with lower detection limits of 1.11 ng/mL and 25.40 ng/mL, and quantification limits of 3.36 ng/mL and 76.96 ng/mL for velpatasvir and simeprevir, respectively.The method was effectively used to determine velpatasvir and simeprevir simultaneously in their pure forms, pharmaceutical dosage forms, and human plasma with no interference. The suggested technique was additionally evaluated for its eco-friendliness through the utilization of the Analytical GREEnness (AGREE) and Green Analytical Procedure Index (GAPI) evaluation metrics, revealing that the method is indeed sustainable.
Collapse
Affiliation(s)
- Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Rami M Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
2
|
Lababidi JM, Kabil MF, Azzazy HMES. Sofosbuvir: A comprehensive profile. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2025; 50:1-41. [PMID: 39855774 DOI: 10.1016/bs.podrm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Sofosbuvir, a nucleotide analogue, is an antiviral medication that belongs to the class of direct-acting antivirals (DAAs). It is primarily used in the treatment of chronic hepatitis C virus (HCV) infections. Sofosbuvir works by inhibiting the replication of HCV, disrupting its ability to produce RNA and effectively reducing the viral load in the body. This chapter offers a comprehensive examination of sofosbuvir, including its nomenclature, physiochemical attributes, synthesis, and thermal analysis. Furthermore, it presents various analytical methods employed for both spectrophotometric and chromatographic assessments of sofosbuvir in different matrices.
Collapse
Affiliation(s)
- Jude Majed Lababidi
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Egypt
| | - Mohamed Fawzy Kabil
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Egypt; Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, Germany.
| |
Collapse
|
3
|
Zaman B, Hassan W, Khan A, Mushtaq A, Ali N, Bilal M, Ahmed DA. Forced Degradation Studies and Development and Validation of HPLC-UV Method for the Analysis of Velpatasvir Copovidone Solid Dispersion. Antibiotics (Basel) 2022; 11:897. [PMID: 35884151 PMCID: PMC9311562 DOI: 10.3390/antibiotics11070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Analytical methods for the drug substance and degradation products (DPs) are validated by performing forced degradation studies. Forced degradation studies of Velpatasvir (VEL) drug substance and Velpatasvir copovidone solid dispersion (VEL-CSD) were performed under the stressed alkaline, acidic, oxidative and thermal conditions according to ICH guidelines ICH Q1A (R2). VEL is labile to degrade in stressed alkaline, acidic, and oxidative conditions. It is also photolabile and degraded during photostability studies as described by ICH Q1B, and showed no degradation on exposure to extreme temperature when protected from light. A sensitive stability indicating HPLC-UV method was developed and validated for the separation of VEL and eight DPs. The DPs of VEL are separated using gradient elution of mobile phase containing 0.05% Trifluoroacetic acid (TFA) and methanol over symmetry analytical column C18 (250 mm × 4.6 mm, 5 µm) with a flow rate of 0.8 mL min-1. Simultaneous detection of all DPs and VEL was performed on UV detector at 305 nm. The performance parameters like precision, specificity and linearity of the method were validated using reference standards as prescribed by ICHQ2 (R1). Limits of quantification and limits of detection were determined from calibration curve using the expression 10δ/slope and 3δ/slope respectively. The proposed method is stability-indicating and effectively applied to the analysis of process impurities and DPs in VEL drug substance and VEL-CSD.
Collapse
Affiliation(s)
- Bakht Zaman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (B.Z.); (W.H.)
| | - Ayesha Mushtaq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Dina A. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, New Cairo 1835, Egypt;
| |
Collapse
|
4
|
Saleh M, Mohamed MA, Shahat A, Allam NK. Sensitive Determination of SARS-COV-2 and the Anti-hepatitis C Virus Agent Velpatasvir Enabled by Novel Metal-Organic Frameworks. ACS OMEGA 2021; 6:26791-26798. [PMID: 34661033 PMCID: PMC8515823 DOI: 10.1021/acsomega.1c04525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report on the electrochemical determination of velpatasvir (VLP) as the main constituent of Epclusa, a SARS-COV-2 and anti-hepatitis C virus (HCV) agent, using a novel metal-organic framework (MOF). The NH2-MIL-53(Al) MOF was successfully modified with 5-bromo-salicylaldehyde to synthesize 5-BSA=N-MIL-53(Al) MOF. The synthesized MOF has been characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The modified MOF showed higher electrochemical activity and response than the bare NH2-MIL-53(Al) MOF. Compared to the bare carbon paste electrode (CPE), the 5-BSA=N-MIL-53(Al)/CPE platform was shown to enhance the electrochemical oxidation and detection of the anti-SARS-COV-2 and anti-HCV agent. Under optimized conditions, the 5-BSA=N-MIL-53(Al)/CPE platform showed a linear range of 1.11 × 10-6 to 1.11 × 10-7 and 1.11 × 10-7 to 25.97 × 10-6 M Britton-Robinson buffer (pH 7) with a detection limit and limit of quantification of 8.776 × 10-9 and 2.924 × 10-8 M, respectively. Repeatability, storage stability, and reproducibility in addition to selectivity studies and interference studies were conducted to illustrate the superiority of the electrode material. The study also included a highly accurate platform for the determination of VLP concentrations in both urine and plasma samples with reasonable recovery.
Collapse
Affiliation(s)
- Mahmoud
A. Saleh
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| | - Mona A. Mohamed
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| | - Ahmed Shahat
- Chemistry
Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Nageh K. Allam
- Energy
Materials Laboratory, Department of Physics, School of Sciences and
Engineering, The American University in
Cairo, New Cairo 11835, Egypt
| |
Collapse
|
5
|
Aboras SI, Abdine HH, Ragab MAA, Korany MA. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Crit Rev Anal Chem 2021; 52:1878-1900. [PMID: 34138669 DOI: 10.1080/10408347.2021.1923456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human beings are in dire need of developing an efficient treatment against fierce viruses like hepatitis C virus (HCV) and Coronavirus (COVID-19). These viruses have already caused the death of over two million people all over the world. Therefore, over the last years, many direct-acting antiviral drugs (DAADs) were developed targeting nonstructural proteins of these two viruses. Among these DAADs, several drugs were found more effective and safer than the others as sofosbuvir, ledipasvir, grazoprevir, glecaprevir, voxilaprevir, velpatasvir, elbasvir, pibrentasvir and remdesivir. The last one is indicated for COVID-19, while the rest are indicated for HCV treatment. Due to the valuable impact of these DAADs, larger number of analytical methods were required to meet the needs of the clinical studies. Therefore, this review will highlight the current approaches, published in the period between 2017 to present, dealing with the determination of these drugs in two different matrices: pharmaceuticals and biological fluids with the challenges of analyzing these drugs either alone, with other drugs, in presence of interferences (pharmaceutical excipients or endogenous plasma components) or in presence of matrix impurities, degradation products and metabolites. These approaches include spectroscopic, chromatographic, capillary electrophoretic, voltametric and nuclear magnetic resonance methods that have been reported during this period. Moreover, the analytical instrumentation and methods used in determination of these DAADs will be illustrated in tabulated forms.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| |
Collapse
|
6
|
Development of Stability Indicating HPLC-UV Method for Determination of Process Impurities and Degradation Products in Sofosbuvir and Velpatasvir Tablets. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02359-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
El-Yazbi AF, Elashkar NE, Abdel-Hay KM, Ahmed HM, Talaat W. Eco-friendly analytical methods for the determination of compounds with disparate spectral overlapping: application to antiviral formulation of sofosbuvir and velpatasvir. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00257-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AbstractGreen analytical chemistry is one of the newest trends in analytical chemistry nowadays targeting the concept of green laboratory practices on chemists and environment. In this text, green practices are proposed in this work for the determination of sofosbuvir (SF) and velpatasvir (VP) in their pharmaceutical formulation. The analysis of SF in a binary mixture with VP represents an analytical challenge due to the complete overlapping of the UV spectrum of SF by that of VP. Therefore, the direct absorbance and derivative measurements cannot resolve such interference and failed to determine SF. In this paper, three direct and simple methods were developed for the analysis of SF without any interference from VP without sample pre-treatment. The proposed methods include measuring the second derivative amplitude of the ratio spectrum of the mixture using VP as a divisor, measuring the absorbance difference of the mixture in NaOH solution against its HCl solution, and using the derivative compensation technique. On the other hand, VP was determined specifically in presence of SF by two methods. Firstly, by its reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) where the reaction product was measured spectrophotometrically and spectrofluorometrically and secondly through the reaction of VP with 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH). The calibration curves showed good correlation coefficient (r2 > 0.999). The developed methods were highly precise with RSD% values less than 2%. The method greenness profile was compared with other published methods by applying the eco-scale protocol. Assessment results proved that our analytical procedure is greener than other reported methods. Moreover, upon comparison with other methods, the proposed methods showed better or comparable sensitivity in addition to being inexpensive and ecofriendly. Accordingly, these methods could be readily applied for quality control purposes as an eco-friendly, simple and efficient analytical tool.
Collapse
|
8
|
Abstract
Recently, high demand of high-throughput analyses with high sensitivity and selectivity to molecules and drugs in different classes with different physical-chemical properties—and a reduction in analysis time—is a principal milestone for novel methodologies that researchers are trying to achieve—especially when analytical procedures are applied to clinical purposes. In addition, to avoid high doses of a single drug that could cause serious side effects, multi-drug therapies are often used to treat numerous diseases. For these reasons, the demand for methods that allow the rapid analysis of mixed compounds has increased in recent years. In order to respond to these needs, new methods and instruments have been developed. However, often the complexity of a matrix can require a long time for the preparation and processing of the samples. Different problems in terms of components, types of matrices, compounds and physical-chemical complexity are encountered when considering drugs association profiles for quantitative analyses. This review addresses not only recently optimized procedures such as chromatographic separation, but also methods that have allowed us to obtain accuracy (precision and trueness), sensitivity and selectivity in quantitative analyses for cases of drug associations.
Collapse
|
9
|
Derayea SM, Abdel-Lateef MA, Omar MA, Ali R. Thin-layer chromatography/fluorescence detection approach for sensitive and selective determination of hepatitis C virus antiviral (velpatasvir): application to human plasma. LUMINESCENCE 2020; 35:1048-1055. [PMID: 32350964 DOI: 10.1002/bio.3816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/06/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
A validated thin-layer chromatography (TLC) method combined with fluorescence detection mode was developed for the selective determination of a recently approved anti-hepatitis C virus (HCV) drug (velpatasvir). The separation was performed on silica gel 60 F254 plates using ethylacetate:methanol:triethylamine (48:1.5:1.0, v/v/v) as a mobile phase. Plates were scanned in the fluorescence mode after excitation at 335 nm. This method provided an excellent separation of velpatasvir from sofosbuvir with RF values of 0.22 and 0.46 for velpatasvir and sofosbuvir, respectively, after scanning the developed plates in the ultraviolet detection mode at 335 nm. The calibration curve was linear over the range 4-40 ng/band with a correlation coefficient of 0.9994. The developed procedure was validated according to ICH guidelines with a detection limit of 1.30 ng/band and quantitation limit of 3.95 ng/band. The suggested method could selectively determine velpatasvir with high sensitivity in a synthetic tablet powder containing a co-formulated anti-HCV drug (sofosbuvir) without any interference from excipients or sofosbuvir. In addition, the method was successfully applied for determination of velpatasvir in spiked human plasma with adequate % recovery.
Collapse
Affiliation(s)
- Sayed M Derayea
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mahmoud A Omar
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - Ramadan Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|