1
|
Linghu K, Xu K, Zhao X, Zhou J, Wang X. Modulating phosphate transfer process for promoting phosphorylation activity of acid phosphatase. BIORESOURCE TECHNOLOGY 2025; 427:132348. [PMID: 40081774 DOI: 10.1016/j.biortech.2025.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Klebsiella pneumonia acid phosphatase is widely employed in the large-scale synthesis of nucleotides. It was found that the phosphate acceptance capability of the substrate limited the efficiency of the phosphate transfer process. By reducing steric hindrance and optimizing substrate interaction with the catalytic site, variants of Klebsiella pneumonia acid phosphatase were designed, with the E104G variant showing significantly enhanced hydrolysis activity while maintaining high phosphorylation activity. Crystal structure and quantum mechanics/molecular mechanics analyses of the E104G variant revealed that the mutation promotes substrate binding and lowers the energy barrier. Based on these insights, several mutations were designed, achieving significantly improved conversion rates. By knocking out degradation-related enzymes, the degradation rates of inosinic acid and guanylic acid were successfully controlled. This study provides a structure-based top-down design strategy that effectively enhances enzyme specificity, offering a promising enzyme candidate for large-scale nucleotide synthesis.
Collapse
Affiliation(s)
- Kai Linghu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kangjie Xu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyi Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Ma B, Niu J, Zhu H, Chi H, Lu Z, Lu F, Zhu P. Unlocking Loop Geometric Remodeling Redirects Aldo-Keto Reductase from Substrate Promiscuity to 3-Keto-Deoxynivalenol Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11316-11326. [PMID: 40267448 DOI: 10.1021/acs.jafc.4c12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Aldo-keto reductase is responsible for the formation of nontoxic 3-epi-deoxynivalenol (3-epi-DON) from 3-keto-DON, which is an enzymatic detoxification manner to completely eliminate the toxicity of mycotoxin DON against health and environmental threats. Therefore, unlocking the facilitated substrate specificity of aldo-keto reductase for 3-keto-DON has become a critical challenge for advanced catalytic performance. In this endeavor, a loop-based engineering strategy was developed for aldo-keto reductase AKR13B3 from Devosia A6-243 to catalyze 3-keto-DON. A 31.9-fold switch from a disfavored substrate to the preferred one was produced along with a significant 37.9-fold increase in catalytic efficiency. Kinetic parameter determinations, structural analyses, and molecular simulations were employed to elucidate the molecular mechanisms underlying these enhancements in catalytic activity and substrate specificity. Overall, our work presents a feasible scheme for designing aldo-keto reductases with exceptional substrate specificity and catalytic activity, holding great promise for developing enzymatic detoxification agents.
Collapse
Affiliation(s)
- Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Wu T, Wei W, Gao C, Wu J, Gao C, Chen X, Liu L, Song W. Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview. Crit Rev Biotechnol 2025; 45:702-726. [PMID: 39229892 DOI: 10.1080/07388551.2024.2390082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 09/05/2024]
Abstract
Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.
Collapse
Affiliation(s)
- Tianfu Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Tiedemann S, Stang A, Last S, Gefflaut T, von Langermann J. Preparative Coupled Enzymatic Synthesis of L-Homophenylalanine and 2-Hydroxy-5-oxoproline with Direct In Situ Product Crystallization and Cyclization. ACS OMEGA 2025; 10:14382-14389. [PMID: 40256536 PMCID: PMC12004150 DOI: 10.1021/acsomega.5c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
A continuous in situ crystallization concept is presented for the coupled preparative synthesis of L-homophenylalanine and 2-hydroxy-5-oxoproline (a cyclized form of α-ketoglutarate) using the α-transaminase from Megasphaera elsdenii. The process consists of a spontaneous reactive crystallization step of the enantiopure amino acid itself and a parallel spontaneous cyclization of the deaminated cosubstrate in solution. In parallel, these effects significantly improve the overall productivity of the biocatalytic reaction. Batch, repetitive, and fed-batch processes were investigated, and the fed-batch option proved to be the most viable option. The fed-batch process was subsequently used for a coupled synthesis approach at the gram scale. In total, >18 g of chemically pure L-homophenylalanine and >9 g of 2-hydroxy-5-oxoproline were isolated. This optimized process allows for the design of effective transaminase-catalyzed reactions at a preparative scale utilizing standard (fed-)batch-mode crystallizers.
Collapse
Affiliation(s)
- Sven Tiedemann
- Otto
von Guericke University Magdeburg, Institute of Chemistry, Biocatalysis Group, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Annabel Stang
- Otto
von Guericke University Magdeburg, Institute of Chemistry, Biocatalysis Group, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Simon Last
- Otto
von Guericke University Magdeburg, Institute of Chemistry, Biocatalysis Group, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Thierry Gefflaut
- Université
Clermont Auvergne, Institut de Chimie de
Clermont-Ferrand, 24 avenue
des Landais, 63178 Aubiere Cedex, France
| | - Jan von Langermann
- Otto
von Guericke University Magdeburg, Institute of Chemistry, Biocatalysis Group, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
5
|
Han J, Matsumoto T, Yamada R, Ogino H. Reshaping the substrate-binding pocket of acyl-ACP reductase to enhance the production of sustainable aviation fuel in Escherichia coli. Biotechnol Bioeng 2025; 122:211-222. [PMID: 39413001 DOI: 10.1002/bit.28863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
To reduce carbon emissions and address environmental concerns, the aviation industry is exploring the use of sustainable aviation fuel (SAF) as an alternative to traditional fossil fuels. In this context, bio-alkane is considered a potentially high-value solution. The present study focuses on the enzymes acyl-acyl carrier protein [ACP] reductase (AAR) and aldehyde-deformylating oxygenase (ADO), which are crucial enzymes for alka(e)ne biosynthesis. By using protein engineering techniques, including semi-rational design and site-directed mutagenesis, we aimed to enhance the substrate specificity of AAR and improve alkane production efficiency. The co-expression of a modified AAR (Y26G/Q40M mutant) with wild-type ADO in Escherichia coli significantly increased alka(e)ne production from 28.92 mg/L to 167.30 mg/L, thus notably demonstrating a 36-fold increase in alkane yield. This research highlights the potential of protein engineering in optimizing SAF production, thereby contributing to the development of more sustainable and efficient SAF production methods and promoting greener air travel.
Collapse
Affiliation(s)
- Jiahu Han
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
6
|
Li SF, Gao YC, Xu HB, Xu CL, Wang YJ, Liu ZQ, Zheng YG. Substrate access tunnel engineering of a Fe-type nitrile hydratase from Pseudomonas fluorescens ZJUT001 for substrate preference adjustment and catalytic performance enhancement. Bioorg Chem 2024; 152:107744. [PMID: 39213799 DOI: 10.1016/j.bioorg.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Substrate access tunnel engineering is a useful strategy for enzyme modification. In this study, we improved the catalytic performance of Fe-type Nitrile hydratase (Fe-type NHase) from Pseudomonas fluorescens ZJUT001 (PfNHase) by mutating residue Q86 at the entrance of the substrate access tunnel. The catalytic activity of the mutant PfNHase-αQ86W towards benzonitrile, 2-cyanopyridine, 3-cyanopyridine, and 4-hydroxybenzonitrile was enhanced by 9.35-, 3.30-, 6.55-, and 2.71-fold, respectively, compared to that of the wild-type PfNHase (PfNHase-WT). In addition, the mutant PfNHase-αQ86W showed a catalytic efficiency (kcat/Km) towards benzonitrile 17.32-fold higher than the PfNHase-WT. Interestingly, the substrate preference of PfNHase-αQ86W shifted from aliphatic nitriles to aromatic nitrile substrates. Our analysis delved into the structural changes that led to this altered substrate preference, highlighting an expanded entrance tunnel region, theenlarged substrate-binding pocket, and the increased hydrophobic interactions between the substrate and enzyme. Molecular dynamic simulations and dynamic cross-correlation Matrix (DCCM) further supported these findings, providing a comprehensive explanation for the enhanced catalytic activity towards aromatic nitrile substrates.
Collapse
Affiliation(s)
- Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yan-Chi Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hao-Bo Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Cheng-Long Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
7
|
Huang JP, Yun ST, Zhao JX, Wang XT, Wang XC, Guo XY, San DM, Zhou YX. The two-step strategy for enhancing the specific activity and thermostability of alginate lyase AlyG2 with mechanism for improved thermostability. Int J Biol Macromol 2024; 273:132685. [PMID: 38823749 DOI: 10.1016/j.ijbiomac.2024.132685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.
Collapse
Affiliation(s)
- Jin-Ping Huang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shuai-Ting Yun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jin-Xin Zhao
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Xue-Ting Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xiao-Chen Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xiang-Yi Guo
- SDU-ANU joint science college, Shandong University, Weihai, Shandong 264209, China
| | - Dong-Mei San
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai, Shandong 264209, China
| |
Collapse
|
8
|
Peng F, Shen Q, Zou LP, Cheng F, Xue YP, Zheng YG. Design of NAMPTs with Superior Activity by Dual-Channel Protein Engineering Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38842002 DOI: 10.1021/acs.jafc.4c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed substitution reaction plays a pivotal role in the biosynthesis of nucleotide compounds. However, industrial applications are hindered by the low activity of NAMPTs. In this study, a novel dual-channel protein engineering strategy was developed to increase NAMPT activity by enhancing substrate accessibility. The best mutant (CpNAMPTY13G+Y15S+F76P) with a remarkable 5-fold increase in enzyme activity was obtained. By utilizing CpNAMPTY13G+Y15S+F76P as a biocatalyst, the accumulation of β-nicotinamide mononucleotide reached as high as 19.94 g L-1 within 3 h with an impressive substrate conversion rate of 99.8%. Further analysis revealed that the newly generated substrate channel, formed through crack propagation, facilitated substrate binding and enhanced byproduct tolerance. In addition, three NAMPTs from different sources were designed based on the dual-channel protein engineering strategy, and the corresponding dual-channel mutants with improved enzyme activity were obtained, which proved the effectiveness and practicability of the approach.
Collapse
Affiliation(s)
- Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
9
|
Ma B, Niu J, Zhu H, Chi H, Lu Z, Lu F, Zhu P. Engineering substrate specificity of quinone-dependent dehydrogenases for efficient oxidation of deoxynivalenol to 3-keto-deoxynivalenol. Int J Biol Macromol 2024; 264:130484. [PMID: 38431002 DOI: 10.1016/j.ijbiomac.2024.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The oxidative reaction of Fusarium mycotoxin deoxynivalenol (DON) using the dehydrogenase is a desirable strategy and environmentally friendly to mitigate its toxicity. However, a critical issue for these dehydrogenases shows widespread substrate promiscuity. In this study, we conducted pocket reshaping of Devosia strain A6-243 pyrroloquinoline quinone (PQQ)-dependent dehydrogenase (DADH) on the basis of protein structure and kinetic analysis of substrate libraries to improve preference for particular substrate DON (10a). The variant presented an increased preference for substrate 10a and enhanced catalytic efficiency. A 4.7-fold increase in preference for substrate 10a was observed. Kinetic profiling and molecular dynamics (MD) simulations provided insights into the enhanced substrate specificity and activity. Moreover, the variant exhibited stronger conversion of substrate 10a to 3-keto-DON compared to the wild DADH. Overall, this study provides a feasible protocol for the redesign of PQQ-dependent dehydrogenases with favourable substrate specificity and catalytic activity, which is desperately needed for DON antidote development.
Collapse
Affiliation(s)
- Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Tenberg V, Sadeghi M, Schultheis A, Joshi M, Stein M, Lorenz H. Aqueous solution and solid-state behaviour of l-homophenylalanine: experiment, modelling, and DFT calculations. RSC Adv 2024; 14:10580-10589. [PMID: 38567323 PMCID: PMC10985536 DOI: 10.1039/d4ra01897d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
In the present study, the solid-state and aqueous solubility behaviour of l-homophenylalanine (l-Hpa) is explored. Different characterization techniques such as TG, DSC, temperature-resolved PXRD, and hot-stage microscopy were used to investigate basic thermal solid-state characteristics. Solubilities of l-Hpa in water were determined as a function of temperature and pH. Moreover, a thermodynamic model based on perturbation theory (PC-SAFT) is applied to represent the data. In addition, aqueous density data of l-Hpa were measured in a broader temperature range. To model the solubility data as a function of pH, pKa values are needed, which were accessed by employing density functional theory (DFT) calculations. The solid-state investigation did not show a simple melting process of l-Hpa, but a complete decomposition of the prevalent initial solid phase at elevated temperatures approximately above 520 K. This system exhibited extraordinarily low solubilities for an amino acid at all investigated temperatures. While the solubility does not differ from its isoelectric-point value over a wide pH range, it dramatically increases as the pH falls below 2.5 and rises above 9.5. The PC-SAFT model was able to calculate the solubilities as a function of pH and predict the density values.
Collapse
Affiliation(s)
- Vico Tenberg
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| | - Masoud Sadeghi
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| | - Axel Schultheis
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| | - Meenakshi Joshi
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Heike Lorenz
- Physical and Chemical Foundations of Process Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany +49 391 6110 321
| |
Collapse
|
11
|
Niu J, Ma B, Shen J, Chi H, Zhou H, Lu Z, Lu F, Zhu P. Structure-Guided Steric Hindrance Engineering of Devosia Strain A6-243 Quinone-Dependent Dehydrogenase to Enhance Its Catalytic Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:549-558. [PMID: 38153089 DOI: 10.1021/acs.jafc.3c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Deoxynivalenol (DON), the most widely distributed mycotoxin worldwide, causes severe health risks for humans and animals. Quinone-dependent dehydrogenase derived from Devosia strain A6-243 (DADH) can degrade DON into less toxic 3-keto-DON and then aldo-keto reductase AKR13B3 can reduce 3-keto-DON into relatively nontoxic 3-epi-DON. However, the poor catalytic efficiency of DADH made it unsuitable for practical applications, and it has become the rate-limiting step of the two-step enzymatic cascade catalysis. Here, structure-guided steric hindrance engineering was employed to enhance the catalytic efficiency of DADH. After the steric hindrance engineering, the best mutant, V429G/N431V/T432V/L434V/F537A (M5-1), showed an 18.17-fold increase in specific activity and an 11.04-fold increase in catalytic efficiency (kcat/Km) compared with that of wild-type DADH. Structure-based computational analysis provided information on the increased catalytic efficiency in the directions that attenuated steric hindrance, which was attributed to the reshaped substrate-binding pocket with an expanded catalytic binding cavity and a favorable attack distance. Tunnel analysis suggested that reshaping the active cavity by mutation might alter the shape and size of the enzyme tunnels or form one new enzyme tunnel, which might contribute to the improved catalytic efficiency of M5-1. These findings provide a promising strategy to enhance the catalytic efficiency by steric hindrance engineering.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol 2023; 232:123440. [PMID: 36708895 DOI: 10.1016/j.ijbiomac.2023.123440] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Engineered thermostable microbial enzymes are widely employed to catalyze chemical reactions in numerous industrial sectors. Although high thermostability is a prerequisite of industrial applications, enzyme activity is usually sacrificed during thermostability improvement. Therefore, it is vital to select the common and compatible strategies between thermostability and activity improvement to reduce mutants̕ libraries and screening time. Three functional protein engineering approaches, including directed evolution, rational design, and semi-rational design, are employed to manipulate protein structure on a genetic basis. From a structural standpoint, integrative strategies such as increasing substrate affinity; introducing electrostatic interaction; removing steric hindrance; increasing flexibility of the active site; N- and C-terminal engineering; and increasing intramolecular and intermolecular hydrophobic interactions are well-known to improve simultaneous activity and thermostability. The current review aims to analyze relevant strategies to improve thermostability and activity simultaneously to circumvent the thermostability and activity trade-off of industrial enzymes.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
14
|
Gu J, Xu Y, Nie Y. Role of distal sites in enzyme engineering. Biotechnol Adv 2023; 63:108094. [PMID: 36621725 DOI: 10.1016/j.biotechadv.2023.108094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The limitations associated with natural enzyme catalysis have triggered the rise of the field of protein engineering. Traditional rational design was based on the analysis of protein structural information and catalytic mechanisms to identify key active sites or ligand binding sites to reshape the substrate pocket. The role and significance of functional sites in the active center have been studied extensively. With a deeper understanding of the structure-catalysis relationship map, the entire protein molecule can be filled with residues that play a substantial role in its structure and function. However, the catalytic mechanism underlying distal mutations remains unclear. The aim of this review was to highlight the criticality of the distal site in enzyme engineering based on the following three aspects: What can distal mutations exert on function from mutability landscape? How do distal sites influence enzyme function? How to predict and design distal mutations? This review provides insights into the catalytic mechanism of enzymes from the global interaction network, knowledge from sequence-structure-dynamics-function relationships, and strategies for distal mutation-based protein engineering.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| |
Collapse
|
15
|
Wu T, Wang Y, Zhang N, Yin D, Xu Y, Nie Y, Mu X. Reshaping Substrate-Binding Pocket of Leucine Dehydrogenase for Bidirectionally Accessing Structurally Diverse Substrates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| | - Yinmiao Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Ningxin Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Dejing Yin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| |
Collapse
|
16
|
Li SS, Huang ZQ, Hua HJ, Lu JG, Zhao WJ, Feng J. Process Study on the Enzyme-Catalyzed Preparation of Key Chiral Intermediates for Saxagliptin. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1759851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractSaxagliptin is a therapeutic drug for diabetes. The key synthesis process of the drug involves catalyzing 2-(3-hydroxy-1-adamantyl)-2-oxoacetic acid (A) into (S)-3-hydroxyadamantane glycine (B), during which enzymes phenylalanine dehydrogenase mutant from Thermoactinomyces intermedius (TiPDHm) and formate dehydrogenase (FDH) were most often used for biocatalysis. However, the process was limited due to difficulty in enzyme preparation and a low conversion rate. This study focuses on co-expression of TiPDHm and FDH in recombinant Escherichia coli, cell homogenate clarification, enzyme concentration as well as the optimized conditions of enzyme-catalyzed reaction. Our data showed that the wet weight density of bacteria reached 300 g/L, and the yields of TiPDHm and FDH were 7674.24 and 2042.52 U/L, respectively. The combination of ammonium formate and polyethyleneimine favors the clarification of the bacteria homogenate. The clarified enzyme solution obtained can be concentrated by ultrafiltration and directly used in a reductive amination reaction in a high concentration of keto acid A. The reaction time was only 12 hours and the conversion rate reached 95%. Therefore, this process could provide a reference for enzyme-catalyzed preparation of saxagliptin on an industrial scale.
Collapse
Affiliation(s)
- Shan-Shan Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co,. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Zong-Qing Huang
- Shanghai Duomirui Bio-Technology Co., Ltd., Shanghai, People's Republic of China
| | - Hao-Ju Hua
- Shanghai Duomirui Bio-Technology Co., Ltd., Shanghai, People's Republic of China
| | - Jian-Guang Lu
- Shanghai Duomirui Bio-Technology Co., Ltd., Shanghai, People's Republic of China
| | - Wen-Jie Zhao
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co,. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jun Feng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co,. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Duomirui Bio-Technology Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
17
|
Oroz P, Navo CD, Avenoza A, Busto JH, Corzana F, Jiménez-Osés G, Peregrina JM. Towards Enantiomerically Pure Unnatural α-Amino Acids via Photoredox Catalytic 1,4-Additions to a Chiral Dehydroalanine. J Org Chem 2022; 87:14308-14318. [PMID: 36179039 PMCID: PMC9639051 DOI: 10.1021/acs.joc.2c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chemo- and diastereoselective 1,4-conjugate additions of anionic and radical C-nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. Of particular importance, radical carbon photolysis by a catalytic photoredox process using a simple method with a metal-free photocatalyst provides exceptional yields and selectivities at room temperature. Moreover, these 1,4-conjugate additions offer an excellent starting point for synthesizing enantiomerically pure carbon-β-substituted unnatural α-amino acids (UAAs), which could have a high potential for applications in chemical biology.
Collapse
Affiliation(s)
- Paula Oroz
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Alberto Avenoza
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H. Busto
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain,Ikerbasque, Basque
Foundation for Science, 48013 Bilbao, Spain
| | - Jesús M. Peregrina
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain,
| |
Collapse
|
18
|
Gao D, Song W, Wu J, Guo L, Gao C, Liu J, Chen X, Liu L. Efficient Production of L‐Homophenylalanine by Enzymatic‐Chemical Cascade Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207077. [DOI: 10.1002/anie.202207077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dengke Gao
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Song
- School of Life Sciences and Health Engineering Jiangnan University Wuxi 214122 China
| | - Jing Wu
- School of Life Sciences and Health Engineering Jiangnan University Wuxi 214122 China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
19
|
Efficient Production of L‐homophenylalanine by Enzymatic–Chemical Cascade Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Substrate-Specific Engineering of Amino Acid Dehydrogenase Superfamily for Synthesis of a Variety of Chiral Amines and Amino Acids. Catalysts 2022. [DOI: 10.3390/catal12040380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amino acid dehydrogenases (AADHs) are a group of enzymes that catalyze the reversible reductive amination of keto acids with ammonia to produce chiral amino acids using either nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+) as cofactors. Among them, glutamate dehydrogenase, valine dehydrogenase, leucine dehydrogenase, phenylalanine dehydrogenase, and tryptophan dehydrogenase have been classified as a superfamily of amino acid dehydrogenases (s-AADHs) by previous researchers because of their conserved structures and catalytic mechanisms. Owing to their excellent stereoselectivity, high atom economy, and low environmental impact of the reaction pathway, these enzymes have been extensively engineered to break strict substrate specificities for the synthesis of high value-added chiral compounds (chiral amino acids, chiral amines, and chiral amino alcohols). Substrate specificity engineering of s-AADHs mainly focuses on recognition engineering of the substrate side chain R group and substrate backbone carboxyl group. This review summarizes the reported studies on substrate specificity engineering of s-AADHs and reports that this superfamily of enzymes shares substrate specificity engineering hotspots (the inside of the pocket, substrate backbone carboxyl anchor sites, substrate entrance tunnel, and hinge region), which sheds light on the substrate-specific tailoring of these enzymes.
Collapse
|
21
|
Li J, Mu X, Wu T, Xu Y. High coenzyme affinity chimeric amine dehydrogenase based on domain engineering. BIORESOUR BIOPROCESS 2022; 9:33. [PMID: 38647888 PMCID: PMC10992376 DOI: 10.1186/s40643-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
NADH-dependent phenylalanine amine dehydrogenase (F-AmDH) engineered from phenylalanine dehydrogenase (PheDH) catalyzes the synthesis of aromatic chiral amines from prochiral ketone substrates. However, its low coenzyme affinity and catalytic efficiency limit its industrial application. Here, we developed a chimeric amine dehydrogenase, cFLF-AmDH, based on the relative independence of the structure at the domain level, combined with a substrate-binding domain from F-AmDH and a high-affinity cofactor-binding domain from leucine amine dehydrogenase (L-AmDH). The kinetic parameters indicated that cFLF-AmDH showed a twofold improvement in affinity for NADH and a 4.4-fold increase in catalytic efficiency (kcat/Km) compared with the parent F-AmDH. Meanwhile, cFLF-AmDH also showed higher thermal stability, with the half-life increased by 60% at 55 °C and a broader substrate spectrum, than the parent F-AmDH. Molecular dynamics simulations suggested that the constructed cFLF-AmDH had a more stable structure than the parent F-AmDH, thereby improving the affinity of the coenzyme. The reaction rate increased by 150% in the reductive amination reaction catalyzed by cFLF-AmDH. When the NAD+ concentration was 0.05 mM, the conversion rate was increased by 150%. These results suggest that the chimeric protein by domain shuffling from different domain donors not only increased the cofactor affinity and catalytic efficiency, but also changed the specificity and thermal stability. Our study highlights that domain engineering is another effective method for creating biodiversity with different catalytic properties.
Collapse
Affiliation(s)
- Jialin Li
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China.
| | - Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
22
|
Mu X, Feng X, Wu T, Zhou F, Nie Y, Xu Y. Transamination-Like Reaction Catalyzed by Leucine Dehydrogenase for Efficient Co-Synthesis of α-Amino Acids and α-Keto Acids. Molecules 2021; 26:molecules26237287. [PMID: 34885864 PMCID: PMC8658789 DOI: 10.3390/molecules26237287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
α-Amino acids and α-keto acids are versatile building blocks for the synthesis of several commercially valuable products in the food, agricultural, and pharmaceutical industries. In this study, a novel transamination-like reaction catalyzed by leucine dehydrogenase was successfully constructed for the efficient enzymatic co-synthesis of α-amino acids and α-keto acids. In this reaction mode, the α-keto acid substrate was reduced and the α-amino acid substrate was oxidized simultaneously by the enzyme, without the need for an additional coenzyme regeneration system. The thermodynamically unfavorable oxidation reaction was driven by the reduction reaction. The efficiency of the biocatalytic reaction was evaluated using 12 different substrate combinations, and a significant variation was observed in substrate conversion, which was subsequently explained by the differences in enzyme kinetics parameters. The reaction with the selected model substrates 2-oxobutanoic acid and L-leucine reached 90.3% conversion with a high total turnover number of 9.0 × 106 under the optimal reaction conditions. Furthermore, complete conversion was achieved by adjusting the ratio of addition of the two substrates. The constructed reaction mode can be applied to other amino acid dehydrogenases in future studies to synthesize a wider range of valuable products.
Collapse
Affiliation(s)
- Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (X.F.); (T.W.); (F.Z.); (Y.N.); (Y.X.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Industrial Technology, Suqian Jiangnan University, Suqian 223800, China
- Correspondence:
| | - Xian Feng
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (X.F.); (T.W.); (F.Z.); (Y.N.); (Y.X.)
| | - Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (X.F.); (T.W.); (F.Z.); (Y.N.); (Y.X.)
| | - Feng Zhou
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (X.F.); (T.W.); (F.Z.); (Y.N.); (Y.X.)
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (X.F.); (T.W.); (F.Z.); (Y.N.); (Y.X.)
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (X.F.); (T.W.); (F.Z.); (Y.N.); (Y.X.)
| |
Collapse
|