1
|
Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. BIORESOURCE TECHNOLOGY 2025; 419:131951. [PMID: 39647717 DOI: 10.1016/j.biortech.2024.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Bacteria species such as E.Coli, Lactobacilli, and pediococci play an important role as starter strains in fermentation food or polysaccharides into lactic acid. These bacteria were metabolically engineered using multiple proven genome editing methods to enhance relevant phenotypes. The efficacy of these procedures varies depending on the editing tool used and researchers' ability to pick suitable recombinants, which significantly increased genome engineering throughput. Cyanobacteria produce oxygenic photosynthesis and play an important role in carbon dioxide fixing. The fixed carbon dioxide is then retained as polysaccharides in cells and metabolised into various low carbon molecules such as lactate, succinate, and ethanol. Lactate is used as a building ingredient in various bioplastics, food additives, and medicines. This review covers the recent advances in lactic acid production through metabolic and genetic engineering in bacteria and cyanobacteria.
Collapse
Affiliation(s)
- A K Rana
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK; Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - V K Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Pérez-Morales G, Caspeta L, Merino E, Cevallos MA, Gosset G, Martinez A. Simultaneous saccharification and fermentation for D-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:132. [PMID: 39488702 PMCID: PMC11531696 DOI: 10.1186/s13068-024-02579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Escherichia coli JU15 is a metabolically engineered strain capable to metabolize C5 and C6 sugars with a high yield of D-lactic acid production at its optimal growth temperature (37 °C). The simultaneous saccharification and fermentation process allow to use lignocellulosic biomass as a cost-effective and high-yield strategy. However, this process requires microorganisms capable of growth at a temperature close to 50 °C, at which the activity of cellulolytic enzymes works efficiently. RESULTS The thermotolerant strain GT48 was generated by adaptive laboratory evolution in batch and chemostat cultures under temperature increments until 48 °C. The strain GT48 was able to grow and ferment glucose to D-lactate at 47 °C. It was found that a pH of 6.3 conciliated with GT48 growth and cellulase activity of a commercial cocktail. Hence, this pH was used for the SSF of a diluted acid-pretreated corn stover (DAPCS) at a solid load of 15% (w/w), 15 FPU/g-DAPCS, and 47 °C. Under such conditions, the strain GT48 exhibited remarkable performance, producing D-lactate at a level of 1.41, 1.42, and 1.48-fold higher in titer, productivity, and yield, respectively, compared to parental strain at 45 °C. CONCLUSIONS In general, our results show for the first time that a thermal-adapted strain of E. coli is capable of being used in the simultaneous saccharification and fermentation process without pre-saccharification stage at high temperatures.
Collapse
Affiliation(s)
- Gilberto Pérez-Morales
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Luis Caspeta
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Miguel A Cevallos
- Program of Evolutionary Genomics, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2000, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Alfredo Martinez
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
3
|
He N, Chen M, Qiu Z, Fang C, Lidén G, Liu X, Zhang B, Bao J. Simultaneous and rate-coordinated conversion of lignocellulose derived glucose, xylose, arabinose, mannose, and galactose into D-lactic acid production facilitates D-lactide synthesis. BIORESOURCE TECHNOLOGY 2023; 377:128950. [PMID: 36963700 DOI: 10.1016/j.biortech.2023.128950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
D-lactide is the precursor of poly(D-lactide) (PDLA) or stereo-complex with poly(L-lactide) (PLLA). Lignocellulosic biomass provides the essential feedstock option to synthesize D-lactic acid and D-lactide. The residual sugars in D-lactic acid fermentation broth significantly blocks the D-lactide synthesis. This study showed a simultaneous and rate-coordinated conversion of lignocellulose derived glucose, xylose, arabinose, mannose, and galactose into D-lactic acid by adaptively evolved Pediococcus acidilactici ZY271 by simultaneous saccharification and co-fermentation (SSCF) of wheat straw. The produced D-lactic acid achieved minimum residual sugars (∼1.7 g/L), high chirality (∼99.1%) and high titer (∼128 g/L). A dry acid pretreatment eliminated the wastewater stream generation and the biodetoxification by fungus Amorphotheca resinae ZN1 removed the inhibitors from the pretreatment. The removal of the sugar residues and inhibitor impurities in D-lactic acid production from lignocellulose strongly facilitated the D-lactide synthesis. This study filled the gap in cellulosic D-lactide production from lignocellulose-derived D-lactic acid.
Collapse
Affiliation(s)
- Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingxing Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Chun Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
4
|
Imandi SB, Karanam SK, Nagumantri R, Srivastava RK, Sarangi PK. Neural networks and genetic algorithm as robust optimization tools for modeling the microbial production of poly‐β‐hydroxybutyrate (PHB) from Brewers’ spent grain. Biotechnol Appl Biochem 2022. [DOI: 10.1002/bab.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sarat Babu Imandi
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University Gandhinagar, Rushikonda Visakhapatnam 530045 India
| | | | - Radhakrishna Nagumantri
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University Gandhinagar, Rushikonda Visakhapatnam 530045 India
| | - Rajesh K. Srivastava
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University Gandhinagar, Rushikonda Visakhapatnam 530045 India
| | | |
Collapse
|
5
|
Continuous Fermentation by Lactobacillus bulgaricus T15 Cells Immobilized in Cross-Linked F127 Hydrogels to Produce ᴅ-Lactic Acid. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lignocellulose biorefinery via continuous cell-recycle fermentation has long been recognized as a promising alternative technique for producing chemicals. ᴅ-lactic acid (D-LA) production by fermentation of corn stover by Lactobacillus bulgaricus was proven to be feasible by a previous study. However, the phenolic compounds and the high glucose content in this substrate may inhibit cell growth. The immobilization of cells in polymer hydrogels can protect them from toxic compounds in the medium and improve fermentation efficiency. Here, we studied the production of D-LA by L. bulgaricus cells immobilized in cross-linkable F127 bis-polyurethane methacrylate (F127-BUM/T15). The Hencky stress and Hencky strain of F127-BUM/T15 was 159.11 KPa and 0.646 respectively. When immobilized and free-living cells were cultured in media containing 5-hydroxymethylfurfural, vanillin, or high glucose concentrations, the immobilized cells were more tolerant, produced higher D-LA yields, and had higher sugar-to-acid conversion ratios. After 100 days of fermentation, the total D-LA production via immobilized cells was 1982.97 ± 1.81 g with a yield of 2.68 ± 0.48 g/L h, which was higher than that of free cells (0.625 ± 0.28 g/L h). This study demonstrated that F127-BUM/T15 has excellent potential for application in the biorefinery industry.
Collapse
|
6
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
7
|
Karnaouri A, Asimakopoulou G, Kalogiannis KG, Lappas AA, Topakas E. Efficient production of nutraceuticals and lactic acid from lignocellulosic biomass by combining organosolv fractionation with enzymatic/fermentative routes. BIORESOURCE TECHNOLOGY 2021; 341:125846. [PMID: 34474235 DOI: 10.1016/j.biortech.2021.125846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 05/26/2023]
Abstract
The aim of this work was to investigate the use of isobutanol as organic solvent for the efficient delignification and fractionation of beechwood through the OxiOrganosolv process in the absence of any catalyst. The results demonstrate that cellulose-rich solid pulp produced after pretreatment is a source of fermentable sugars that can be easily hydrolyzed and serve as a carbon source in microbial fermentations for the production of omega-3 fatty acids and D-lactic acid. The C5 sugars are recovered in the aqueous liquid fractions and comprise a fraction rich in xylo-oligosaccharides with prebiotic potential. The maximum production of optically pure D-lactic from Lactobacillus delbrueckii sp. bulgaricus reached 51.6 g/L (0.57 g/gbiomass), following a simultaneous saccharification and fermentation strategy. Crypthecodenium cohnii accumulated up to 52.1 wt% lipids with a DHA content of 54.1 %, while up to 43.3 % hemicellulose recovery in form of oligosaccharides was achieved in the liquid fraction.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Georgia Asimakopoulou
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Konstantinos G Kalogiannis
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th km Harilaou-Thermi Road, Thermi, 57001 Thessaloniki, Greece
| | - Angelos A Lappas
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6th km Harilaou-Thermi Road, Thermi, 57001 Thessaloniki, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
8
|
Liu L, Zeng W, Yu S, Li J, Zhou J. Rapid Enabling of Gluconobacter oxydans Resistance to High D-Sorbitol Concentration and High Temperature by Microdroplet-Aided Adaptive Evolution. Front Bioeng Biotechnol 2021; 9:731247. [PMID: 34540816 PMCID: PMC8446438 DOI: 10.3389/fbioe.2021.731247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Gluconobacter oxydans is important in the conversion of D-sorbitol into l-sorbose, which is an essential intermediate for industrial-scale production of vitamin C. In a previous study, the strain G. oxydans WSH-004 could directly produce 2-keto-l-gulonic acid (2-KLG). However, its D-sorbitol tolerance was poor compared with that of other common industrial G. oxydans strains, which grew well in the presence of more than 200 g/L of D-sorbitol. This study aimed to use the microbial microdroplet culture (MMC) system for the adaptive evolution of G. oxydans WSH-004 so as to improve its tolerance to high substrate concentration and high temperature. A series of adaptively evolved strains, G. oxydans MMC1-MMC10, were obtained within 90 days. The results showed that the best strain MMC10 grew in a 300 g/L of D-sorbitol medium at 40°C. The comparative genomic analysis revealed that genetic changes related to increased tolerance were mainly in protein translation genes. Compared with the traditional adaptive evolution method, the application of microdroplet-aided adaptive evolution could improve the efficiency in terms of reducing time and simplifying the procedure for strain evolution. This research indicated that the microdroplet-aided adaptive evolution was an effective tool for improving the phenotypes with undemonstrated genotypes in a short time.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Recent Advances in Lactic Acid Production by Lactic Acid Bacteria. Appl Biochem Biotechnol 2021; 193:4151-4171. [PMID: 34519919 DOI: 10.1007/s12010-021-03672-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Lactic acid can synthesize high value-added chemicals such as poly lactic acid. In order to further minimize the cost of lactic acid production, some effective strategies (e.g., effective mutagenesis and metabolic engineering) have been applied to increase productive capacity of lactic acid bacteria. In addition, low-cost cheap raw materials (e.g., cheap carbon source and cheap nitrogen source) are also used to reduce the cost of lactic acid production. In this review, we summarized the recent developments in lactic acid production, including efficient strain modification technology (high-efficiency mutagenesis means, adaptive laboratory evolution, and metabolic engineering), the use of low-cost cheap raw materials, and also discussed the future prospects of this field, which could promote the development of lactic acid industry.
Collapse
|
10
|
Simultaneous saccharification and lactic acid fermentation of the cellulosic fraction of municipal solid waste using Bacillus smithii. Biotechnol Lett 2020; 43:667-675. [PMID: 33219874 PMCID: PMC7873104 DOI: 10.1007/s10529-020-03049-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022]
Abstract
Objective A primary drawback to simultaneous saccharification and fermentation (SSF) processes is the incompatibility of the temperature and pH optima for the hydrolysis and fermentation steps—with the former working best at 50–55 °C and pH 4.5–5.5. Here, nine thermophilic Bacillus and Parageobacillus spp. were evaluated for growth and lactic acid fermentation at high temperature and low pH. The most promising candidate was then carried forward to demonstrate SSF using the cellulosic fraction from municipal solid waste (MSW) as a feedstock. Results B. smithii SA8Eth was identified as the most promising candidate and in a batch SSF maintained at 55 °C and pH 5.0, using a cellulase dose of 5 FPU/g glucan, it produced 5.1 g/L lactic acid from 2% (w/v) MSW cellulosic pulp in TSB media. Conclusion This work has both scientific and industrial relevance, as it evaluates a number of previously untrialled bacterial hosts for their compatibility with lignocellulosic SSF for lactic acid production and successfully identifies B. smithii as a potential candidate for such a process. Electronic supplementary material The online version of this article (10.1007/s10529-020-03049-y) contains supplementary material, which is available to authorized users.
Collapse
|