1
|
Afecto Gonçalves MJ, González-Fernández C, Greses S. Assessing the effect of temperature drop on a stable anaerobic fermentation for volatile fatty acids production. Bioengineered 2025; 16:2458369. [PMID: 39895564 PMCID: PMC11792825 DOI: 10.1080/21655979.2025.2458369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Anaerobic fermentation (AF) processes are sensitive to temperature fluctuations, which can influence the microbial activity and overall metabolic performances. Anaerobic reactors can face unforeseen temperature control failures, leading to instabilities in the process. The present study investigated the effect of two short-term temperature perturbations (down to 20°C and 15°C) on AF of food wastes (FWs). While 20°C did not exhibit a negative impact on AF performance maintaining the bioconversion yields over 40%, the reactor subjected to 15°C presented an acidogenic limitation, which decreased the bioconversion yields (36.4 ± 1.8%). As a result, 2.2 ± 0.5 g/L of succinic acid was accumulated in the reactor, being identified as a temperature failure indicator. Once the conditions were reestablished (operation temperature of 25ºC), the metabolic redundancies identified in the reactors allowed the AFs recovery to initial fermentation yields. 20°C was further tested as operational temperature resulting in stable bioconversion yield similar to the Control Reactor (43.2 ± 0.3%). These results showed the feasibility of conducting AF under low temperatures, indicating the potential of this technology to increase the cost-effectiveness of AF at psychrophilic conditions.
Collapse
Affiliation(s)
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- CALAGUA – Unidad Mixta UV-UPV, Department of Chemical Engineering, Universitat de València, Spain
| |
Collapse
|
2
|
Suo M, Liu L, Fan H, Li N, Pan H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Wang Z, Chen J. Advancements in chain elongation technology: Transforming lactic acid into caproic acid for sustainable biochemical production. BIORESOURCE TECHNOLOGY 2025; 425:132312. [PMID: 40023331 DOI: 10.1016/j.biortech.2025.132312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This review provides an insight into the chain-elongation technology for the production of caproic acid, a chemical widely used in the food, pharmaceutical, and cosmetic industries, from lactic acid in waste organic matter. The evolution of the technology is traced, the reaction mechanism is elucidated, and the properties of key microbial agents capable of carrying out the chain-elongation technology are summarized and compared, including pure bacterial isolates and reactor-mixed microorganisms. Furthermore, the parameters that regulate caproic acid formation by influencing microbial activity, competitive pathways, product selection, and carbon flow distribution, such as pH, temperature, electron donor, electron acceptor, and hydrogen partial pressure, are highlighted and discussed. It is worth noting that various caproic acid product extraction technologies were also summarized and assessed. Finally, based on the perspective of interdisciplinary field, bold suggestions for the future research direction are put forward.
Collapse
Affiliation(s)
- Minyu Suo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongye Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña 15008, Spain
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
3
|
Zhou L, Wu M, Lin X, Guo J. Mildly acidic pH boosts up CO 2 conversion to isobutyrate in H 2 driven gas fermentation system. WATER RESEARCH 2025; 273:123023. [PMID: 39731840 DOI: 10.1016/j.watres.2024.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
As a greenhouse gas, massive carbon dioxide (CO2) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO2 and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation. This study reported the production of isobutyrate and hexanoate by feeding H2 and CO2 into membrane biofilm reactors (MBfRs). The gas fermentation product in the reactor with neutral pH (pH of 7) was dominated by acetate (accounting for 90 % of the product spectrum), whereas a mildly acidic pH (pH of 6) resulted in isobutyrate and hexanoate as the dominant products, with a selectivity of 57 % and 42 %, respectively. Notably, a remarkably high concentration of isobutyrate (266 mmol C/L) was produced in the reactor with pH of 6. Subsequent batch test results suggest that the isobutyrate production in this study is coupled with acetogenesis and ethanol-driven chain elongation processes, rather than via methanol-driven chain elongation reported previously. High-throughput 16S rRNA gene amplicon sequencing revealed that the microbial community under neutral pH was dominated by acetate-producing homoacetogens Acetobacterium. By contrast, a mildly acidic pH promoted the community shifting towards chain elongation microorganisms, dominated by Clostridium sensu stricto 12, Oscillibacter and Caproiciproducens. Collectively, this study demonstrates the significant role of mildly acidic pH in boosting up bioisomerization and chain elongation in gas fermentation systems, thus triggering isobutyrate and hexanoate production. The findings highlight gas fermentation as a new green alternative route for generating highly valuable isobutyrate and hexanoate.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Xunyang Lin
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Wang Y, Zhang X, Chen Y. The enhancement of caproic acid synthesis from organic solid wastes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123215. [PMID: 39504670 DOI: 10.1016/j.jenvman.2024.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Organic solid waste (OSW) significantly harms the environment and threatens human health. Producing caproic acid (CA) from OSW presents a cost-effective, sustainable, and resource-efficient solution. This study comprehensively examines the various methods for synthesizing CA from OSW, focusing on waste material selection, pretreatment processes to improve dissolution and hydrolysis of OSW, key substrates, and optimization strategies. Using OSW resources has been extensively studied and applied across numerous industries, presenting a promising solution for reducing environmental pollution. This study provides insights into CA synthesis pathways and substrate selection while emphasizing the optimization of CA production from OSW. It also highlights key areas for future research.
Collapse
Affiliation(s)
- Yidan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Zhang Y, Li J, Lian X, Li L, Yong YC, Meng J. Efficient caproate production from lignocellulose via single-step electro-fermentation platform without organic electron donor. BIORESOURCE TECHNOLOGY 2024; 411:131319. [PMID: 39173961 DOI: 10.1016/j.biortech.2024.131319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Caproate production by microbial fermentation gained the advantages of sustainability and eco-friendliness, but challenged by sterile fermentation environment, necessity of organic electron donors. Here, a single-step electro-fermentation (EF) process of mixed culture was proposed for caprate production from rice straw. At the optimal potential of -0.8 V, caproate concentration, yield and selectivity in the neutral red (NR)-mediated EF system were 2.4 g/L, 0.2 g/g and 26.6%. Long-term operation accumulated 5.3 g/L caproate with the yield and selectivity of 0.2 g/g and 34.2% in the EF+NR system. Bioaugmentation by dosing chain-elongation microbial consortium further improved the caproate production, yield and selectivity to 9.1 g/L, 0.3 g/g and 41.5%, respectively. The improved caproate production in the bioaugmented EF+NR system was likely due to the enhanced interspecies electron transfer, reconstructed microbial community, multiple electron donors and suitable pH environment. Present study offers a feasible strategy for cost-effective caprate production directly from waste biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xu Lian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Lin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| |
Collapse
|
6
|
Zhao J, Ma H, Gao M, Qian D, Wang Q, Shiung Lam S. Advancements in medium chain fatty acids production through chain elongation: Key mechanisms and innovative solutions for overcoming rate-limiting steps. BIORESOURCE TECHNOLOGY 2024; 408:131133. [PMID: 39033828 DOI: 10.1016/j.biortech.2024.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The depletion of fossil fuels has prompted an urgent search for alternative chemicals from renewable sources. Current technology in medium chain fatty acids (MCFAs) production though chain elongation (CE) is becoming increasingly sustainable, hence the motivation for this review, which provides the detailed description, insights and analysis of the metabolic pathways, substrates type, inoculum and fermentation process. The main rate-limiting steps of microbial MCFAs production were comprehensively revealed and the corresponding innovative solutions were also critically evaluated. Innovative strategies such as substrate pretreatment, electrochemical regulation, product separation, fermentation parameter optimization, and electroactive additives have shown significant advantages in overcoming the rate-limiting steps. Furthermore, novel regulatory strategies such as quorum sensing and electronic bifurcation are expected to further increase the MCFAs yield. Finally, the techno-economic analysis was carried out, and the future research focuses were also put forward.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Dayi Qian
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
7
|
Spirito CM, Lucas TN, Patz S, Jeon BS, Werner JJ, Trondsen LH, Guzman JJ, Huson DH, Angenent LT. Variability in n-caprylate and n-caproate producing microbiomes in reactors with in-line product extraction. mSystems 2024; 9:e0041624. [PMID: 38990071 PMCID: PMC11334527 DOI: 10.1128/msystems.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Medium-chain carboxylates (MCCs) are used in various industrial applications. These chemicals are typically extracted from palm oil, which is deemed not sustainable. Recent research has focused on microbial chain elongation using reactors to produce MCCs, such as n-caproate (C6) and n-caprylate (C8), from organic substrates such as wastes. Even though the production of n-caproate is relatively well-characterized, bacteria and metabolic pathways that are responsible for n-caprylate production are not. Here, three 5 L reactors with continuous membrane-based liquid-liquid extraction (i.e., pertraction) were fed ethanol and acetate and operated for an operating period of 234 days with different operating conditions. Metagenomic and metaproteomic analyses were employed. n-Caprylate production rates and reactor microbiomes differed between reactors even when operated similarly due to differences in H2 and O2 between the reactors. The complete reverse β-oxidation (RBOX) pathway was present and expressed by several bacterial species in the Clostridia class. Several Oscillibacter spp., including Oscillibacter valericigenes, were positively correlated with n-caprylate production rates, while Clostridium kluyveri was positively correlated with n-caproate production. Pseudoclavibacter caeni, which is a strictly aerobic bacterium, was abundant across all the operating periods, regardless of n-caprylate production rates. This study provides insight into microbiota that are associated with n-caprylate production in open-culture reactors and provides ideas for further work.IMPORTANCEMicrobial chain elongation pathways in open-culture biotechnology systems can be utilized to convert organic waste and industrial side streams into valuable industrial chemicals. Here, we investigated the microbiota and metabolic pathways that produce medium-chain carboxylates (MCCs), including n-caproate (C6) and n-caprylate (C8), in reactors with in-line product extraction. Although the reactors in this study were operated similarly, different microbial communities dominated and were responsible for chain elongation. We found that different microbiota were responsible for n-caproate or n-caprylate production, and this can inform engineers on how to operate the systems better. We also observed which changes in operating conditions steered the production toward and away from n-caprylate, but more work is necessary to ascertain a mechanistic understanding that could be predictive. This study provides pertinent research questions for future work.
Collapse
Affiliation(s)
- Catherine M. Spirito
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, New York, USA
- Office of Undergraduate Research, University of Maryland, College Park, Maryland, USA
| | - Timo N. Lucas
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Sascha Patz
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Byoung Seung Jeon
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Jeffrey J. Werner
- Chemistry Department, SUNY-Cortland, Bowers Hall, Cortland, New York, USA
| | - Lauren H. Trondsen
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, New York, USA
| | - Juan J. Guzman
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, New York, USA
| | - Daniel H. Huson
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Largus T. Angenent
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, New York, USA
- Department of Geosciences, University of Tübingen, Tübingen, Germany
- AG Angenent, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Undiandeye J, Gallegos D, Bonatelli ML, Kleinsteuber S, Bin-Hudari MS, Abdulkadir N, Stinner W, Sträuber H. Medium-chain carboxylates production from plant waste: kinetic study and effect of an enriched microbiome. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:79. [PMID: 38867271 PMCID: PMC11167882 DOI: 10.1186/s13068-024-02528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The need for addition of external electron donors such as ethanol or lactate impairs the economic viability of chain elongation (CE) processes for the production of medium-chain carboxylates (MCC). However, using feedstocks with inherent electron donors such as silages of waste biomass can improve the economics. Moreover, the use of an appropriate inoculum is critical to the overall efficiency of the CE process, as the production of a desired MCC can significantly be influenced by the presence or absence of specific microorganisms and their metabolic interactions. Beyond, it is necessary to generate data that can be used for reactor design, simulation and optimization of a given CE process. Such data can be obtained using appropriate mathematical models to predict the dynamics of the CE process. RESULTS In batch experiments using silages of sugar beet leaves, cassava leaves, and Elodea/wheat straw as substrates, caproate was the only MCC produced with maximum yields of 1.97, 3.48, and 0.88 g/kgVS, respectively. The MCC concentrations were accurately predicted with the modified Gompertz model. In a semi-continuous fermentation with ensiled sugar beet leaves as substrate and digestate from a biogas reactor as the sole inoculum, a prolonged lag phase of 7 days was observed for the production of MCC (C6-C8). The lag phase was significantly shortened by at least 4 days when an enriched inoculum was added to the system. With the enriched inoculum, an MCC yield of 93.67 g/kgVS and a productivity of 2.05 gMCC/L/d were achieved. Without the enriched inoculum, MCC yield and productivity were 43.30 g/kgVS and 0.95 gMCC/L/d, respectively. The higher MCC production was accompanied by higher relative abundances of Lachnospiraceae and Eubacteriaceae. CONCLUSIONS Ensiled waste biomass is a suitable substrate for MCC production using CE. For an enhanced production of MCC from ensiled sugar beet leaves, the use of an enriched inoculum is recommended for a fast process start and high production performance.
Collapse
Affiliation(s)
- Jerome Undiandeye
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, 04347, Leipzig, Germany.
- Department of Chemical Engineering, University of Port Harcourt, PMB 5323, Port Harcourt, Nigeria.
| | - Daniela Gallegos
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, 04347, Leipzig, Germany
| | - Maria L Bonatelli
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Mohammad Sufian Bin-Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Nafi'u Abdulkadir
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Microbiology, Sokoto State University, Sokoto, 852101, Nigeria
| | - Walter Stinner
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, 04347, Leipzig, Germany
| | - Heike Sträuber
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| |
Collapse
|
9
|
Liu Y, Chen L, Duan Y, Li R, Yang Z, Liu S, Li G. Recent progress and prospects for chain elongation of transforming biomass waste into medium-chain fatty acids. CHEMOSPHERE 2024; 355:141823. [PMID: 38552798 DOI: 10.1016/j.chemosphere.2024.141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Chain elongation technology utilises microorganisms in anaerobic digestion to transform waste biomass into medium-chain fatty acids that have greater economic value. This innovative technology expands upon traditional anaerobic digestion methods, requiring abundant substrates that serve as electron donors and acceptors, and inoculating microorganisms with chain elongation functions. While this process may result in the production of by-products and elicit competitive responses, toxicity suppression of microorganisms by substrates and products remains a significant obstacle to the industrialisation of chain elongation technology. This study provides a comprehensive overview of existing research on widely employed electron donors and their synthetic reactions, competitive reactions, inoculum selection, toxicity inhibition of substrates and products, and increased chain elongation approaches. Additionally, it presents actionable recommendations for future research and development endeavours in this domain, intending to inspire and guide researchers in advancing the frontiers of chain elongation technology.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China.
| | - Long Chen
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Yacong Duan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| |
Collapse
|
10
|
Liu T, Li J, Hao X, Meng J. Efficient caproic acid production from lignocellulosic biomass by bio-augmented mixed microorganisms. BIORESOURCE TECHNOLOGY 2024; 399:130565. [PMID: 38461870 DOI: 10.1016/j.biortech.2024.130565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Producing caproic acid via carboxylate platform is an environmentally-friendly approach for treating lignocellulosic agricultural waste. However, its implementation is still challenged by low product yields and selectivity. A microbiome named cellulolytic acid-producing microbiome (DCB), proficient in producing cellulolytic acid, was successfully acquired and shows promise for producing high-level caproic acid. In this study, a bioaugmentation method utilizing Clostridium kluyveri is proposed to enhance caproic acid yield of DCB using rice straw. With exogenous ethanol, bioaugmentation with Clostridium kluyveri significantly improved the caproic acid concentration and selectivity by 7 times and 4.5 times, achieving 12.9 g/L and 55.1 %, respectively. The addition of Clostridium kluyveri introduced reverse β-oxidation pathway, a more efficient caproic acid production pathway. Meanwhile, bioaugmentation enriched the bacteria proficient in degrading straw and producing short-chain fatty acids, providing more substrates for caproic acid production. This study provides potential bioaugmentation strategies for optimizing caproic acid yield from lignocellulosic biomass.
Collapse
Affiliation(s)
- Tianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyu Hao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Chen R, Zhou X, Huang L, Ji X, Chen Z, Zhu J. Effects of yeast inoculation methods on caproic acid production and microbial community during anaerobic fermentation of Chinese cabbage waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120632. [PMID: 38531129 DOI: 10.1016/j.jenvman.2024.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
To provide a sufficient supply of electron donors for the synthesis of caproic acid, yeast fermentation was employed to increase ethanol production in the anaerobic fermentation of Chinese cabbage waste (CCW). The results showed that the caproic acid yield of CCW with ethanol pre-fermentation was 7750.3 mg COD/L, accounting for 50.2% of the total volatile fatty acids (TVFAs), which was 32.5% higher than that of the CCW without yeast inoculation. The synchronous fermentation of yeast and seed sludge significantly promoted the growth of butyric acid consuming bacterium Bacteroides, resulting in low yields of butyric acid and caproic acid. With yeast inoculation, substrate competition for the efficient ethanol conversion in the early stage of acidogenic fermentation inhibited the hydrolysis and acidfication. Without yeast inoculation, the rapid accumulation of TVFAs severely inhibited the growth of Bacteroidetes. In the reactor with ethanol pre-fermentation, the key microorganism for caproic acid production, Clostridium_sensu_stricto_12, was selectively enriched.
Collapse
Affiliation(s)
- Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
12
|
Chen R, Ji X, Chen Z, Huang L, Zhu J. Regulation of hydraulic retention time on caproic acid production via two-phase anaerobic fermentation of Chinese cabbage waste with autopoietic electron donors. J Biotechnol 2024; 381:1-10. [PMID: 38176540 DOI: 10.1016/j.jbiotec.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
The effects of hydraulic retention time (HRT) on the performance of two-phase anaerobic fermentation for caproic acid production from Chinese cabbage waste (CCW) were investigated. In the electron donor phase, yeast was inoculated to achieve efficient autopoietic ethanol, providing electron donors for the chain elongation process. Shorter HRT led to drastic fluctuations in microorganisms, thus resulting in lower acid yields at HRT of 6 days. At HRT of 10 days, the balanced collaboration of various key bacteria avoided the accumulation of intermediate by-products, and the caproic acid production reached 4660 mg COD/L, which was 119.5% and 154.8% higher than that at HRTs of 6 and 14 days, respectively. At HRT of 14 days, the low ethanol loading rate resulted in ethanol excessive-oxidation to acetic acid. Acetic acid accounted for 41.5% of the total product, while the selectivity of caproic acid was only 15.3%. The main contributor to the production process of caproic acid was Caproiciproducens, while the Ruminalococcaceae also played a role in the process. This study provided a theoretical basis for the efficient production of caproic acid through continuous fermentation with autopoietic electron donors.
Collapse
Affiliation(s)
- Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
13
|
Hernández-Correa E, Buitrón G. Experimental evaluation of temperature, nutrients, and initial concentration on medium-chain carboxylic acids production from winery wastes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1703-1712. [PMID: 37051792 DOI: 10.2166/wst.2023.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the wine industry, grape processing is accompanied by waste generation, such as grape stalks, winery wastewater, and grape pomace (GP). GP can be used to produce value-added compounds such as medium-chain carboxylic acids (MCCA). This work aimed to determine the operational conditions (temperature, addition of nutrients, and initial waste concentration) to improve MCCA production using waste GP from the winery industry as a substrate. The electron donor (ethanol) and electron acceptor (acetate) were directly generated from the GP and consecutively used to produce MCCA. The treatment with high concentration, temperature, and nutrient addition promotes caproic acid's maximal yield and concentration (0.11 ± 0.02 g MCCA/g TS). Nutrients' presence and temperature significantly affected electron acceptor production. The addition of nutrients and 30 °C leads to elevated acetate production. However, at 37 °C, butyrate and MCCA were mainly produced without adding nutrients, and high ethanol consumption was observed. A higher metabolic diversification was observed at 37 °C than at 30 °C. Temperature and nutrient availability significantly affected the metabolic pathway and the type of carboxylic acid produced.
Collapse
Affiliation(s)
- Eduardo Hernández-Correa
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 3001 Blvd. Juriquilla, Queretaro 76230, Mexico E-mail: ;
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 3001 Blvd. Juriquilla, Queretaro 76230, Mexico E-mail: ;
| |
Collapse
|
14
|
Recent Applications and Strategies to Enhance Performance of Electrochemical Reduction of CO2 Gas into Value-Added Chemicals Catalyzed by Whole-Cell Biocatalysts. Processes (Basel) 2023. [DOI: 10.3390/pr11030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Carbon dioxide (CO2) is one of the major greenhouse gases that has been shown to cause global warming. Decreasing CO2 emissions plays an important role to minimize the impact of climate change. The utilization of CO2 gas as a cheap and sustainable source to produce higher value-added chemicals such as formic acid, methanol, methane, and acetic acid has been attracting much attention. The electrochemical reduction of CO2 catalyzed by whole-cell biocatalysts is a promising process for the production of value-added chemicals because it does not require costly enzyme purification steps and the supply of exogenous cofactors such as NADH. This study covered the recent applications of the diversity of microorganisms (pure cultures such as Shewanella oneidensis MR1, Sporomusa species, and Clostridium species and mixed cultures) as whole-cell biocatalysts to produce a wide range of value-added chemicals including methane, carboxylates (e.g., formate, acetate, butyrate, caproate), alcohols (e.g., ethanol, butanol), and bioplastics (e.g., Polyhydroxy butyrate). Remarkably, this study provided insights into the molecular levels of the proteins/enzymes (e.g., formate hydrogenases for CO2 reduction into formate and electron-transporting proteins such as c-type cytochromes) of microorganisms which are involved in the electrochemical reduction of CO2 into value-added chemicals for the suitable application of the microorganism in the chemical reduction of CO2 and enhancing the catalytic efficiency of the microorganisms toward the reaction. Moreover, this study provided some strategies to enhance the performance of the reduction of CO2 to produce value-added chemicals catalyzed by whole-cell biocatalysts.
Collapse
|
15
|
Sakarika M, Regueira A, Rabaey K, Ganigué R. Thermophilic caproic acid production from grass juice by sugar-based chain elongation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160501. [PMID: 36436634 DOI: 10.1016/j.scitotenv.2022.160501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Medium chain carboxylic acids (MCCA) such as caproic acid have a plethora of applications, ranging from food additives to bioplastics. MCCA can be produced via microbial chain elongation using waste and side-streams as substrates, a process that can be more sustainable than conventional production routes. Most chain elongation studies have focused on mesophilic conditions, with only two recent studies hinting at the possibility of thermophilic chain elongation, but a systematic study of its mechanisms is lacking. Here, we investigated thermophilic chain elongation from grass juice, to understand the effect of key operational parameters (pH, temperature, substrate) on the process performance and to establish the key microbial genera and their role in the system. The genus Caproiciproducens was identified as responsible for thermophilic chain elongation, and caproic acid production was most favorable at pH 6.0 and 50 °C among the conditions tested, reaching an average concentration of 3.4 g/L. Batch experiments showed that the substrate for caproic acid production were glucose and xylose, while lactic acid led to the production of only butyric acid. Fed-batch experiments showed that substrate availability and the presence of caproic acid in the system play a major role in shaping the profile of thermophilic chain elongation. The increase of the total sugar concentration by glucose addition (without changing the organic load) during continuous operation led to a microbial community dominated (75 %) by Caproiciproducens and increased by 76 % the final average caproic acid concentration to 6.0 g/L (13 gCOD/L) which represented 32 % (g/g) of the total carboxylic acids. The highest concentration achieved was 7.2 g/L (day 197) which is the highest concentration reported under thermophilic conditions thus far. The results of this work pave the way to the potential development of thermophilic systems for upgrading various underexplored abundant and cheap sugar-rich side-streams to caproic acid.
Collapse
Affiliation(s)
- Myrsini Sakarika
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Alberte Regueira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium; Cross-disciplinary Research in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium.
| |
Collapse
|
16
|
Arhin SG, Cesaro A, Di Capua F, Esposito G. Recent progress and challenges in biotechnological valorization of lignocellulosic materials: Towards sustainable biofuels and platform chemicals synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159333. [PMID: 36220479 DOI: 10.1016/j.scitotenv.2022.159333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic materials (LCM) have garnered attention as feedstocks for second-generation biofuels and platform chemicals. With an estimated annual production of nearly 200 billion tons, LCM represent an abundant source of clean, renewable, and sustainable carbon that can be funneled to numerous biofuels and platform chemicals by sustainable microbial bioprocessing. However, the low bioavailability of LCM due to the recalcitrant nature of plant cell components, the complexity and compositional heterogeneity of LCM monomers, and the limited metabolic flexibility of wild-type product-forming microorganisms to simultaneously utilize various LCM monomers are major roadblocks. Several innovative strategies have been proposed recently to counter these issues and expedite the widespread commercialization of biorefineries using LCM as feedstocks. Herein, we critically summarize the recent advances in the biological valorization of LCM to value-added products. The review focuses on the progress achieved in the development of strategies that boost efficiency indicators such as yield and selectivity, minimize carbon losses via integrated biorefinery concepts, facilitate carbon co-metabolism and carbon-flux redirection towards targeted products using recently engineered microorganisms, and address specific product-related challenges, to provide perspectives on future research needs and developments. The strategies and views presented here could guide future studies in developing feasible and economically sustainable LCM-based biorefineries as a crucial node in achieving carbon neutrality.
Collapse
Affiliation(s)
- Samuel Gyebi Arhin
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Francesco Di Capua
- School of Engineering, University of Basilicata, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
17
|
Brodowski F, Łężyk M, Gutowska N, Kabasakal T, Oleskowicz-Popiel P. Influence of lactate to acetate ratio on biological production of medium chain carboxylates via open culture fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158171. [PMID: 35988608 DOI: 10.1016/j.scitotenv.2022.158171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Waste valorisation via biological production of widely used in the industry medium chain carboxylates (MCCs) via open culture fermentation (OCF) could be a promising alternative to the commonly used anaerobic digestion. Lactate-rich waste streams are considered as valuable substrates for carboxylate chain elongation (CE), however, there are certain limitations related to the production efficiency. Acetate produced and accumulated in the acetogenesis plays an important role in CE, i.e. acetate is elongated to butyrate and then to caproate which is most popular MCC. Henceforth, it was investigated whether the ratio of lactate to acetate (L:A) affected carboxylates yields and product distribution in the lactate-based CE in OCF. The tested L:A ratios influenced carboxylates selectivity in batch trials. In the ones with lactate as the sole carbon source, propionate production was predominant but when a higher relative acetate concentration was used, the production of butyrate and CE to caproate was favored. The co-utilization of lactate and acetate in a continuous process increased the production of butyrate and caproate compared to the phase with lactate as the sole carbon source, however, controlling the relative concentration of lactate and acetate during co-utilization was not an effective strategy for increasing caproate production. 16S rRNA gene amplicon reads mapping to Caproiciproducens were the most abundant in samples collected throughout the continuous processes regardless of the L:A ratios.
Collapse
Affiliation(s)
- Filip Brodowski
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Natalia Gutowska
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Tugba Kabasakal
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
18
|
Yu D, Cheng S, Cao F, Varrone C, He Z, Liu W, Yue X, Zhou A. Unveiling the bioelectrocatalyzing behaviors and microbial ecological mechanisms behind caproate production without exogenous electron donor. ENVIRONMENTAL RESEARCH 2022; 215:114077. [PMID: 35981610 DOI: 10.1016/j.envres.2022.114077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems were proposed as a promising approach for the efficient valorization of biomass into 6-8 carbon atom medium-chain fatty acids (MCFAs), the precursors for high value-added chemicals or renewable energy, via acetyl-CoA-mediated chain elongation (CE). To achieve CE processes, exogenous electron donors (EDs), e.g., ethanol or lactic acid, were normally prerequisites. This research built a microbial electrolysis cell (MEC) for MCFAs biosynthesis from acetate without exogenous EDs addition. A wide range of applied voltages (0.6-1.2 V) was first employed to investigate the bioelectrocatalyzing response. The results show that caproate and butyrate were the main products formed from acetate under different applied voltages. Maximum caproate concentration (501 ± 12 mg COD/L) was reached at 0.8 V on day 3. Under this applied voltage, hydrogen partial pressure stabilized at about 0.1 bar, beneficial for MCFA production. Electron and carbon balances revealed that the electron-accepting capacity achieved 32% at 0.8 V, showing the highest interspecies electron transfer efficiency. Most of the carbon was recovered in the form of caproate (carbon loss was 9%). MiSeq sequencing revealed Rhodobacter and Clostridium_sensu_stricto playing the crucial role in the biosynthesis of caproate, while Acetobacterium, Acetoanaerobium, and Acetobacter represented the main ED contributors. Four available flora, i.e., homo-acetogen, anaerobic fermentation bacteria, electrode active bacteria, and nitrate-reducing bacteria, interacted and promoted caproate synthesis by molecular ecological network analysis.
Collapse
Affiliation(s)
- Delin Yu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Shuanglan Cheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Copenhagen, Denmark
| | - Zhangwei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 51805, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
19
|
Neubert K, Hell M, Chávez Morejón M, Harnisch F. Hetero-Coupling of Bio-Based Medium-Chain Carboxylic Acids by Kolbe Electrolysis Enables High Fuel Yield and Efficiency. CHEMSUSCHEM 2022; 15:e202201426. [PMID: 36044593 PMCID: PMC9826165 DOI: 10.1002/cssc.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Mixtures of n-carboxylic acids (n-CA) as derived from microbial conversion of waste biomass were converted to bio-fuel using Kolbe electrolysis. While providing full carbon and electron balances, key parameters like electrolysis time, chain length of n-CA, and pH were investigated for their influence on reaction efficiency. Electrolysis of n-hexanoic acid showed the highest coulombic efficiency (CE) of 58.9±16.4 % (n=4) for liquid fuel production among individually tested n-CA. Duration of the electrolysis was varied within a range of 0.27 to 1.02 faraday equivalents without loss of efficiency. Noteworthy, CE increased to around 70 % by hetero-coupling when electrolysing n-CA mixtures regardless of the applied pH. Thus, 1 L of fuel could be produced from 12.4 mol of n-CA mixture using 5.02 kWh (<1 € L-1 ). Thus, a coupling with microbial processes producing n-CA mixtures from different organic substrates and waste is more than promising.
Collapse
Affiliation(s)
- Katharina Neubert
- Department of Environmental MicrobiologyUFZ – Helmholtz-Centre for Environmental ResearchPermoserstr. 1504318LeipzigGermany
| | - Max Hell
- Department of Environmental MicrobiologyUFZ – Helmholtz-Centre for Environmental ResearchPermoserstr. 1504318LeipzigGermany
| | - Micjel Chávez Morejón
- Department of Environmental MicrobiologyUFZ – Helmholtz-Centre for Environmental ResearchPermoserstr. 1504318LeipzigGermany
| | - Falk Harnisch
- Department of Environmental MicrobiologyUFZ – Helmholtz-Centre for Environmental ResearchPermoserstr. 1504318LeipzigGermany
| |
Collapse
|
20
|
Current Trends in Biological Valorization of Waste-Derived Biomass: The Critical Role of VFAs to Fuel A Biorefinery. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The looming climate and energy crises, exacerbated by increased waste generation, are driving research and development of sustainable resource management systems. Research suggests that organic materials, such as food waste, grass, and manure, have potential for biotransformation into a range of products, including: high-value volatile fatty acids (VFAs); various carboxylic acids; bioenergy; and bioplastics. Valorizing these organic residues would additionally reduce the increasing burden on waste management systems. Here, we review the valorization potential of various sustainably sourced feedstocks, particularly food wastes and agricultural and animal residues. Such feedstocks are often micro-organism-rich and well-suited to mixed culture fermentations. Additionally, we touch on the technologies, mainly biological systems including anaerobic digestion, that are being developed for this purpose. In particular, we provide a synthesis of VFA recovery techniques, which remain a significant technological barrier. Furthermore, we highlight a range of challenges and opportunities which will continue to drive research and discovery within the field. Analysis of the literature reveals growing interest in the development of a circular bioeconomy, built upon a biorefinery framework, which utilizes biogenic VFAs for chemical, material, and energy applications.
Collapse
|
21
|
Mariën Q, Ulčar B, Verleyen J, Vanthuyne B, Ganigué R. High-rate conversion of lactic acid-rich streams to caproic acid in a fermentative granular system. BIORESOURCE TECHNOLOGY 2022; 355:127250. [PMID: 35562021 DOI: 10.1016/j.biortech.2022.127250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Lactic acid-driven chain elongation enables upgrading low-value organic streams into caproic acid. Recently, volumetric production rates over 0.5 g L-1 h-1have been reported for carbohydrate-rich streams in expanded granular sludge bed (EGSB) reactors. However, many target streams contain mixtures of carbohydrates and lactic acid, and little is known about their impact on product profile and microbial ecology, or the importance of carbohydrates as substrate to achieve high rates. This manuscript investigated varying glucose-to-lactate ratios and observed that decreasing glucose-content eliminated odd-chain by-products, while glucose omission required acetic acid addition to support lactic acid conversion. Decreasing the glucose-content fed resulted in decreasing amounts of granular biomass, with the disappearance of granules when no glucose was fed. Lowering the HRT to 0.3 days while feeding only lactic and acetic acid likely triggered re-granulation, enabling the highest lactic acid-driven caproic acid production rates reported thus far at 16.4 ± 1.7 g L-1 d-1.
Collapse
Affiliation(s)
- Quinten Mariën
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Barbara Ulčar
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Jesper Verleyen
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Benjamin Vanthuyne
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Electrochemical membrane-assisted pH-swing extraction and back-extraction of lactic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Narisetty V, R. R, Maitra S, Tarafdar A, Alphy MP, Kumar AN, Madhavan A, Sirohi R, Awasthi MK, Sindhu R, Varjani S, Binod P. Waste-Derived Fuels and Renewable Chemicals for Bioeconomy Promotion: A Sustainable Approach. BIOENERGY RESEARCH 2022; 16:16-32. [PMID: 35350609 PMCID: PMC8947955 DOI: 10.1007/s12155-022-10428-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.
Collapse
Affiliation(s)
- Vivek Narisetty
- Moolec Science, Innovation Centre, Gallows Hill, Warwick, CV34 6UW UK
| | - Reshmy R.
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122 Kerala India
| | - Shraddha Maitra
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 Uttar Pradesh India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - A. Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, 9 , Seongbuk-gu, Seoul 02841 South Korea
- Centre for Energy and Environmental Sustainabilty, Lucknow, 226001 Uttar Pradesh India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712 100 Shaanxi China
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505 Kerala India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, 382010 Gujarat India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019 Kerala India
| |
Collapse
|
24
|
Liu B, Sträuber H, Saraiva J, Harms H, Silva SG, Kasmanas JC, Kleinsteuber S, Nunes da Rocha U. Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture. MICROBIOME 2022; 10:48. [PMID: 35331330 PMCID: PMC8952268 DOI: 10.1186/s40168-021-01219-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The ability to quantitatively predict ecophysiological functions of microbial communities provides an important step to engineer microbiota for desired functions related to specific biochemical conversions. Here, we present the quantitative prediction of medium-chain carboxylate production in two continuous anaerobic bioreactors from 16S rRNA gene dynamics in enriched communities. RESULTS By progressively shortening the hydraulic retention time (HRT) from 8 to 2 days with different temporal schemes in two bioreactors operated for 211 days, we achieved higher productivities and yields of the target products n-caproate and n-caprylate. The datasets generated from each bioreactor were applied independently for training and testing machine learning algorithms using 16S rRNA genes to predict n-caproate and n-caprylate productivities. Our dataset consisted of 14 and 40 samples from HRT of 8 and 2 days, respectively. Because of the size and balance of our dataset, we compared linear regression, support vector machine and random forest regression algorithms using the original and balanced datasets generated using synthetic minority oversampling. Further, we performed cross-validation to estimate model stability. The random forest regression was the best algorithm producing more consistent results with median of error rates below 8%. More than 90% accuracy in the prediction of n-caproate and n-caprylate productivities was achieved. Four inferred bioindicators belonging to the genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV suggest their relevance to the higher carboxylate productivity at shorter HRT. The recovery of metagenome-assembled genomes of these bioindicators confirmed their genetic potential to perform key steps of medium-chain carboxylate production. CONCLUSIONS Shortening the hydraulic retention time of the continuous bioreactor systems allows to shape the communities with desired chain elongation functions. Using machine learning, we demonstrated that 16S rRNA amplicon sequencing data can be used to predict bioreactor process performance quantitatively and accurately. Characterizing and harnessing bioindicators holds promise to manage reactor microbiota towards selection of the target processes. Our mathematical framework is transferrable to other ecosystem processes and microbial systems where community dynamics is linked to key functions. The general methodology used here can be adapted to data types of other functional categories such as genes, transcripts, proteins or metabolites. Video Abstract.
Collapse
Affiliation(s)
- Bin Liu
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - João Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sandra Godinho Silva
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico Universidade de Lisboa, Lisbon, Portugal
| | - Jonas Coelho Kasmanas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
- Department of Computer Science and Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
25
|
Agnihotri S, Yin DM, Mahboubi A, Sapmaz T, Varjani S, Qiao W, Koseoglu-Imer DY, Taherzadeh MJ. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered 2022; 13:1249-1275. [PMID: 34738864 PMCID: PMC8805862 DOI: 10.1080/21655979.2021.1996044] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Sustainable provision of chemicals and materials is undoubtedly a defining factor in guaranteeing economic, environmental, and social stability of future societies. Among the most sought-after chemical building blocks are volatile fatty acids (VFAs). VFAs such as acetic, propionic, and butyric acids have numerous industrial applications supporting from food and pharmaceuticals industries to wastewater treatment. The fact that VFAs can be produced synthetically from petrochemical derivatives and also through biological routes, for example, anaerobic digestion of organic mixed waste highlights their provision flexibility and sustainability. In this regard, this review presents a detailed overview of the applications associated with petrochemically and biologically generated VFAs, individually or in mixture, in industrial and laboratory scale, conventional and novel applications.
Collapse
Affiliation(s)
- Swarnima Agnihotri
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Dong-Min Yin
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Tugba Sapmaz
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Wei Qiao
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Derya Y. Koseoglu-Imer
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | |
Collapse
|
26
|
Kim H, Kang S, Sang BI. Metabolic cascade of complex organic wastes to medium-chain carboxylic acids: A review on the state-of-the-art multi-omics analysis for anaerobic chain elongation pathways. BIORESOURCE TECHNOLOGY 2022; 344:126211. [PMID: 34710599 DOI: 10.1016/j.biortech.2021.126211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Medium-chain carboxylic acid (MCCA) production from organic wastes has attracted much attention because of their higher energy contents and diverse applications. Anaerobic reactor microbiomes are stable and resilient and have resulted in efficient performance during many years of operation for thousands of full-scale anaerobic digesters worldwide. The method underlying how the relevant microbial pathways contribute to elongate carbon chains in reactor microbiomes is important. In particular, the reverse β-oxidation pathway genes are critical to upgrading short-chain fermentation products to MCCAs via a chain elongation (CE) process. Diverse genomics and metagenomics studies have been conducted in various fields, ranging from intracellular metabolic pathways to metabolic cascades between different strains. This review covers taxonomic approach to culture processes depending on types of organic wastes and the deeper understanding of genome and metagenome-scale CE pathway construction, and the co-culture and multi-omics technology that should be addressed in future research.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seongcheol Kang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
27
|
Wu Q, Jiang Y, Chen Y, Liu M, Bao X, Guo W. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass. BIORESOURCE TECHNOLOGY 2021; 340:125633. [PMID: 34315125 DOI: 10.1016/j.biortech.2021.125633] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Medium chain fatty acids (MCFAs) that produced from affordable waste biomass via chain elongation (CE) technology are recognized as the potential alternatives to part fossil-derived chemicals, contributing to the sustainable development of economy and environment. The purpose of this review is to provide comprehensive analyses on the opportunities and challenges of MCFAs production and application. First, both two microbial MCFAs synthesis pathways of reverse β-oxidation and fatty acid biosynthesis were introduced/compared in detail to give readers a thorough understanding of the CE process, with the expectation of further boosting MCFAs production by well distinguishing them. Furthermore, the six key MCFAs production bottlenecks, corresponding research progresses, and possible solutions were analyzed. Five major MCFAs production strategies with their production mechanism, performances, and characteristics were also critically assessed. Additionally, the commercial production status was introduced, and future alternative production mode and research priorities were also recommended.
Collapse
Affiliation(s)
- Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xian Bao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
28
|
Braune M, Yuan B, Sträuber H, McDowall SC, Nitzsche R, Gröngröft A. A Downstream Processing Cascade for Separation of Caproic and Caprylic Acid from Maize Silage-Based Fermentation Broth. Front Bioeng Biotechnol 2021; 9:725578. [PMID: 34527660 PMCID: PMC8436119 DOI: 10.3389/fbioe.2021.725578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022] Open
Abstract
Production of caproic and caprylic acid through anaerobic fermentation of crops or residual and waste biomass has been regarded as an alternative to the conventional ways, where plant oils and animal fats are mostly used. The downstream processing of the fermentation broth is a particular challenge since the broth has a highly complex composition and low concentrations of the target products. In this study, the proof-of-principle for a separation cascade for caproic (C6) and caprylic acid (C8) produced in a maize silage-based fermentation process was demonstrated. For clarification of the fermentation broth, a filter press and a ceramic ultrafiltration membrane was used to remove coarse solids and to separate suspended particles and macromolecules from the fermentation broth, respectively. With both techniques, the dry matter content was reduced from 6.8 to 2.3% and a particle-free product solution was obtained. Subsequently, the carboxylic acids were extracted with oleyl alcohol by liquid-liquid extraction with an extraction efficiency of 85% for C6 and 97% for C8. Over the whole cascade, 58% of caproic acid and 66% of caprylic acid were recovered from the fermentation broth into the extract. Among all separation steps, solid-liquid separation with the filter press caused the major part of the product loss of 21% of each carboxylic acid. By using separation equipment with a better solid separation efficiency such as decanter centrifuges or belt filter presses this loss could be minimized.
Collapse
Affiliation(s)
- Maria Braune
- Biorefineries Department, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig, Germany
| | - Bomin Yuan
- Biorefineries Department, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stewart Charles McDowall
- Biorefineries Department, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig, Germany
| | - Roy Nitzsche
- Biorefineries Department, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig, Germany
| | - Arne Gröngröft
- Biorefineries Department, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig, Germany
| |
Collapse
|
29
|
Microbial Ecological Mechanism for Long-Term Production of High Concentrations of n-Caproate via Lactate-Driven Chain Elongation. Appl Environ Microbiol 2021; 87:AEM.03075-20. [PMID: 33741616 DOI: 10.1128/aem.03075-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Lactate-driven chain elongation (LCE) has emerged as a new biotechnology to upgrade organic waste streams into a valuable biochemical and fuel precursor, medium-chain carboxylate, n-caproate. Considering that a low cost of downstream extraction is critical for biorefinery technology, a high concentration of n-caproate production is very important to improve the scale-up of the LCE process. We report here that in a nonsterile open environment, the n-caproate concentration was increased from the previous record of 25.7 g·liter-1 to a new high level of 33.7 g·liter-1 (76.8 g chemical oxygen demand [COD]·liter - 1), with the highest production rate being 11.5 g·liter-1·day-1 (26.2 g COD·liter - 1·day-1). In addition, the LCE process remained stable, with an average concentration of n-caproate production of 20.2 ± 5.62 g·liter-1 (46.1 ± 12.8 g COD·liter - 1) for 780 days. Dynamic changes in taxonomic composition integrated with metagenomic data reveal the microbial ecology for long-term production of high concentrations of n-caproate: (i) the core microbiome is related to efficient functional groups, such as Ruminococcaceae (with functional strain CPB6); (ii) the core bacteria can maintain stability for long-term operation; (iii) the microbial network has relatively low microbe-microbe interaction strength; and (iv) low relative abundance and variety of competitors. The network structure could be shaped by hydraulic retention time (HRT) over time, and long-term operation at an HRT of 8 days displayed higher efficacy.IMPORTANCE Our research revealed the microbial network of the LCE reactor microbiome for n-caproate production at high concentrations, which will provide a foundation for designing or engineering the LCE reactor microbiome to recover n-caproate from organic waste streams in the future. In addition, the hypothetical model of the reactor microbiome that we proposed may offer guidance for researchers to find the underlying microbial mechanism when they encounter low-efficiency n-caproate production from the LCE process. We anticipate that our research will rapidly advance LCE biotechnology with the goal of promoting the sustainable development of human society.
Collapse
|
30
|
Lin M, Feng L, Cheng Z, Wang K. Effect of ethanol or lactic acid on volatile fatty acid profile and microbial community in short-term sequentially transfers by ruminal fermented with wheat straw in vitro. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Candry P, Ganigué R. Chain elongators, friends, and foes. Curr Opin Biotechnol 2021; 67:99-110. [PMID: 33529974 DOI: 10.1016/j.copbio.2021.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Bioproduction of medium chain carboxylic acids has recently emerged as an alternative strategy to valorize low-value organic waste and side-streams. Key to this route is chain elongation, an anaerobic microbial process driven by ethanol, lactic acid, or carbohydrates. Because these technologies use wastes as feedstocks, mixed microbial communities are often considered as biocatalysts. Understanding and steering these microbiomes is key to optimize bioprocess performance. From a meta-analysis of publicly available sequencing data, we (i) explore how the current collection of isolated chain elongators compares to microbiome members, (ii) discuss the main beneficial and antagonistic interactions with community partners, and (iii) identify the key research gaps and needs to help understand chain elongation microbiomes, and design/steer these novel bioproduction processes.
Collapse
Affiliation(s)
- Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, USA
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
32
|
Xu J, Guzman JJL, Angenent LT. Direct Medium-Chain Carboxylic Acid Oil Separation from a Bioreactor by an Electrodialysis/Phase Separation Cell. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:634-644. [PMID: 33347746 DOI: 10.1021/acs.est.0c04939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medium-chain carboxylic acids (MCCAs) are valuable platform chemicals and can be produced from waste biomass sources or syngas fermentation effluent through microbial chain elongation. We have previously demonstrated successful approaches to separate >90% purity oil with different MCCAs (MCCA oil) by integrating the anaerobic bioprocess with membrane-based liquid-liquid extraction (pertraction) and membrane electrolysis. However, two-compartment membrane electrolysis unit without pertraction was not able to separate MCCA oil. Therefore, we developed a five-compartment electrodialysis/phase separation cell (ED/PS). First, we tested an ED/PS cell in series with pertraction and achieved a maximum MCCA-oil flux of 1.7 × 103 g d-1 per projected area (m2) (19 mL oil d-1) and MCCA-oil transfer efficiency [100% × moles MCCA-oil moles electrons-1] of 74% at 15 A m-2. This extraction system at 15 A m-2 demonstrated a ∼10 times lower electric-power consumption (1.1 kWh kg-1 MCCA oil) than membrane electrolysis in series with pertraction (9.9 kWh kg-1 MCCA oil). Second, we evaluated our ED/PS as a stand-alone unit when integrated with the anaerobic bioprocess and demonstrated that we can selectively extract and separate MCCA oil directly from chain-elongating bioreactor broth with just an abiotic electrochemical cell. However, the electric-power consumption increased considerably due to the lower MCCA concentrations in the bioreactor broth compared to the pertraction broth.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Juan J L Guzman
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- Environmental Biotechnology Group, Center for Applied Geosciences, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
33
|
Gausmann M, Jupke A. Dynamic Modeling of Electrochemical pH‐Swing Extraction. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcel Gausmann
- RWTH Aachen University Fluid Process Engineering (AVT.FVT) Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Jupke
- RWTH Aachen University Fluid Process Engineering (AVT.FVT) Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
34
|
Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production. Processes (Basel) 2020. [DOI: 10.3390/pr8121571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Medium-chain fatty acids (MCFAs) have a variety of uses in the production of industrial chemicals, food, and personal care products. These compounds are often produced through palm refining, but recent work has demonstrated that MCFAs can also be produced through the fermentation of complex organic substrates, including organic waste streams. While “chain elongation” offers a renewable platform for producing MCFAs, there are several limitations that need to be addressed before full-scale implementation becomes widespread. Here, we review the history of work on MCFA production by both pure and mixed cultures of fermenting organisms, and the unique metabolic features that lead to MCFA production. We also offer approaches to address the remaining challenges and increase MCFA production from renewable feedstocks.
Collapse
|
35
|
Adjusting Organic Load as a Strategy to Direct Single-Stage Food Waste Fermentation from Anaerobic Digestion to Chain Elongation. Processes (Basel) 2020. [DOI: 10.3390/pr8111487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.
Collapse
|
36
|
Candry P, Radić L, Favere J, Carvajal-Arroyo JM, Rabaey K, Ganigué R. Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. WATER RESEARCH 2020; 186:116396. [PMID: 32920334 DOI: 10.1016/j.watres.2020.116396] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Carbohydrate-rich waste streams can be used for bioproduction of medium-chain carboxylic acids (MCCA) such as caproic acid. The carbohydrates in these streams can be converted to lactic acid as the initial fermentation product, which can then be fermented to MCCA by chain elongation. In this process, chain elongators compete for lactic acid with other bacterial groups that, for instance, ferment lactic acid to propionic and acetic acid. Understanding the drivers that control the competition between these two pathways is essential to maximizing MCCA production. This study aimed to investigate the competition between chain elongating and propionic acid producing organisms as a function of operational pH. Operation of long-term lactic acid fermenting reactors with varying pH values showed that pH values above 6 resulted in a propionic acid producing community dominated by Veillonella and Aminobacterium. At pH values below 6, the community moved towards chain elongation, with communities dominated by Caproiciproducens. Short-term incubations showed that rates of lactic acid consumption were strongly reduced at pH below 6 (7.7 ± 1.2 mM lactic acid·h-1 at pH 6.5; 0.74 ± 0.33 mM lactic acid·h-1 at pH 5.5). Similar to observations in long-term reactors, when a chain elongating community adapted to pH 5.5 was used for short-term incubations at pH 6.5, propionic acid was the dominant product. The results of this study show that pH below 6 stimulate lactic acid chain elongators through kinetic effects, and potentially improved energetics, providing a tool for microbial management of MCCA-producing systems.
Collapse
Affiliation(s)
- Pieter Candry
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ljubomir Radić
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorien Favere
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jose Maria Carvajal-Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, 9000 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
37
|
Qian DK, Geng ZQ, Sun T, Dai K, Zhang W, Jianxiong Zeng R, Zhang F. Caproate production from xylose by mesophilic mixed culture fermentation. BIORESOURCE TECHNOLOGY 2020; 308:123318. [PMID: 32278998 DOI: 10.1016/j.biortech.2020.123318] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Caproate production by mixed culture fermentation (MCF) is economically attractive. Xylose is known as the second most abundant sugar in nature, however, producing caproate from xylose is never reported. In this study, caproate production from xylose by mesophilic MCF was firstly investigated. The results showed that as pH decreasing to 5.0, the caproate concentration was 2.06 g/L in a batch reactor and was between 0.45 and 1.07 g/L in a continuously stirred reactor. Microbial analysis illustrated that Caproiciproducens and Clostridium_sensu_stricto_12, as two main identified caproate producers, occupied over 50% and around 10% of mixed culture, respectively. Thus, caproate production from xylose was proposed via the fatty acid biosynthesis pathway, not the well-known reverse β-oxidation pathway. These unexpected differences from literatures gains more understanding about caproate production from organic substrates via MCF.
Collapse
Affiliation(s)
- Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Sun
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
38
|
Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE. Microbial electrosynthesis from CO 2: Challenges, opportunities and perspectives in the context of circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122863. [PMID: 32019708 DOI: 10.1016/j.biortech.2020.122863] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Recycling CO2 into organic products through microbial electrosynthesis (MES) is attractive from the perspective of circular bioeconomy. However, several challenges need to be addressed before scaling-up MES systems. In this review, recent advances in electrode materials, microbe-catalyzed CO2 reduction and MES energy consumption are discussed in detail. Anode materials are briefly reviewed first, with several strategies proposed to reduce the energy input for electron generation and enhance MES bioeconomy. This was followed by discussions on MES cathode materials and configurations for enhanced chemolithoautotroph growth and CO2 reduction. Various chemolithoautotrophs, effective for CO2 reduction and diverse bioproduct formation, on MES cathode were also discussed. Finally, research efforts on developing cost-effective process for bioproduct extraction from MES are presented. Future perspectives to improve product formation and reduce energy cost are discussed to realize the application of the MES as a chemical production platform in the context of building a circular economy.
Collapse
Affiliation(s)
- Bin Bian
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Suman Bajracharya
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Jiajie Xu
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Deepak Pant
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, Mol 2400, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| | - Pascal E Saikaly
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia.
| |
Collapse
|
39
|
Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 2020; 62:48-57. [DOI: 10.1016/j.copbio.2019.08.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023]
|
40
|
Liu B, Kleinsteuber S, Centler F, Harms H, Sträuber H. Competition Between Butyrate Fermenters and Chain-Elongating Bacteria Limits the Efficiency of Medium-Chain Carboxylate Production. Front Microbiol 2020; 11:336. [PMID: 32210937 PMCID: PMC7067704 DOI: 10.3389/fmicb.2020.00336] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/17/2020] [Indexed: 01/08/2023] Open
Abstract
Medium-chain carboxylates such as n-caproate and n-caprylate are valuable chemicals, which can be produced from renewable feedstock by anaerobic fermentation and lactate-based microbial chain elongation. Acidogenic microbiota involved in lactate-based chain elongation and their interplay with lactic acid bacteria have not been characterized in detail yet. Here, the metabolic and community dynamics were studied in a continuous bioreactor with xylan and lactate as sole carbon sources. Four succession stages were observed during 148 days of operation. After an adaptation period of 36 days, a relatively stable period of 28 days (stage I) was reached with n-butyrate, n-caproate and n-caprylate productivities of 7.2, 8.2 and 1.8 gCOD L-1 d-1, respectively. After a transition period, the process changed to another period (stage II), during which 46% more n-butyrate, 51% less n-caproate and 67% less n-caprylate were produced. Co-occurrence networks of species based on 16S rRNA amplicon sequences and correlations with process parameters were analyzed to infer ecological interactions and potential metabolic functions. Diverse functions including hydrolysis of xylan, primary fermentation of xylose to acids (e.g., to acetate by Syntrophococcus, to n-butyrate by Lachnospiraceae, and to lactate by Lactobacillus) and chain-elongation with lactate (by Ruminiclostridium 5 and Pseudoramibacter) were inferred from the metabolic network. In stage I, the sub-network characterized by strongest positive correlations was mainly related to the production of n-caproate and n-caprylate. Lactic acid bacteria of the genus Olsenella co-occurred with potentially chain-elongating bacteria of the genus Pseudoramibacter, and their abundance was positively correlated with n-caproate and n-caprylate concentrations. A new sub-network appeared in stage II, which was mainly related to n-butyrate production and revealed a network of different lactic acid bacteria (Bifidobacterium) and potential n-butyrate producers (Clostridium sensu stricto 12). The synergy effects between lactate-producing and lactate-consuming bacteria constitute a division of labor cooperation of mutual benefit. Besides cooperation, competition between different taxa determined the bacterial community assembly over the four succession stages in this resource-limited system. During long-term reactor operation under constant conditions, chain-elongating bacteria were outcompeted by butyrate-producing bacteria, leading to the increase of n-butyrate yield at the cost of medium-chain carboxylate yields in this closed model system.
Collapse
Affiliation(s)
| | | | | | | | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
41
|
Enrichment and characterisation of ethanol chain elongating communities from natural and engineered environments. Sci Rep 2020; 10:3682. [PMID: 32111851 PMCID: PMC7048776 DOI: 10.1038/s41598-020-60052-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/03/2020] [Indexed: 01/13/2023] Open
Abstract
Chain elongation is a microbial process in which an electron donor, such as ethanol, is used to elongate short chain carboxylic acids, such as acetic acid, to medium chain carboxylic acids. This metabolism has been extensively investigated, but the spread and differentiation of chain elongators in the environment remains unexplored. Here, chain elongating communities were enriched from several inocula (3 anaerobic digesters, 2 animal faeces and 1 caproic acid producing environment) using ethanol and acetic acid as substrates at pH 7 and 5.5. This approach showed that (i) the inoculum’s origin determines the pH where native chain elongators can grow; (ii) pH affects caproic acid production, with average caproic acid concentrations of 6.4 ± 1.6 g·L−1 at pH 7, versus 2.3 ± 1.8 g·L−1 at pH 5.5; however (iii) pH does not affect growth rates significantly; (iv) all communities contained a close relative of the known chain elongator Clostridium kluyveri; and (v) low pH selects for communities more enriched in this Clostridium kluyveri-relative (57.6 ± 23.2% at pH 7, 96.9 ± 1.2% at pH 5.5). These observations show that ethanol-consuming chain elongators can be found in several natural and engineered environments, but are not the same everywhere, emphasising the need for careful inoculum selection during process development.
Collapse
|
42
|
Han W, He P, Shao L, Lü F. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: A mini review. J Environ Sci (China) 2019; 86:50-64. [PMID: 31787190 DOI: 10.1016/j.jes.2019.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals. Chain elongation (CE) for production of medium-chain carboxylic acids (MCCAs, especially caproate, enanthate and caprylate) from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society. The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production. Additionally, the microbial characteristics of the CE process are surveyed and discussed. Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed, we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission. This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste, or even non-biodegradable waste (such as, plastics and rubbers). Meanwhile, the remaining scientific questions, unsolved problems, application potential and possible developments for this technology are discussed.
Collapse
Affiliation(s)
- Wenhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pinjing He
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Liming Shao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of China (MOHURD), China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
43
|
Stoll IK, Boukis N, Neumann A, Ochsenreither K, Zevaco TA, Sauer J. The Complex Way to Sustainability: Petroleum-Based Processes versus Biosynthetic Pathways in the Formation of C4 Chemicals from Syngas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. Katharina Stoll
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nikolaos Boukis
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anke Neumann
- Technical Biology (TeBi), Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76128, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Technical Biology (TeBi), Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76128, Karlsruhe, Germany
| | - Thomas A. Zevaco
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Wu Q, Bao X, Guo W, Wang B, Li Y, Luo H, Wang H, Ren N. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. Biotechnol Adv 2019; 37:599-615. [PMID: 30849433 DOI: 10.1016/j.biotechadv.2019.03.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/29/2022]
Abstract
Alternative chemicals to diverse fossil-fuel-based products is urgently needed to mitigate the adverse impacts of fossil fuel depletion on human development. To this end, researchers have focused on the production of biochemical from readily available and affordable waste biomass. This is consistent with current guidelines for sustainable development and provides great advantages related to economy and environment. The search for suitable biochemical products is in progress worldwide. Therefore, this review recommends a biochemical (i.e., medium chain carboxylic acids (MCCAs)) utilizing an emerging biotechnological production platform called the chain elongation (CE) process. This work covers comprehensive introduction of the CE mechanism, functional microbes, available feedstock types and corresponding utilization strategies, major methods to enhance the performance of MCCAs production, and the challenges that need to be addressed for practical application. This work is expected to provide a thorough understanding of the CE technology, to guide and inspire researchers to solve existing problems in depth, and motivate large-scale MCCAs production.
Collapse
Affiliation(s)
- Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xian Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunxi Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
45
|
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation. Molecules 2019; 24:E398. [PMID: 30678297 PMCID: PMC6384945 DOI: 10.3390/molecules24030398] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Environmental pressures caused by population growth and consumerism require the development of resource recovery from waste, hence a circular economy approach. The production of chemicals and fuels from organic waste using mixed microbial cultures (MMC) has become promising. MMC use the synergy of bio-catalytic activities from different microorganisms to transform complex organic feedstock, such as by-products from food production and food waste. In the absence of oxygen, the feedstock can be converted into biogas through the established anaerobic digestion (AD) approach. The potential of MMC has shifted to production of intermediate AD compounds as precursors for renewable chemicals. A particular set of anaerobic pathways in MMC fermentation, known as chain elongation, can occur under specific conditions producing medium chain carboxylic acids (MCCAs) with higher value than biogas and broader applicability. This review introduces the chain elongation pathway and other bio-reactions occurring during MMC fermentation. We present an overview of the complex feedstocks used, and pinpoint the main operational parameters for MCCAs production such as temperature, pH, loading rates, inoculum, head space composition, and reactor design. The review evaluates the key findings of MCCA production using MMC, and concludes by identifying critical research targets to drive forward this promising technology as a valorisation method for complex organic waste.
Collapse
Affiliation(s)
- Vicky De Groof
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Marta Coma
- Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Tom Arnot
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - David J Leak
- Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Ana B Lanham
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
46
|
Zhang W, Zhang F, Li YX, Jianxiong Zeng R. Inhibitory effects of free propionic and butyric acids on the activities of hydrogenotrophic methanogens in mesophilic mixed culture fermentation. BIORESOURCE TECHNOLOGY 2019; 272:458-464. [PMID: 30390538 DOI: 10.1016/j.biortech.2018.10.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to study the inhibitory of free propionic acid (FPA) and free butyric acid (FBA) on enriched hydrogenotrophic methanogens. It demonstrated that concentrations of FPA and FBA were correlated well with the specific methanogenic activity. Coenzyme M concentrations also agreed well with the trends of FPA and FBA. Two fators of C50% (concentration at 50% inhibition) and CRC (recoverable concentration from inhibition) were used to quantitively analyze the inhibitory order using the former result of free acetic acid (FAA) and the results of FBA and FPA. The order according to C50% was FAA (5.2 mM) > FBA (8.3 mM) > FPA (8.5 mM), while for CRC it was FPA (9.3 mM) > FAA = FBA (13.5 mM). After comparing with literatue, it suggests that the toxicities of these three organic acids are similar. Thus, accumulating free organic acid offers a cost-effective method to inhibit methanogenesis.
Collapse
Affiliation(s)
- Wei Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fang Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong-Xin Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
47
|
Wang HJ, Dai K, Wang YQ, Wang HF, Zhang F, Zeng RJ. Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. BIORESOURCE TECHNOLOGY 2018; 267:650-656. [PMID: 30059945 DOI: 10.1016/j.biortech.2018.07.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
The effects of pore sizes on the in-situ utilization of synthesis gas (syngas, H2 and CO) mixed culture fermentation (MCF) in the hollow-fiber membrane biofilm reactor (HfMBR) are not clear. Thus, the ultrafiltration (R1) and microfiltration (R2) HfMBRs were constructed. Syngas was totally consumed within the formed biofilm in R1; contrarily, it accumulated notably in R2. In the batch mode of R1 and R2, volatile fatty acids (VFAs) of acetate, butyrate and caproate were the main metabolites, but the production rate of total VFA in R1 (61.9 mmol-C/(L·d)) was higher than that of R2 (27.6 mmol-C/(L·d)). In the continuous mode, the R1 performance was much better than that of R2, and the biofilm in R2 was even washed out. Furthermore, Clostridium (30.0%) was the main genus in the enriched biofilm of R1, which converted syngas to VFAs. Thus, the ultrafiltration membrane shall be the suitable candidate for syngas MCF.
Collapse
Affiliation(s)
- Hua-Jie Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; School of Environmental and Chemical Engineering, Anhui Vocational and Technical College, Hefei, Anhui 230011, PR China
| | - Kun Dai
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yun-Qi Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Hou-Feng Wang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fang Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China; Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
48
|
Roghair M, Liu Y, Strik DPBTB, Weusthuis RA, Bruins ME, Buisman CJN. Development of an Effective Chain Elongation Process From Acidified Food Waste and Ethanol Into n-Caproate. Front Bioeng Biotechnol 2018; 6:50. [PMID: 29755978 PMCID: PMC5934429 DOI: 10.3389/fbioe.2018.00050] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction: Medium chain fatty acids (MCFAs), such as n-caproate, are potential valuable platform chemicals. MCFAs can be produced from low-grade organic residues by anaerobic reactor microbiomes through two subsequent biological processes: hydrolysis combined with acidogenesis and chain elongation. Continuous chain elongation with organic residues becomes effective when the targeted MCFA(s) are produced at high concentrations and rates, while excessive ethanol oxidation and base consumption are limited. The objective of this study was to develop an effective continuous chain elongation process with hydrolyzed and acidified food waste and additional ethanol. Results: We fed acidified food waste (AFW) and ethanol to an anaerobic reactor while operating the reactor at long (4 d) and at short (1 d) hydraulic retention time (HRT). At long HRT, n-caproate was continuously produced (5.5 g/L/d) at an average concentration of 23.4 g/L. The highest n-caproate concentration was 25.7 g/L which is the highest reported n-caproate concentration in a chain elongation process to date. Compared to short HRT (7.1 g/L n-caproate at 5.6 g/L/d), long HRT resulted in 6.2 times less excessive ethanol oxidation. This led to a two times lower ethanol consumption and a two times lower base consumption per produced MCFA at long HRT compared to short HRT. Conclusions: Chain elongation from AFW and ethanol is more effective at long HRT than at short HRT not only because it results in a higher concentration of MCFAs but also because it leads to a more efficient use of ethanol and base. The HRT did not influence the n-caproate production rate. The obtained n-caproate concentration is more than twice as high as the maximum solubility of n-caproic acid in water which is beneficial for its separation from the fermentation broth. This study does not only set the record on the highest n-caproate concentration observed in a chain elongation process to date, it notably demonstrates that such high concentrations can be obtained from AFW under practical circumstances in a continuous process.
Collapse
Affiliation(s)
- Mark Roghair
- Sub-department of Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
| | - Yuchen Liu
- Sub-department of Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
| | - David P B T B Strik
- Sub-department of Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, Netherlands
| | - Marieke E Bruins
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Cees J N Buisman
- Sub-department of Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
49
|
Wang YQ, Zhang F, Zhang W, Dai K, Wang HJ, Li X, Zeng RJ. Hydrogen and carbon dioxide mixed culture fermentation in a hollow-fiber membrane biofilm reactor at 25 °C. BIORESOURCE TECHNOLOGY 2018; 249:659-665. [PMID: 29091851 DOI: 10.1016/j.biortech.2017.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
There have been no reports of H2 and CO2 mixed-culture fermentation (MCF) at 25 °C in a hollow-fiber membrane biofilm reactor (HfMBR). In this study, H2 and CO2 MCF were conducted in an HfMBR at 25 °C producing metabolites including acetate, ethanol, butyrate, and caproate. Compared to pure culture fermentation (i.e., Clostridium carboxidivorans P7), the MCF in HfMBR at 25 °C produced a higher concentration of caproate in this study (3.4 g/L in batch 1 and 5.7 g/L in batch 2). The dominant genera were Clostridium_sensu_stricto_12 and Prevotella_7. The caproate was more likely formed from the pathway of acetate and ethanol rather than via butyrate and ethanol. Since caproate is more valuable than acetate and low temperature fermentation consumes less energy, this process of H2 and CO2 MCF at 25 °C is appropriate for industrial application.
Collapse
Affiliation(s)
- Yun-Qi Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Wei Zhang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kun Dai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Hua-Jie Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xue Li
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|