1
|
Dietz K, Sagstetter C, Speck M, Roth A, Klamt S, Fabarius JT. A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid. Microb Cell Fact 2024; 23:344. [PMID: 39716233 DOI: 10.1186/s12934-024-02583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
The conversion of CO2 into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-molGlycolic acid C-molMethanol-1 is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L-1 glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.
Collapse
Affiliation(s)
- Katharina Dietz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Carina Sagstetter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Melanie Speck
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Arne Roth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany
| | - Jonathan Thomas Fabarius
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany.
| |
Collapse
|
2
|
Chen AY, Ku JT, Tsai TP, Hung JJ, Hung BC, Lan EI. Metabolic Engineering Design Strategies for Increasing Carbon Fluxes Relevant for Biosynthesis in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:105-144. [PMID: 37093259 DOI: 10.1007/10_2023_218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cyanobacteria are promising microbial cell factories for the direct production of biochemicals and biofuels from CO2. Through genetic and metabolic engineering, they can be modified to produce a variety of both natural and non-natural compounds. To enhance the yield of these products, various design strategies have been developed. In this chapter, strategies used to enhance metabolic fluxes towards common precursors used in biosynthesis, including pyruvate, acetyl-CoA, malonyl-CoA, TCA cycle intermediates, and aromatics, are discussed. Additionally, strategies related to cofactor availability and mixotrophic conditions for bioproduction are also summarize.
Collapse
Affiliation(s)
- Arvin Y Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jason T Ku
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Teresa P Tsai
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jenny J Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Billy C Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
3
|
Irla M, Wendisch VF. Efficient cell factories for the production of N-methylated amino acids and for methanol-based amino acid production. Microb Biotechnol 2022; 15:2145-2159. [PMID: 35488805 PMCID: PMC9328739 DOI: 10.1111/1751-7915.14067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The growing world needs commodity amino acids such as L-glutamate and L-lysine for use as food and feed, and specialty amino acids for dedicated applications. To meet the supply a paradigm shift regarding their production is required. On the one hand, the use of sustainable and cheap raw materials is necessary to sustain low production cost and decrease detrimental effects of sugar-based feedstock on soil health and food security caused by competing uses of crops in the feed and food industries. On the other hand, the biotechnological methods to produce functionalized amino acids need to be developed further, and titres enhanced to become competitive with chemical synthesis methods. In the current review, we present successful strain mutagenesis and rational metabolic engineering examples leading to the construction of recombinant bacterial strains for the production of amino acids such as L-glutamate, L-lysine, L-threonine and their derivatives from methanol as sole carbon source. In addition, the fermentative routes for bioproduction of N-methylated amino acids are highlighted, with focus on three strategies: partial transfer of methylamine catabolism, S-adenosyl-L-methionine dependent alkylation and reductive methylamination of 2-oxoacids.
Collapse
Affiliation(s)
- Marta Irla
- Microbial Synthetic BiologyDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus C8000Denmark
| | - Volker F. Wendisch
- Genetics of ProkaryotesFaculty of Biology and CeBiTecBielefeld UniversityUniversitätsstr. 25Bielefeld33615Germany
| |
Collapse
|
4
|
Wendisch VF, Kosec G, Heux S, Brautaset T. Aerobic Utilization of Methanol for Microbial Growth and Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:169-212. [PMID: 34761324 DOI: 10.1007/10_2021_177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methanol is a reduced one-carbon (C1) compound. It supports growth of aerobic methylotrophs that gain ATP from reduced redox equivalents by respiratory phosphorylation in their electron transport chains. Notably, linear oxidation of methanol to carbon dioxide may yield three reduced redox equivalents if methanol oxidation is NAD-dependent as, e.g., in Bacillus methanolicus. Methanol has a higher degree of reduction per carbon than glucose (6 vs. 4), and thus, lends itself as an ideal carbon source for microbial production of reduced target compounds. However, C-C bond formation in the RuMP or serine cycle, a prerequisite for production of larger molecules, requires ATP and/or reduced redox equivalents. Moreover, heat dissipation and a high demand for oxygen during catabolic oxidation of methanol may pose challenges for fermentation processes. In this chapter, we summarize metabolic pathways for aerobic methanol utilization, aerobic methylotrophs as industrial production hosts, strain engineering, and methanol bioreactor processes. In addition, we provide technological and market outlooks.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| | | | - Stéphanie Heux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
6
|
Zhu LP, Song SZ, Yang S. Gene repression using synthetic small regulatory RNA in Methylorubrum extorquens. J Appl Microbiol 2021; 131:2861-2875. [PMID: 34021964 DOI: 10.1111/jam.15159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
AIM Genetic tools are a prerequisite for engineering cell factories for synthetic biology and biotechnology. Methylorubrum extorquens is an important platform for a future one-carbon (C1) bioeconomy, but its application is currently limited by the availability of genetic tools. Small regulatory RNA (sRNA) is an important regulatory factor in bacteria and has been applied for gene repression in several strains. This study aimed to construct a synthetic sRNA system based on the MicC scaffold and the chaperone Hfq to control gene expression in M. extorquens. METHODS AND RESULTS Initially, the exogenous lacZ gene was transposed into the M. extorquens chromosome as a reporter, and corresponding β-galactosidase was measured to assess the knockdown efficiency of lacZ. A synthetic sRNA containing a 24-nt antisense RNA targeting lacZ and an Escherichia coli MicC scaffold were constructed, and different Hfqs from E. coli, M. extorquens AM1 and PA1 were further identified. The results showed that the expression of endogenous hfqs from the chromosome in M. extorquens strains was inadequate, and only when it was overexpressed via the plasmid did the colonies show a colour change and a corresponding decrease in β-galactosidase expression. More specifically, M. extorquens strains with overexpressing their own Hfq showed the best gene repression efficiency. Furthermore, this E. coli MicC scaffold and AM1 Hfq system were combined to knock down crtI gene expression in AM1, leading to an 86% decrease in carotenoid production (0·09 mg g-1 ) compared to that (0·65 mg g-1 ) in the wild-type strain. CONCLUSION A functional synthetic sRNA system combined with E. coli MicC and endogenous Hfq was constructed in M. extorquens strains, which was able to interfere with the target crtI gene and reduce carotenoid production. SIGNIFICANCE AND IMPACT OF THE STUDY The synthetic sRNA system reported in this study provides a genetic tool for the manipulation of M. extorquens. The present findings might be helpful for achieving high-throughput gene knockdown expression.
Collapse
Affiliation(s)
- L-P Zhu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - S-Z Song
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - S Yang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, and School of Life Sciences, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Ma ZX, Zhang M, Zhang CT, Zhang H, Mo XH, Xing XH, Yang S. Metabolomic analysis improves bioconversion of methanol to isobutanol in Methylorubrum extorquens AM1. Biotechnol J 2021; 16:e2000413. [PMID: 33595188 DOI: 10.1002/biot.202000413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Methylorubrum extorquens AM1 can be engineered to convert methanol to value-added chemicals. Most of these chemicals derive from acetyl-CoA involved in the serine cycle. However, recent studies on methylotrophic metabolism have suggested that C3 pyruvate is a good potential precursor for broadening the types of synthesized products. METHODS AND RESULTS In the present study, we found that isobutanol was a model chemical that could be generated from pyruvate through a 2-keto acid pathway. Initially, the engineered M. extorquens AM1 could only produce a trace amount of isobutanol at 0.62 mgL-1 after introducing the heterologous 2-ketoisovalerate decarboxylase and alcohol dehydrogenase. Furthermore, the metabolomic analysis revealed that insufficient carbon fluxes through 2-ketoisovalerate and pyruvate were the key limitation steps for efficient biosynthesis of isobutanol. Based on this analysis, the titer of isobutanol was improved by over 20-fold after overexpressing alsS gene encoding acetolactate synthase and deleting ldhA gene for lactate dehydrogenase. Moreover, substituting the cell chassis with the isobutanol-tolerant strain isolated from adaptive evolution of M. extorquens AM1 further increased the production of isobutanol by 1.7-fold, resulting in the final titer of 19 mgL-1 in flask cultivation. CONCLUSION Our current findings provided promising insights into engineering methylotrophic cell factories capable of converting methanol to isobutanol or value-added chemicals using pyruvate as the precursor.
Collapse
Affiliation(s)
- Zeng-Xin Ma
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.,Shandong Longkete Enzyme Co., Ltd., Linyi, Shandong, People's Republic of China
| | - Chang-Tai Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Hui Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, and Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Butanol Tolerance of Lactiplantibacillus plantarum: A Transcriptome Study. Genes (Basel) 2021; 12:genes12020181. [PMID: 33514005 PMCID: PMC7911632 DOI: 10.3390/genes12020181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Biobutanol is a promising alternative fuel with impaired microbial production thanks to its toxicity. Lactiplantibacillus plantarum (L. plantarum) is among the few bacterial species that can naturally tolerate 3% (v/v) butanol. This study aims to identify the genetic factors involved in the butanol stress response of L. plantarum by comparing the differential gene expression in two strains with very different butanol tolerance: the highly resistant Ym1, and the relatively sensitive 8-1. During butanol stress, a total of 319 differentially expressed genes (DEGs) were found in Ym1, and 516 in 8-1. Fifty genes were upregulated and 54 were downregulated in both strains, revealing the common species-specific effects of butanol stress: upregulation of multidrug efflux transporters (SMR, MSF), toxin-antitoxin system, transcriptional regulators (TetR/AcrR, Crp/Fnr, and DeoR/GlpR), Hsp20, and genes involved in polysaccharide biosynthesis. Strong inhibition of the pyrimidine biosynthesis occurred in both strains. However, the strains differed greatly in DEGs responsible for the membrane transport, tryptophan synthesis, glycerol metabolism, tRNAs, and some important transcriptional regulators (Spx, LacI). Uniquely upregulated in the butanol-resistant strain Ym1 were the genes encoding GntR, GroEL, GroES, and foldase PrsA. The phosphoenolpyruvate flux and the phosphotransferase system (PTS) also appear to be major factors in butanol tolerance.
Collapse
|
9
|
Yuan XJ, Chen WJ, Ma ZX, Yuan QQ, Zhang M, He L, Mo XH, Zhang C, Zhang CT, Wang MY, Xing XH, Yang S. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens. Metab Eng 2021; 64:95-110. [PMID: 33493644 DOI: 10.1016/j.ymben.2021.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.
Collapse
Affiliation(s)
- Xiao-Jie Yuan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China; Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, Shandong Province, People's Republic of China
| | - Wen-Jing Chen
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Zeng-Xin Ma
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Qian-Qian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Min Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Chong Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China
| | - Chang-Tai Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Meng-Ying Wang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, People's Republic of China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, And Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, And Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
10
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
11
|
Meruvu H, Wu H, Jiao Z, Wang L, Fei Q. From nature to nurture: Essence and methods to isolate robust methanotrophic bacteria. Synth Syst Biotechnol 2020; 5:173-178. [PMID: 32637670 PMCID: PMC7327766 DOI: 10.1016/j.synbio.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Methanotrophic bacteria are entities with innate biocatalytic potential to biofilter and oxidize methane into simpler compounds concomitantly conserving energy, which can contribute to copious industrial applications. The future and efficacy of such industrial applications relies upon acquiring and/or securing robust methanotrophs with taxonomic and phenotypic diversity. Despite several dramatic advances, isolation of robust methanotrophs is still a long-way challenging task with several lacunae to be filled in sequentially. Methanotrophs with high tolerance to methane can be isolated and cultivated by mimicking natural environs, and adopting strategies like adaptive metabolic evolution. This review summarizes existent and innovative methods for methanotrophic isolation and purification, and their respective applications. A comprehensive description of new insights shedding light upon how to isolate and concomitantly augment robust methanotrophic metabolism in an orchestrated fashion follows.
Collapse
Affiliation(s)
- Haritha Meruvu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziyue Jiao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liyan Wang
- Luoyang TMAXTREE Biotechnology Co., Ltd., Luoyang, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Recent advances in improving metabolic robustness of microbial cell factories. Curr Opin Biotechnol 2020; 66:69-77. [PMID: 32683192 DOI: 10.1016/j.copbio.2020.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Engineering microbial cell factories has been widely applied to produce compounds spanning from intricate natural products to bulk commodities. In each case, host robustness is essential to ensure the reliable and sustainable production of targeted metabolites. However, it can be negatively affected by metabolic burden, pathway toxicity, and harsh environment, resulting in a decreased titer and productivity. Enhanced robustness enables host to have better production performance under complicated growth circumstances. Here, we review current strategies for boosting host robustness, including metabolic balancing, genetic and phenotype stability enhancement, and tolerance engineering. In addition, we discuss the challenges and future perspectives on microbial host engineering for increased robustness.
Collapse
|
13
|
Mo XH, Zhang H, Wang TM, Zhang C, Zhang C, Xing XH, Yang S. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl Microbiol Biotechnol 2020; 104:4515-4532. [PMID: 32215707 DOI: 10.1007/s00253-020-10543-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 02/04/2023]
Abstract
The methylotrophic bacterium Methylorubrum extorquens AM1 holds a great potential of a microbial cell factory in producing high value chemicals with methanol as the sole carbon and energy source. However, many gene functions remain unknown, hampering further rewiring of metabolic networks. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been demonstrated to be a robust tool for gene knockdown in diverse organisms. In this study, we developed an efficient CRISPRi system through optimizing the promoter strength of Streptococcus pyogenes-derived deactivated cas9 (dcas9). When the dcas9 and sgRNA were respectively controlled by medium PR/tetO and strong PmxaF-g promoters, dynamic repression efficacy of cell growth through disturbing a central metabolism gene glyA was achieved from 41.9 to 96.6% dependent on the sgRNA targeting sites. Furthermore, the optimized CRISPRi system was shown to effectively decrease the abundance of exogenous fluorescent protein gene mCherry over 50% and to reduce the expression of phytoene desaturase gene crtI by 97.7%. We then used CRISPRi technology combined with 26 sgRNAs pool to rapidly discover a new phytoene desaturase gene META1_3670 from 2470 recombinant mutants. The gene function was further verified through gene deletion and complementation as well as phylogenetic tree analysis. In addition, we applied CRISPRi to repress the transcriptional level of squalene-hopene cyclase gene shc involved in hopanoid biosynthesis by 64.9%, which resulted in enhancing 1.9-fold higher of carotenoid production without defective cell growth. Thus, the CRISPRi system developed here provides a useful tool in mining functional gene of M. extorquens as well as in biotechnology for producing high-valued chemicals from methanol. KEY POINTS: Developing an efficient CRISPRi to knockdown gene expression in C1-utilizing bacteria CRISPRi combined with sgRNAs pool to rapidly discover a new phytoene desaturase gene Improvement of carotenoid production by repressing a competitive pathway.
Collapse
Affiliation(s)
- Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Hui Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Tian-Min Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Chong Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Cong Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
14
|
Chen AY, Lan EI. Chemical Production from Methanol Using Natural and Synthetic Methylotrophs. Biotechnol J 2020; 15:e1900356. [DOI: 10.1002/biot.201900356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Arvin Y. Chen
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ethan I. Lan
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
15
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
16
|
Quantifying Methane and Methanol Metabolism of " Methylotuvimicrobium buryatense" 5GB1C under Substrate Limitation. mSystems 2019; 4:4/6/e00748-19. [PMID: 31822604 PMCID: PMC6906744 DOI: 10.1128/msystems.00748-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methanotrophic metabolism has been under investigation for decades using biochemical and genetic approaches. Recently, a further step has been taken toward understanding methanotrophic metabolism in a quantitative manner by means of flux balance analysis (FBA), a mathematical approach that predicts fluxes constrained by mass balance and a few experimental measurements. However, no study has previously been undertaken to experimentally quantitate the complete methanotrophic central metabolism. The significance of this study is to fill such a gap by performing 13C INST-MFA on a fast-growing methanotroph. Our quantitative insights into the methanotrophic carbon and energy metabolism will pave the way for future FBA studies and set the stage for rational design of methanotrophic strains for industrial applications. Further, the experimental strategies can be applied to other methane or methanol utilizers, and the results will offer a unique and quantitative perspective of diverse methylotrophic metabolism. Methanotrophic bacteria are a group of prokaryotes capable of using methane as their sole carbon and energy source. Although efforts have been made to simulate and elucidate their metabolism via computational approaches or 13C tracer analysis, major gaps still exist in our understanding of methanotrophic metabolism at the systems level. Particularly, direct measurements of system-wide fluxes are required to understand metabolic network function. Here, we quantified the central metabolic fluxes of a type I methanotroph, “Methylotuvimicrobium buryatense” 5GB1C, formerly Methylomicrobium buryatense 5GB1C, via 13C isotopically nonstationary metabolic flux analysis (INST-MFA). We performed labeling experiments on chemostat cultures by switching substrates from 12C to 13C input. Following the switch, we measured dynamic changes of labeling patterns and intracellular pool sizes of several intermediates, which were later used for data fitting and flux calculations. Through computational optimizations, we quantified methane and methanol metabolism at two growth rates (0.1 h−1 and 0.05 h−1). The resulting flux maps reveal a core consensus central metabolic flux phenotype across different growth conditions: a strong ribulose monophosphate cycle, a preference for the Embden-Meyerhof-Parnas pathway as the primary glycolytic pathway, and a tricarboxylic acid cycle showing small yet significant fluxes. This central metabolic consistency is further supported by a good linear correlation between fluxes at the two growth rates. Specific differences between methane and methanol growth observed previously are maintained under substrate limitation, albeit with smaller changes. The substrate oxidation and glycolysis pathways together contribute over 80% of total energy production, while other pathways play less important roles. IMPORTANCE Methanotrophic metabolism has been under investigation for decades using biochemical and genetic approaches. Recently, a further step has been taken toward understanding methanotrophic metabolism in a quantitative manner by means of flux balance analysis (FBA), a mathematical approach that predicts fluxes constrained by mass balance and a few experimental measurements. However, no study has previously been undertaken to experimentally quantitate the complete methanotrophic central metabolism. The significance of this study is to fill such a gap by performing 13C INST-MFA on a fast-growing methanotroph. Our quantitative insights into the methanotrophic carbon and energy metabolism will pave the way for future FBA studies and set the stage for rational design of methanotrophic strains for industrial applications. Further, the experimental strategies can be applied to other methane or methanol utilizers, and the results will offer a unique and quantitative perspective of diverse methylotrophic metabolism.
Collapse
|
17
|
Belkhelfa S, Roche D, Dubois I, Berger A, Delmas VA, Cattolico L, Perret A, Labadie K, Perdereau AC, Darii E, Pateau E, de Berardinis V, Salanoubat M, Bouzon M, Döring V. Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations. Front Microbiol 2019; 10:1313. [PMID: 31281294 PMCID: PMC6595629 DOI: 10.3389/fmicb.2019.01313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
The bio-economy relies on microbial strains optimized for efficient large scale production of chemicals and fuels from inexpensive and renewable feedstocks under industrial conditions. The reduced one carbon compound methanol, whose production does not involve carbohydrates needed for the feed and food sector, can be used as sole carbon and energy source by methylotrophic bacteria like Methylobacterium extorquens AM1. This strain has already been engineered to produce various commodity and high value chemicals from methanol. The toxic effect of methanol limits its concentration as feedstock to 1% v/v. We obtained M. extorquens chassis strains tolerant to high methanol via adaptive directed evolution using the GM3 technology of automated continuous culture. Turbidostat and conditional medium swap regimes were employed for the parallel evolution of the recently characterized strain TK 0001 and the reference strain AM1 and enabled the isolation of derivatives of both strains capable of stable growth with 10% methanol. The isolates produced more biomass at 1% methanol than the ancestor strains. Genome sequencing identified the gene metY coding for an O-acetyl-L-homoserine sulfhydrylase as common target of mutation. We showed that the wildtype enzyme uses methanol as substrate at elevated concentrations. This side reaction produces methoxine, a toxic homolog of methionine incorporated in polypeptides during translation. All mutated metY alleles isolated from the evolved populations coded for inactive enzymes, designating O-acetyl-L-homoserine sulfhydrylase as a major vector of methanol toxicity. A whole cell transcriptomic analysis revealed that genes coding for chaperones and proteases were upregulated in the evolved cells as compared with the wildtype, suggesting that the cells had to cope with aberrant proteins formed during the adaptation to increasing methanol exposure. In addition, the expression of ribosomal proteins and enzymes related to energy production from methanol like formate dehydrogenases and ATP synthases was boosted in the evolved cells upon a short-term methanol stress. D-lactate production from methanol by adapted cells overexpressing the native D-lactate dehydrogenase was quantified. A significant higher lactate yield was obtained compared with control cells, indicating an enhanced capacity of the cells resistant to high methanol to assimilate this one carbon feedstock more efficiently.
Collapse
Affiliation(s)
- Sophia Belkhelfa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Ivan Dubois
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Anne Berger
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Valérie A Delmas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Laurence Cattolico
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Aude C Perdereau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Évry, Université Paris-Saclay, Évry, France
| |
Collapse
|
18
|
Zhang W, Zhang T, Song M, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M. Metabolic Engineering of Escherichia coli for High Yield Production of Succinic Acid Driven by Methanol. ACS Synth Biol 2018; 7:2803-2811. [PMID: 30300546 DOI: 10.1021/acssynbio.8b00109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanol is increasingly becoming an attractive carbon feedstock for the production of various biochemicals due to its high abundance and low price. In this study, when methanol assimilation module was introduced into succinic acid producing Escherichia coli by employing the NAD-dependent methanol dehydrogenase from Bacillus methanolicus and ribulose monophosphate pathway from different donor organisms, succinic acid yield was increased from 0.91 ± 0.08 g/g to 0.98 ± 0.11 g/g with methanol as an auxiliary substrate under the anaerobic fermentation. Further 13C-labeling experiments showed that the recombinant strain successfully converted methanol into succinic acid, as the carbon atom of carboxyl group in succinic acid was labeled by 13C. It was found that the NADH generated by methanol oxidation would benefit succinate production, as the NADH/NAD+ ratio in vivo was decreased from 0.67 to 0.45 in the engineered strain, indicating that the efficiency of succinic acid synthesis was significantly improved when driven by methanol. This study represents a successful case for the development of reducing chemical production using methanol as an auxiliary substrate.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Meng Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
19
|
Yang J, Zhang CT, Yuan XJ, Zhang M, Mo XH, Tan LL, Zhu LP, Chen WJ, Yao MD, Hu B, Yang S. Metabolic engineering of Methylobacterium extorquens AM1 for the production of butadiene precursor. Microb Cell Fact 2018; 17:194. [PMID: 30572892 PMCID: PMC6300920 DOI: 10.1186/s12934-018-1042-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Butadiene is a platform chemical used as an industrial feedstock for the manufacture of automobile tires, synthetic resins, latex and engineering plastics. Currently, butadiene is predominantly synthesized as a byproduct of ethylene production from non-renewable petroleum resources. Although the idea of biological synthesis of butadiene from sugars has been discussed in the literature, success for that goal has so far not been reported. As a model system for methanol assimilation, Methylobacterium extorquens AM1 can produce several unique metabolic intermediates for the production of value-added chemicals, including crotonyl-CoA as a potential precursor for butadiene synthesis. RESULTS In this work, we focused on constructing a metabolic pathway to convert crotonyl-CoA into crotyl diphosphate, a direct precursor of butadiene. The engineered pathway consists of three identified enzymes, a hydroxyethylthiazole kinase (THK) from Escherichia coli, an isopentenyl phosphate kinase (IPK) from Methanothermobacter thermautotrophicus and an aldehyde/alcohol dehydrogenase (ADHE2) from Clostridium acetobutylicum. The Km and kcat of THK, IPK and ADHE2 were determined as 8.35 mM and 1.24 s-1, 1.28 mM and 153.14 s-1, and 2.34 mM and 1.15 s-1 towards crotonol, crotyl monophosphate and crotonyl-CoA, respectively. Then, the activity of one of rate-limiting enzymes, THK, was optimized by random mutagenesis coupled with a developed high-throughput screening colorimetric assay. The resulting variant (THKM82V) isolated from over 3000 colonies showed 8.6-fold higher activity than wild-type, which helped increase the titer of crotyl diphosphate to 0.76 mM, corresponding to a 7.6% conversion from crotonol in the one-pot in vitro reaction. Overexpression of native ADHE2, IPK with THKM82V under a strong promoter mxaF in M. extorquens AM1 did not produce crotyl diphosphate from crotonyl-CoA, but the engineered strain did generate 0.60 μg/mL of intracellular crotyl diphosphate from exogenously supplied crotonol at mid-exponential phase. CONCLUSIONS These results represent the first step in producing a butadiene precursor in recombinant M. extorquens AM1. It not only demonstrates the feasibility of converting crotonol to key intermediates for butadiene biosynthesis, it also suggests future directions for improving catalytic efficiency of aldehyde/alcohol dehydrogenase to produce butadiene precursor from methanol.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Chang-Tai Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Xiao-Jie Yuan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Min Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Ling-Ling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Li-Ping Zhu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Wen-Jing Chen
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Ming-Dong Yao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Bo Hu
- Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080 USA
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong China
| |
Collapse
|
20
|
Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C. Metab Eng 2018; 48:175-183. [PMID: 29883803 DOI: 10.1016/j.ymben.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022]
Abstract
Methane, the primary component of natural gas, is the second most abundant greenhouse gas (GHG) and contributes significantly to climate change. The conversion of methane to industrial platform chemicals provides an attractive opportunity to decrease GHG emissions and utilize this inexpensive and abundantly available gas as a carbon feedstock. While technologies exist for chemical conversion of methane to liquid fuels, the technical complexity of these processes mandate high capital expenditure, large-scale commercial facilities to leverage economies of scale that cannot be efficiently scaled down. Alternatively, bioconversion technologies capable of efficient small-scale operation with high carbon and energy efficiency can enable deployment at remote methane resources inaccessible to current chemical technologies. Aerobic obligate methanotrophs, specifically Methylomicrobium buryatense 5GB1, have recently garnered increased research interest for development of such bio-technologies. In this study, we demonstrate production of C-4 carboxylic acids non-native to the host, specifically crotonic and butyric acids, from methane in an engineered M. buryatense 5GB1C by diversion of carbon flux through the acetyl-CoA node of central 'sugar' linked metabolic pathways using reverse β-oxidation pathway genes. The synthesis of short chain carboxylic acids through the acetyl-CoA node demonstrates the potential for engineering M. buryatense 5GB1 as a platform for bioconversion of methane to a number of value added industrial chemicals, and presents new opportunities for further diversifying the products obtainable from methane as the feedstock.
Collapse
|
21
|
Cui LY, Wang SS, Guan CG, Liang WF, Xue ZL, Zhang C, Xing XH. Breeding of Methanol-Tolerant Methylobacterium extorquens
AM1 by Atmospheric and Room Temperature Plasma Mutagenesis Combined With Adaptive Laboratory Evolution. Biotechnol J 2018; 13:e1700679. [DOI: 10.1002/biot.201700679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/29/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lan-Yu Cui
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- School of Preclinical Medicine; Guangxi Medical University; Shuang Yong Road 530021 Nanning China
| | - Shan-Shan Wang
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- College of Biological and Chemical Engineering; Anhui Polytechnic University; Beijing Middle Road 241000 Wuhu China
| | - Chang-Ge Guan
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
| | - Wei-Fan Liang
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
| | - Zheng-Lian Xue
- College of Biological and Chemical Engineering; Anhui Polytechnic University; Beijing Middle Road 241000 Wuhu China
| | - Chong Zhang
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- Tsinghua University; Center for Synthetic and System Biology; Tsinghua Yuan Street 100084 Beijing China
| | - Xin-Hui Xing
- MOE Key Lab of Industrial Biocatalysis; Department of Chemical Engineering; Tsinghua University; Tsinghua Yuan Street 100084 Beijing China
- Tsinghua University; Center for Synthetic and System Biology; Tsinghua Yuan Street 100084 Beijing China
| |
Collapse
|
22
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
23
|
Xu XY, Shen XT, Yuan XJ, Zhou YM, Fan H, Zhu LP, Du FY, Sadilek M, Yang J, Qiao B, Yang S. Metabolomics Investigation of an Association of Induced Features and Corresponding Fungus during the Co-culture of Trametes versicolor and Ganoderma applanatum. Front Microbiol 2018; 8:2647. [PMID: 29375514 PMCID: PMC5767234 DOI: 10.3389/fmicb.2017.02647] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/19/2017] [Indexed: 11/26/2022] Open
Abstract
The co-culture of Trametes versicolor and Ganoderma applanatum is a model of intense basidiomycete interaction, which induces many newly synthesized or highly produced features. Currently, one of the major challenges is an identification of the origin of induced features during the co-culture. Herein, we report a 13C-dynamic labeling analysis used to determine an association of induced features and corresponding fungus even if the identities of metabolites were not available or almost nothing was known of biochemical aspects. After the co-culture of T. versicolor and G. applanatum for 10 days, the mycelium pellets of T. versicolor and G. applanatum were sterilely harvested and then mono-cultured in the liquid medium containing half fresh medium with 13C-labeled glucose as carbon source and half co-cultured supernatants collected on day 10. 13C-labeled metabolome analyzed by LC-MS revealed that 31 induced features including 3-phenyllactic acid and orsellinic acid were isotopically labeled in the mono-culture after the co-culture stimulation. Twenty features were derived from T. versicolor, 6 from G. applanatum, and 5 features were synthesized by both T. versicolor and G. applanatum. 13C-labeling further suggested that 12 features such as previously identified novel xyloside [N-(4-methoxyphenyl)formamide 2-O-beta-D-xyloside] were likely induced through the direct physical interaction of mycelia. Use of molecular network analysis combined with 13C-labeling provided an insight into the link between the generation of structural analogs and producing fungus. Compound 1 with m/z 309.0757, increased 15.4-fold in the co-culture and observed 13C incorporation in the mono-culture of both T. versicolor and G. applanatum, was purified and identified as a phenyl polyketide, 2,5,6-trihydroxy-4, 6-diphenylcyclohex-4-ene-1,3-dione. The biological activity study indicated that this compound has a potential to inhibit cell viability of leukemic cell line U937. The current work sets an important basis for further investigations including novel metabolites discovery and biosynthetic capacity improvement.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Ting Shen
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Jie Yuan
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yuan-Ming Zhou
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Li-Ping Zhu
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Feng-Yu Du
- School of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Song Yang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Science, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Zhang T, Tremblay PL. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism. Methods Mol Biol 2018; 1671:149-161. [PMID: 29170958 DOI: 10.1007/978-1-4939-7295-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. ALE experiments have mainly been conducted with heterotrophic microbes to study, for instance, cell metabolism with different multicarbon substrates, tolerance to solvents, pH variation, and high temperature. Here, we describe employing an ALE method to generate Sporomusa ovata strains growing faster autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria.
Collapse
Affiliation(s)
- Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- The Novo Nordisk Foundation Center for Biosustainablity, Technical University of Denmark, Hørsholm, Denmark.
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- The Novo Nordisk Foundation Center for Biosustainablity, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
25
|
Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Microb Cell Fact 2017; 16:179. [PMID: 29084554 PMCID: PMC5663086 DOI: 10.1186/s12934-017-0798-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/24/2017] [Indexed: 12/01/2022] Open
Abstract
Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical, serving as a precursor for a wide range of industrial applications such as the production of acrylic acid and 1,3-propanediol. Although Escherichia coli or Saccharomyces cerevisiae are the primary industrial microbes for the production of 3-HP, alternative engineered hosts have the potential to generate 3-HP from other carbon feedstocks. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, is a model system for assessing the possibility of generating 3-HP from one-carbon feedstock methanol. Results Here we constructed a malonyl-CoA pathway by heterologously overexpressing the mcr gene to convert methanol into 3-HP in M. extorquens AM1. The engineered strains demonstrated 3-HP production with initial titer of 6.8 mg/l in shake flask cultivation, which was further improved to 69.8 mg/l by increasing the strength of promoter and mcr gene copy number. In vivo metabolic analysis showed a significant decrease of the acetyl-CoA pool size in the strain with the highest 3-HP titer, suggesting the supply of acetyl-CoA is a potential bottleneck for further improvement. Notably, 3-HP was rapidly degraded after the transition from exponential phase to stationary phase. Metabolomics analysis showed the accumulation of intracellular 3-hydroxypropionyl-CoA at stationary phase with the addition of 3-HP into the cultured medium, indicating 3-HP was first converted to its CoA derivatives. In vitro enzymatic assay and β-alanine pathway dependent 13C-labeling further demonstrated that a reductive route sequentially converted 3-HP-CoA to acrylyl-CoA and propionyl-CoA, with the latter being reassimilated into the ethylmalonyl-CoA pathway. The deletion of the gene META1_4251 encoding a putative acrylyl-CoA reductase led to reduced degradation rate of 3-HP in late stationary phase. Conclusions We demonstrated the feasibility of constructing the malonyl-CoA pathway in M. extorquens AM1 to generate 3-HP. Furthermore, we showed that a reductive route coupled with the ethylmalonyl-CoA pathway was the major channel responsible for degradation of the 3-HP during the growth transition. Engineered M. extorquens AM1 represents a good platform for 3-HP production from methanol. Electronic supplementary material The online version of this article (10.1186/s12934-017-0798-2) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Jahn LJ, Munck C, Ellabaan MMH, Sommer MOA. Adaptive Laboratory Evolution of Antibiotic Resistance Using Different Selection Regimes Lead to Similar Phenotypes and Genotypes. Front Microbiol 2017; 8:816. [PMID: 28553265 PMCID: PMC5425606 DOI: 10.3389/fmicb.2017.00816] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 12/01/2022] Open
Abstract
Antibiotic resistance is a global threat to human health, wherefore it is crucial to study the mechanisms of antibiotic resistance as well as its emergence and dissemination. One way to analyze the acquisition of de novo mutations conferring antibiotic resistance is adaptive laboratory evolution. However, various evolution methods exist that utilize different population sizes, selection strengths, and bottlenecks. While evolution in increasing drug gradients guarantees high-level antibiotic resistance promising to identify the most potent resistance conferring mutations, other selection regimes are simpler to implement and therefore allow higher throughput. The specific regimen of adaptive evolution may have a profound impact on the adapted cell state. Indeed, substantial effects of the selection regime on the resulting geno- and phenotypes have been reported in the literature. In this study we compare the geno- and phenotypes of Escherichia coli after evolution to Amikacin, Piperacillin, and Tetracycline under four different selection regimes. Interestingly, key mutations that confer antibiotic resistance as well as phenotypic changes like collateral sensitivity and cross-resistance emerge independently of the selection regime. Yet, lineages that underwent evolution under mild selection displayed a growth advantage independently of the acquired level of antibiotic resistance compared to lineages adapted under maximal selection in a drug gradient. Our data suggests that even though different selection regimens result in subtle genotypic and phenotypic differences key adaptations appear independently of the selection regime.
Collapse
Affiliation(s)
- Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| | - Christian Munck
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| | - Mostafa M H Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| |
Collapse
|
27
|
Zhang W, Zhang T, Wu S, Wu M, Xin F, Dong W, Ma J, Zhang M, Jiang M. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv 2017. [DOI: 10.1039/c6ra27038g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Methanol represents an attractive non-food raw material in biotechnological processes from an economic and process point of view. It is vital to elucidate methanol metabolic pathways, which will help to genetically construct non-native methylotrophs.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Sihua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Mingke Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| |
Collapse
|
28
|
Recent applications of metabolomics to advance microbial biofuel production. Curr Opin Biotechnol 2016; 43:118-126. [PMID: 27883952 DOI: 10.1016/j.copbio.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
Biofuel production from plant biomass is a promising source of renewable energy [1]. However, efficient biofuel production involves the complex task of engineering high-performance microorganisms, which requires detailed knowledge of metabolic function and regulation. This review highlights the potential of mass-spectrometry-based metabolomic analysis to guide rational engineering of biofuel-producing microbes. We discuss recent studies that apply knowledge gained from metabolomic analyses to increase the productivity of engineered pathways, characterize the metabolism of emerging biofuel producers, generate novel bioproducts, enable utilization of lignocellulosic feedstock, and improve the stress tolerance of biofuel producers.
Collapse
|
29
|
Yao L, Zhu LP, Xu XY, Tan LL, Sadilek M, Fan H, Hu B, Shen XT, Yang J, Qiao B, Yang S. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics. Sci Rep 2016; 6:33237. [PMID: 27616058 PMCID: PMC5018966 DOI: 10.1038/srep33237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
Transcriptomic analysis of cultured fungi suggests that many genes for secondary metabolite synthesis are presumably silent under standard laboratory condition. In order to investigate the expression of silent genes in symbiotic systems, 136 fungi-fungi symbiotic systems were built up by co-culturing seventeen basidiomycetes, among which the co-culture of Trametes versicolor and Ganoderma applanatum demonstrated the strongest coloration of confrontation zones. Metabolomics study of this co-culture discovered that sixty-two features were either newly synthesized or highly produced in the co-culture compared with individual cultures. Molecular network analysis highlighted a subnetwork including two novel xylosides (compounds 2 and 3). Compound 2 was further identified as N-(4-methoxyphenyl)formamide 2-O-β-D-xyloside and was revealed to have the potential to enhance the cell viability of human immortalized bronchial epithelial cell line of Beas-2B. Moreover, bioinformatics and transcriptional analysis of T. versicolor revealed a potential candidate gene (GI: 636605689) encoding xylosyltransferases for xylosylation. Additionally, 3-phenyllactic acid and orsellinic acid were detected for the first time in G. applanatum, which may be ascribed to response against T.versicolor stress. In general, the described co-culture platform provides a powerful tool to discover novel metabolites and help gain insights into the mechanism of silent gene activation in fungal defense.
Collapse
Affiliation(s)
- Lu Yao
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Li-Ping Zhu
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Xiao-Yan Xu
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Ling-Ling Tan
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States of America
| | - Huan Fan
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Hu
- Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080, United States of America
| | - Xiao-Ting Shen
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300070, China
| | - Song Yang
- School of Life Science, Qingdao Agricultural University, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao 266109, Shandong Province, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|