1
|
de Figueiredo FL, Contesini FJ, Terrasan CRF, Gerhardt JA, Corrêa AB, Antoniel EP, Wassano NS, Levassor L, Rabelo SC, Franco TT, Mortensen UH, Damasio A. Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass. Microb Cell Fact 2024; 23:323. [PMID: 39614296 DOI: 10.1186/s12934-024-02578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/02/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides. RESULTS The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain. CONCLUSION Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.
Collapse
Affiliation(s)
- Fernanda Lopes de Figueiredo
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Fabiano Jares Contesini
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Søltofts Plads, Building 223, Kongens Lyngby, 2800, Denmark
| | - César Rafael Fanchini Terrasan
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Jaqueline Aline Gerhardt
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Ana Beatriz Corrêa
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Everton Paschoal Antoniel
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Natália Sayuri Wassano
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Lucas Levassor
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Søltofts Plads, Building 223, Kongens Lyngby, 2800, Denmark
| | - Sarita Cândida Rabelo
- Department of Bioprocess and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Telma Teixeira Franco
- Interdisciplinary Center of Energy Planning, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Uffe Hasbro Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Søltofts Plads, Building 223, Kongens Lyngby, 2800, Denmark
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
2
|
Bueno BE, Muniz Brito AL, Garcia Rea VS, Kurnianto RW, Zaiat M, van Lier JB. Anaerobic membrane bioreactor (AnMBR) with external ultrafiltration membrane for the treatment of sugar beet vinasse. Front Bioeng Biotechnol 2024; 12:1491974. [PMID: 39634099 PMCID: PMC11615572 DOI: 10.3389/fbioe.2024.1491974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Vinasse, a by-product of ethanol production, is generated at significant rates. While rich in nutrients such as calcium, magnesium, and potassium, its high solids, organic matter, acidity, and sulfate content pose challenges when disposed directly on soil, necessitating treatment. Anaerobic digestion is a viable solution, reducing organic pollution while recovering energy in the form of biogas, aligning with the biorefinery concept. Traditionally, sludge bed reactors and anaerobic contact reactors are utilized for vinasse processing, with sludge granulation being vital for treatment success. However, challenges such as sludge wash-out due to recalcitrant compounds, high solids concentration in the influent, low pH, salinity, and temperature hinder granule formation. Anaerobic membrane bioreactors (AnMBR) offer an alternative, simplifying treatment by integrating intensified pre- and post-treatment units. Due to complete sludge retention, AnMBRs achieve high COD removal efficiencies, yielding a suspended solids-free and largely disinfected effluent. Therefore, AnMBRs show promise for vinasse treatment, eliminating the need for sludge granulation and producing nutrient-rich effluent with minimal residual organics and suspended solids. In this study, an AnMBR equipped with an inside-out external crossflow ultrafiltration membrane was proposed for the treatment of vinasse. The AnMBR reached a COD removal efficiency of 95% ± 2.6% and produced 0.3 CH4 L. g COD removed -1 working at organic loading rates of 8 g COD. L-1 d-1 and membrane fluxes of 10 LMH. At organic loading rates of 10 g COD. L-1 d-1 and fluxes of 12 and 14 LMH, the COD removal efficiency decreased to 77% ± 11% and 73% ± 7.9%, respectively. The AnMBR technology represents an innovation for wastewater treatment, however, more research using the cross-flow configuration and different types of effluents is needed. Literature studies that address the treatment of sugar beet or sugarcane vinasse using AnMBR are still scarce. This study explored the potentials of AnMBR technology for vinasse treatment and contributes to the dissemination of this technology, opening new possibilities for vinasse processing.
Collapse
Affiliation(s)
- Beatriz Egerland Bueno
- Biological Processes Laboratory, Department of Environmental Engineering, University of Sao Paulo, São Carlos, Brazil
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - André Luiz Muniz Brito
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
- Department of Sanitary and Environmental Engineering, University of Paraiba State, Campina Grande, Brazil
| | - Victor. S. Garcia Rea
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Rifki Wahyu Kurnianto
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
- Department of Chemical Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Marcelo Zaiat
- Biological Processes Laboratory, Department of Environmental Engineering, University of Sao Paulo, São Carlos, Brazil
| | - Jules. B. van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Angelotti F, Hamada E, Bettiol W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2447. [PMID: 39273931 PMCID: PMC11396851 DOI: 10.3390/plants13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.
Collapse
Affiliation(s)
- Francislene Angelotti
- Embrapa Semi-Arid, Brazilian Agricultural Research Corporation, Petrolina 56302-970, Brazil
| | - Emília Hamada
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| | - Wagner Bettiol
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| |
Collapse
|
4
|
Zambello IU, Holwerda EK, Lynd LR. Characterization of sugarcane bagasse solubilization and utilization by thermophilic cellulolytic and saccharolytic bacteria at increasing solid loadings. BIORESOURCE TECHNOLOGY 2024; 406:130973. [PMID: 38879051 DOI: 10.1016/j.biortech.2024.130973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
In Brazil the main feedstock used for ethanol production is sugarcane juice, resulting in large amounts of bagasse. Bagasse has high potential for cellulosic ethanol production, and consolidated bioprocessing (CBP) has potential for lowering costs. However, economic feasibility requires bioprocessing at high solids loadings, entailing engineering and biological challenges. This study aims to document and characterize carbohydrate solubilization and utilization by defined cocultures of Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum at increasing loadings of sugarcane bagasse. Results show that fractional carbohydrate solubilization decreases as solids loading increases from 10 g/L to 80 g/L. Cocultures enhance solubilization and carbohydrate utilization compared to monocultures, irrespective of initial solids loading. Rinsing bagasse before fermentation slightly decreases solubilization. Experiments studying inhibitory effects using spent media and dilution of broth show that negative effects are temporary or reversible. These findings highlight the potential of converting sugarcane bagasse via CBP, pointing out performance limitations that must be addressed.
Collapse
Affiliation(s)
- Isabela U Zambello
- Advanced Second Generation Biofuel (A2G) Laboratory, School of Chemical Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Bordonal RDO, Tenelli S, da Silva Oliveira DM, Chagas MF, Cherubin MR, Weiler DA, Campbell E, Gonzaga LC, Barbosa LC, Cerri CEP, Carvalho JLN. Carbon savings from sugarcane straw-derived bioenergy: Insights from a life cycle perspective including soil carbon changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174670. [PMID: 39002600 DOI: 10.1016/j.scitotenv.2024.174670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Sugarcane straw removal for bioenergy production will increase substantially in the next years, but this may deplete soil organic carbon (SOC) and exacerbate greenhouse gas (GHG) emissions. These aspects are not consistently approached in bioenergy life cycle assessment (LCA). Using SOC modeling and LCA approach, this study addressed the life cycle GHG balance from sugarcane agroindustry in different scenarios of straw removal, considering the potential SOC changes associated with straw management in sugarcane-cultivated soils in Brazil. Long-term simulations showed SOC losses of up to -0.5 Mg ha-1 yr-1 upon complete straw removal, whereas the moderate removal had little effects on SOC and the maintenance of all straw in the field increased SOC accumulation by up to 0.4 Mg ha-1 yr-1. Our analysis suggests that accounting for SOC changes in LCA calculations could lower the net GHG benefits of straw-derived bioenergy, whose emissions intensity varied according to soil type. Overall, SOC depletion induced by complete straw removal increased the life cycle GHG emissions of straw-derived bioenergy by 26 % (3.9 g CO2eq MJ-1) compared to a scenario without taking SOC changes into account. Straw removal for cellulosic ethanol could be effective for mitigating GHG emissions relative to gasoline, but it was not advantageous for bioelectricity generation depending on the energy sources that are displaced. Therefore, straw-induced change of SOC stocks is a critical factor to model life cycle GHG emissions of straw-derived bioenergy.
Collapse
Affiliation(s)
- Ricardo de Oliveira Bordonal
- Brazilian Biorenewables National Laboratory / Brazilian Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP 13083-100, Brazil.
| | - Sarah Tenelli
- Brazilian Biorenewables National Laboratory / Brazilian Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP 13083-100, Brazil; "Luiz de Queiroz" College of Agriculture / University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Dener Márcio da Silva Oliveira
- Agricultural Science Institute / Federal University of Viçosa (UFV), Florestal Campus, Road LMG 818, km 06, Florestal, MG 35690-000, Brazil
| | - Mateus Ferreira Chagas
- Brazilian Biorenewables National Laboratory / Brazilian Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP 13083-100, Brazil
| | - Maurício Roberto Cherubin
- "Luiz de Queiroz" College of Agriculture / University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Douglas Adams Weiler
- Federal University of Santa Catarina (UFSC), Curitibanos Campus, Road Ulysses Gaboardi, km 03, Curitibanos, SC 89520-000, Brazil
| | - Eleanor Campbell
- School of Agricultural Engineering (FEAGRI), University of Campinas (UNICAMP), Av. Cândido Rondon 501, Campinas, SP 13083-875, Brazil
| | - Leandro Carolino Gonzaga
- Brazilian Biorenewables National Laboratory / Brazilian Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP 13083-100, Brazil
| | - Leandro Carneiro Barbosa
- Brazilian Biorenewables National Laboratory / Brazilian Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP 13083-100, Brazil
| | - Carlos Eduardo Pellegrino Cerri
- "Luiz de Queiroz" College of Agriculture / University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - João Luis Nunes Carvalho
- Brazilian Biorenewables National Laboratory / Brazilian Center for Research in Energy and Materials (LNBR/CNPEM), Rua Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, SP 13083-100, Brazil
| |
Collapse
|
6
|
de Carvalho JC, de Souza Vandenberghe LP, Sydney EB, Karp SG, Magalhães AI, Martinez-Burgos WJ, Medeiros ABP, Thomaz-Soccol V, Vieira S, Letti LAJ, Rodrigues C, Woiciechowski AL, Soccol CR. Biomethane Production from Sugarcane Vinasse in a Circular Economy: Developments and Innovations. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Sugarcane ethanol production generates about 360 billion liters of vinasse, a liquid effluent with an average chemical oxygen demand of 46,000 mg/L. Vinasse still contains about 11% of the original energy from sugarcane juice, but this chemical energy is diluted. This residue, usually discarded or applied in fertigation, is a suitable substrate for anaerobic digestion (AD). Although the technology is not yet widespread—only 3% of bioethanol plants used it in Brazil in the past, most discontinuing the process—the research continues. With a biomethane potential ranging from 215 to 324 L of methane produced by kilogram of organic matter in vinasse, AD could improve the energy output of sugarcane biorefineries. At the same time, the residual digestate could still be used as an agricultural amendment or for microalgal production for further stream valorization. This review presents the current technology for ethanol production from sugarcane and describes the state of the art in vinasse AD, including technological trends, through a recent patent evaluation. It also appraises the integration of vinasse AD in an ideal sugarcane biorefinery approach. It finally discusses bottlenecks and presents possible directions for technology development and widespread adoption of this simple yet powerful approach for bioresource recovery.
Collapse
Affiliation(s)
- Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | | | - Eduardo Bittencourt Sydney
- Department of Bioprocess Engineering and Biotechnology, Federal University of Technology—Paraná, Ponta Grossa 84016-210, PR, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Antonio Irineudo Magalhães
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Walter José Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Vanete Thomaz-Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Sabrina Vieira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Technology—Paraná, Ponta Grossa 84016-210, PR, Brazil
| | - Luiz Alberto Junior Letti
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Cristine Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| |
Collapse
|
7
|
Ciamponi FE, Procópio DP, Murad NF, Franco TT, Basso TO, Brandão MM. Multi-omics network model reveals key genes associated with p-coumaric acid stress response in an industrial yeast strain. Sci Rep 2022; 12:22466. [PMID: 36577778 PMCID: PMC9797568 DOI: 10.1038/s41598-022-26843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The production of ethanol from lignocellulosic sources presents increasingly difficult issues for the global biofuel scenario, leading to increased production costs of current second-generation (2G) ethanol when compared to first-generation (1G) plants. Among the setbacks encountered in industrial processes, the presence of chemical inhibitors from pre-treatment processes severely hinders the potential of yeasts in producing ethanol at peak efficiency. However, some industrial yeast strains have, either naturally or artificially, higher tolerance levels to these compounds. Such is the case of S. cerevisiae SA-1, a Brazilian fuel ethanol industrial strain that has shown high resistance to inhibitors produced by the pre-treatment of cellulosic complexes. Our study focuses on the characterization of the transcriptomic and physiological impact of an inhibitor of this type, p-coumaric acid (pCA), on this strain under chemostat cultivation via RNAseq and quantitative physiological data. It was found that strain SA-1 tend to increase ethanol yield and production rate while decreasing biomass yield when exposed to pCA, in contrast to pCA-susceptible strains, which tend to decrease their ethanol yield and fermentation efficiency when exposed to this substance. This suggests increased metabolic activity linked to mitochondrial and peroxisomal processes. The transcriptomic analysis also revealed a plethora of differentially expressed genes located in co-expressed clusters that are associated with changes in biological pathways linked to biosynthetic and energetical processes. Furthermore, it was also identified 20 genes that act as interaction hubs for these clusters, while also having association with altered pathways and changes in metabolic outputs, potentially leading to the discovery of novel targets for metabolic engineering toward a more robust industrial yeast strain.
Collapse
Affiliation(s)
- F. E. Ciamponi
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - D. P. Procópio
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - N. F. Murad
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - T. T. Franco
- grid.411087.b0000 0001 0723 2494School of Chemical Engineering (FEQ), State University of Campinas (Unicamp), Av. Albert Einstein, 500, Campinas, SP 13083-852 Brazil
| | - T. O. Basso
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - M. M. Brandão
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| |
Collapse
|
8
|
Silva VTF, Ruschoni UCM, Ferraz A, Milagres AMF. Xylan, Xylooligosaccharides, and Aromatic Structures With Antioxidant Activity Released by Xylanase Treatment of Alkaline-Sulfite–Pretreated Sugarcane Bagasse. Front Bioeng Biotechnol 2022; 10:940712. [PMID: 35898646 PMCID: PMC9313595 DOI: 10.3389/fbioe.2022.940712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Xylanase enzymes are useful to fractionate plant biomass, producing xylan, xylooligosaccharides (XOS), and antioxidant-derived XOS. In a biorefinery, pretreated biomass can be digested with xylanase prior to cellulose saccharification, enhancing the product portfolio in the process. With this vision, this study highlighted a wide range of new products attainable from alkaline-sulfite–pretreated sugarcane bagasse by treatments with endo-xylanase under controlled conditions. The developed process provided a crude extract corresponding to 29.7% (w/w) of pretreated sugarcane bagasse. The crude extract included a relatively polymeric glucuronoarabinoxylan fraction, DP2-DP6 xylooligosaccharides, and aromatic compounds. The enzymatically produced extract was fractionated with increasing ethanol concentrations [up to 90% (v/v)], providing precipitation of varied polymeric xylan fractions (48% (w/w) of the crude extract) with average molar masses ranging from 28 kDa to 3.6 kDa. The fraction soluble in 90% ethanol was subjected to adsorption on 4% (w/v) activated charcoal and eluted with an ethanol gradient from 10% to 70% (v/v), thus providing xylooligosaccharides and aromatic fractions. Most of the xylooligosaccharides (74% of the eluted sugars) were washed out in 10%–30% ethanol. DP2 and DP3 structures predominated in the 10% ethanol fraction, while DP5 structures were significantly enriched in the 30% ethanol fraction. Higher ethanol concentrations desorbed xylooligosaccharides associated with higher amounts of aromatic compounds. Total aromatics, phenolic structures, and p-hydroxycinnamates predominated in the fractions desorbed with 60% and 70% ethanol. The antioxidant activity of produced fractions correlated with their phenolic contents. Compiled results indicate that a wide variety of products can be prepared from pretreated biomass using xylanase-aided extraction procedures. Recovered fractions presented different features and specific application prospects. Beyond polymeric xylan with low lignin contamination, xylooligosaccharides or even lignin-carbohydrate complexes with antioxidant activity can be included in the biorefinery portfolio based on the currently developed fractionation studies.
Collapse
|
9
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Awasthi MK, Sindhu R, Sirohi R, Kumar V, Ahluwalia V, Binod P, Juneja A, Kumar D, Yan B, Sarsaiya S, Zhang Z, Pandey A, Taherzadeh MJ. Agricultural waste biorefinery development towards circular bioeconomy. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 158:112122. [DOI: 10.1016/j.rser.2022.112122] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
11
|
Multi-Objective Sustainability Optimization of Biomass Residues to Ethanol via Gasification and Syngas Fermentation: Trade-Offs between Profitability, Energy Efficiency, and Carbon Emissions. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work presents a strategy for optimizing the production process of ethanol via integrated gasification and syngas fermentation, a conversion platform of growing interest for its contribution to carbon recycling. The objective functions (minimum ethanol selling price (MESP), energy efficiency, and carbon footprint) were evaluated for the combinations of different input variables in models of biomass gasification, energy production from syngas, fermentation, and ethanol distillation, and a multi-objective genetic algorithm was employed for the optimization of the integrated process. Two types of waste feedstocks were considered, wood residues and sugarcane bagasse, with the former leading to lower MESP and a carbon footprint of 0.93 USD/L and 3 g CO2eq/MJ compared to 1.00 USD/L and 10 g CO2eq/MJ for sugarcane bagasse. The energy efficiency was found to be 32% in both cases. An uncertainty analysis was conducted to determine critical decision variables, which were found to be the gasification zone temperature, the split fraction of the unreformed syngas sent to the combustion chamber, the dilution rate, and the gas residence time in the bioreactor. Apart from the abovementioned objectives, other aspects such as water footprint, ethanol yield, and energy self-sufficiency were also discussed.
Collapse
|
12
|
Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels. SUSTAINABILITY 2021. [DOI: 10.3390/su131810371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Decarbonization programs are being proposed worldwide to reduce greenhouse gas (GHG) emissions from transportation fuels, using Life Cycle Assessment (LCA) models or tools. Although such models are broadly accepted, varying results are often observed. This study describes similarities and differences of key decarbonization programs and their GHG calculators and compares established LCA models for assessing 2G ethanol from lignocellulosic feedstock. The selected LCA models were GHGenius, GREET, JRC’s model, and VSB, which originated calculators for British Columbia’s Low Carbon Fuel Standard, California’s Low Carbon Fuel Standard, Renewable Energy Directive, and RenovaBio, respectively. We performed a harmonization of the selected models by inserting data of one model into other ones to illustrate the possibility of obtaining similar results after a few harmonization steps and to determine which parameters have higher contribution to closing the gap between default results. Differences among 2G ethanol from wheat straw were limited to 0.1 gCO2eq. MJ−1, and discrepancies in emissions decreased by 95% and 78% for corn stover and forest residues, respectively. Better understanding of structure, calculation procedures, parameters, and methodological assumptions among the LCA models is a first step towards an improved harmonization that will allow a globally accepted and exchangeable carbon credit system to be created.
Collapse
|
13
|
Orejuela-Escobar LM, Landázuri AC, Goodell B. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Contesini FJ, Frandsen RJN, Damasio A. Editorial: CAZymes in Biorefinery: From Genes to Application. Front Bioeng Biotechnol 2021; 9:622817. [PMID: 33644017 PMCID: PMC7902500 DOI: 10.3389/fbioe.2021.622817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fabiano Jares Contesini
- Synthetic Biology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus John Normand Frandsen
- Synthetic Biology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
15
|
Dantas ERS, Bonhivers JC, Maciel Filho R, Mariano AP. Biochemical conversion of sugarcane bagasse into the alcohol fuel mixture of isopropanol-butanol-ethanol (IBE): Is it economically competitive with cellulosic ethanol? BIORESOURCE TECHNOLOGY 2020; 314:123712. [PMID: 32604024 DOI: 10.1016/j.biortech.2020.123712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
This work presents a techno-economic analysis of the production of isopropanol, butanol, and ethanol (IBE) from sugarcane bagasse using clostridia and compares IBE with cellulosic ethanol for the minimum selling price (MSP) and sustainability aspects. The MSPs of the fuels are similar (15 USD/GJ) provided that glucose and xylose are effectively utilized in both processes, and the IBE process is equipped with a genetically-modified Clostridium species with enhanced IBE yield and a highly productive continuous bioreactor with integrated product recovery. Notably, these technologies can reduce the size (from 23 × 3785-m3 to 3 × 3027-m3 fermentation tanks) and the wastewater footprint (from 50 to 10 m3/m3 IBE) of the IBE plant. Furthermore, given that the production of either fuel results in a similar increase in the value created by the sugarcane biorefinery and its energy efficiency, the alcohol mixture produced by clostridia is a promising alternative to the less energy-dense ethanol fuel.
Collapse
Affiliation(s)
- Ercília Regina Silva Dantas
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jean-Christophe Bonhivers
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
16
|
Techno-Economic Analysis of Producing Glacial Acetic Acid from Poplar Biomass via Bioconversion. Molecules 2020; 25:molecules25184328. [PMID: 32967253 PMCID: PMC7571159 DOI: 10.3390/molecules25184328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
Most of the current commercial production of glacial acetic acid (GAA) is by petrochemical routes, primarily methanol carbonylation. GAA is an intermediate in the production of plastics, textiles, dyes, and paints. GAA production from biomass might be an economically viable and sustainable alternative to petroleum-derived routes. Separation of acetic acid from water is a major expense and requires considerable energy. This study evaluates and compares the technical and economic feasibility of GAA production via bioconversion using either ethyl acetate or alamine in diisobutylkerosene (DIBK) as organic solvents for purification. Models of a GAA biorefinery with a production of 120,650 tons/year were simulated in Aspen software. This biorefinery follows the path of pretreatment, enzymatic hydrolysis, acetogen fermentation, and acid purification. Estimated capital costs for different scenarios ranged from USD 186 to 245 million. Recovery of GGA using alamine/DIBK was a more economical process and consumed 64% less energy, due to lower steam demand in the recovery distillation columns. The estimated average minimum selling prices of GGA were USD 756 and 877/ton for alamine/DIBK and ethyl acetate scenarios, respectively. This work establishes a feasible and sustainable approach to produce GGA from poplar biomass via fermentation.
Collapse
|
17
|
Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries. ENERGIES 2020. [DOI: 10.3390/en13174576] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Large-scale deployment of both biochemical and thermochemical routes for advanced biofuels production is seen as a key climate change mitigation option. This study addresses techno-economic and environmental aspects of advanced liquid biofuels production alternatives via biomass gasification and Fischer–Tropsch synthesis integrated to a typical sugarcane distillery. The thermochemical route comprises the conversion of the residual lignocellulosic fraction of conventional sugarcane (bagasse and straw), together with eucalyptus and energy-cane as emerging lignocellulosic biomass options. This work promotes an integrated framework to simulate the mass and energy balances of process alternatives and incorporates techno-economic analyses and sustainability assessment methods based on a life-cycle perspective. Results show that integrated biorefineries provide greenhouse gas emission reduction between 85–95% compared to the fossil equivalent, higher than that expected from a typical sugarcane biorefinery. When considering avoided emissions by cultivated area, biorefinery scenarios processing energy-cane are favored, however at lower economic performance. Thermochemical processes may take advantage of the integration with the typical sugarcane mills and novel biofuels policies (e.g., RenovaBio) to mitigate some of the risks linked to the implementation of new biofuel technologies.
Collapse
|
18
|
Meghana M, Shastri Y. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. BIORESOURCE TECHNOLOGY 2020; 303:122929. [PMID: 32037190 DOI: 10.1016/j.biortech.2020.122929] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Sugarcane processing in sugar industry results in generation of vast amounts of wastes, which can be valorized to biofuels and value-added chemicals based on the concept of circular bioeconomy. For successful commercialization, economic and technological bottlenecks must be clearly identified. In this review, the state of the art of various valorization routes are discussed for each waste stream. Subsequently, studies quantifying the environmental impacts and performing techno-economic assessment are reviewed. The scope and bottlenecks involved in the commercialization of these routes are identified and discussed. The review shows that electricity production from bagasse has matured as a technology but the production of value-added chemicals is still lagging. Here, downstream separation and purification are the major hurdles needing technological innovation. Moreover, indirect environmental and human health benefits due to waste valorization are not adequately accounted for. Further, strong trade-offs between economic and environmental performance exist, necessitating systematic and region-specific decision-making framework.
Collapse
Affiliation(s)
- Munagala Meghana
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Yogendra Shastri
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
19
|
Brondi MG, Elias AM, Furlan FF, Giordano RC, Farinas CS. Performance targets defined by retro-techno-economic analysis for the use of soybean protein as saccharification additive in an integrated biorefinery. Sci Rep 2020; 10:7367. [PMID: 32355315 PMCID: PMC7192929 DOI: 10.1038/s41598-020-64316-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 01/19/2023] Open
Abstract
The use of additives in the enzymatic saccharification of lignocellulosic biomass can have positive effects, decreasing the unproductive adsorption of cellulases on lignin and reducing the loss of enzyme activity. Soybean protein stands out as a potential lignin-blocking additive, but the economic impact of its use has not previously been investigated. Here, a systematic evaluation was performed of the process conditions, together with a techno-economic analysis, for the use of soybean protein in the saccharification of hydrothermally pretreated sugarcane bagasse in the context of an integrated 1G-2G ethanol biorefinery. Statistical experimental design methodology was firstly applied as a tool to select the process variable solids loading at 15% (w/w) and soybean protein concentration at 12% (w/w), followed by determination of enzyme dosage at 10 FPU/g and hydrolysis time of 24 h. The saccharification of sugarcane bagasse under these conditions enabled an increase of 26% in the amount of glucose released, compared to the control without additive. The retro-techno-economic analysis (RTEA) technique showed that to make the biorefinery economically feasible, some performance targets should be reached experimentally such as increasing biomass conversion to ideally 80% and reducing enzyme loading to 5.6 FPU/g in the presence of low-cost soybean protein.
Collapse
Affiliation(s)
- Mariana G Brondi
- Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970, São Carlos, SP, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Andrew M Elias
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Felipe F Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Cristiane S Farinas
- Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970, São Carlos, SP, Brazil.
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil.
| |
Collapse
|
20
|
Dragone G, Kerssemakers AAJ, Driessen JLSP, Yamakawa CK, Brumano LP, Mussatto SI. Innovation and strategic orientations for the development of advanced biorefineries. BIORESOURCE TECHNOLOGY 2020; 302:122847. [PMID: 32008863 DOI: 10.1016/j.biortech.2020.122847] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Advanced biorefineries, which aim at valorizing biomass (from agriculture, forestry, aquaculture, among others) into a wide spectrum of products and bioenergy, are seen today as key to implement a sustainable biobased economy. Although different concepts of biorefinery are currently under development, further research and improvement are still required to obtain environmentally friendly and economically feasible commercial scale biorefineries. Valorization of all biomass components and integration of different disciplines are some of the strategies that have been considered to improve the economic and environmental performance. This paper summarizes and discusses the most recent innovations and strategic orientations for the development of advanced biorefineries. Focus is given on the valorization of non-carbohydrate components of biomass (protein, acetic acid and lignin), on-site and tailor-made production of enzymes, big data analytics, and interdisciplinary efforts. The idea is to provide new insights and directions to support the development and large-scale implementation of biorefineries.
Collapse
Affiliation(s)
- Giuliano Dragone
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Abraham A J Kerssemakers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Jasper L S P Driessen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Celina K Yamakawa
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Larissa P Brumano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
21
|
Vieira S, Barros MV, Sydney ACN, Piekarski CM, de Francisco AC, Vandenberghe LPDS, Sydney EB. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. BIORESOURCE TECHNOLOGY 2020; 299:122635. [PMID: 31882200 DOI: 10.1016/j.biortech.2019.122635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 05/12/2023]
Abstract
The sustainability of a biofuel is severely affected by the technological route of its production. Chemical pretreatment can be considered the traditional method of decomposition of the lignocellulose into its mono and oligomeric units, which can be further bioconverted to ethanol. The evaluation of the recent advances in chemical pretreatments of sugarcane bagasse, especially diluted acids, alkaline, organosolv and ionic liquids, identified the critical points for sustainability. In this context, chemicals recovery and reutilization or their substitution by green solvents, heat and electricity generation through bioenergy, reutilization of water from evaporators, vinasse concentration and the upgrading of lignin were discussed as strategic routes for developing sustainable chemical-based lignocellulose pretreatment. The advances in the technologies that allow greater fractionation of lignocellulosic biomass should be focused on the minimization of the use of natural resources, effluent generation and energy expenditure.
Collapse
Affiliation(s)
- Sabrina Vieira
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil
| | - Murillo Vetroni Barros
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Sustainable Production Systems Laboratory (LESP), 84016-210 Ponta Grossa, Paraná, Brazil
| | - Alessandra Cristine Novak Sydney
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil
| | - Cassiano Moro Piekarski
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Sustainable Production Systems Laboratory (LESP), 84016-210 Ponta Grossa, Paraná, Brazil
| | - Antônio Carlos de Francisco
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Sustainable Production Systems Laboratory (LESP), 84016-210 Ponta Grossa, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Eduardo Bittencourt Sydney
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
22
|
Ubando AT, Felix CB, Chen WH. Biorefineries in circular bioeconomy: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 299:122585. [PMID: 31901305 DOI: 10.1016/j.biortech.2019.122585] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 05/23/2023]
Abstract
Biorefinery is a sustainable means of generating multiple bioenergy products from various biomass feedstocks through the incorporation of relevant conversion technologies. With the increased attention of circular economy in the past half-decade with the emphasis of holistically addressing economic, environmental, and social aspects of the industrial-sector, biorefinery acts as a strategic mechanism for the realization of a circular bioeconomy. This study presents a comprehensive review of different biorefinery models used for various biomass feedstocks such as lignocelluloses, algae, and numerous waste-types. The review focuses on how biorefinery is instrumental in the transition of various biomass-based industries in a circular bioeconomy. The results reveal that the social-economic aspect of the industrial sector has a major influence on the full adoption of biorefineries in circular bioeconomy. Biomass wastes have played a major role in the implementation of biorefinery in circular bioeconomy. The current challenges are also presented along with future perspectives.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Charles B Felix
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
23
|
Borin GP, Carazzolle MF, Dos Santos RAC, Riaño-Pachón DM, Oliveira JVDC. Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30. Front Bioeng Biotechnol 2018; 6:151. [PMID: 30406095 PMCID: PMC6204389 DOI: 10.3389/fbioe.2018.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
The biomass-degrading fungus Trichoderma reesei has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of T. reesei, the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the T. reesei RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our in silico analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of T. reesei strains and to decrease the production costs of 2G ethanol.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
24
|
Longati AA, Lino ARA, Giordano RC, Furlan FF, Cruz AJG. Defining research & development process targets through retro-techno-economic analysis: The sugarcane biorefinery case. BIORESOURCE TECHNOLOGY 2018; 263:1-9. [PMID: 29723843 DOI: 10.1016/j.biortech.2018.04.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
A new approach is reported for techno-economic analysis of lignocellulosic ethanol production. With this methodology, general targets for key process variables can be draw, a valuable feedback for Research & Development teams. An integrated first- and second-generation ethanol from sugarcane biorefinery is presented as a case study for the methodology, with the biomass pretreated by liquid hot water, followed by enzymatic hydrolysis of the cellulose fraction. The hemicellulose fraction may be either fermented or biodigested. The methodology was able to identify the main variables that affect the process global economic performance: enzyme load in the cellulose hydrolysis reactor, cellulose-to-glucose, and xylose-to-ethanol yields. Windows of feasible operation are the graphical output of the methodology, outlining regions to be further explored experimentally. One example of quantitative result is that the maximum feasible enzyme load was 11.3 FPU/gcellulose when xylose is fermented to ethanol and 7.7 FPU/gcellulose when xylose is biodigested.
Collapse
Affiliation(s)
- Andreza A Longati
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Anderson R A Lino
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Roberto C Giordano
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Felipe F Furlan
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Antonio J G Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil.
| |
Collapse
|
25
|
Mokomele T, da Costa Sousa L, Balan V, van Rensburg E, Dale BE, Görgens JF. Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:127. [PMID: 29755586 PMCID: PMC5934847 DOI: 10.1186/s13068-018-1130-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. RESULTS Ethanol yields between 249 and 256 kg Mg-1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg-1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g-1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha-1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. CONCLUSIONS AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.
Collapse
Affiliation(s)
- Thapelo Mokomele
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Department of Engineering Technology, Biotechnology Program, School of Technology, University of Houston, 4800 Calhoun, Road, Houston, TX 77004 USA
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Johann F. Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| |
Collapse
|