1
|
Singh M, Sarhan MO, Damiba NNL, Singh AK, Villabona-Rueda A, Nino-Meza OJ, Chen X, Masias-Leon Y, Ruiz-Gonzalez CE, Ordonez AA, D'Alessio FR, Aboagye EO, Carroll LS, Jain SK. Proapoptotic Bcl-2 inhibitor as potential host directed therapy for pulmonary tuberculosis. Nat Commun 2025; 16:3003. [PMID: 40148277 PMCID: PMC11950383 DOI: 10.1038/s41467-025-58190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue necrosis, fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68+ and CD11b+ cells. Finally, positron emission tomography (PET) in live animals using clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74), demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed in postmortem analysis. Our studies suggest that proapoptotic drugs such as navitoclax can potentially improve pulmonary TB treatments, reduce lung damage / fibrosis and may be protective against post-TB lung disease.
Collapse
Affiliation(s)
- Medha Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona O Sarhan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nerketa N L Damiba
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alok K Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | - Oscar J Nino-Meza
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xueyi Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuderleys Masias-Leon
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carlos E Ruiz-Gonzalez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franco R D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Campus, Imperial College, London, UK
| | - Laurence S Carroll
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sasaninia K, Mohan AS, Badaoui A, Glassman I, Yoon S, Karapetyan A, Kolloli A, Kumar R, Ramasamy S, Subbian S, Venketaraman V. Glutathione Depletion Exacerbates Hepatic Mycobacterium tuberculosis Infection. BIOLOGY 2025; 14:131. [PMID: 40001899 PMCID: PMC11852144 DOI: 10.3390/biology14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Extrapulmonary tuberculosis (EPTB) accounts for approximately 17% of all Mycobacterium tuberculosis (M.tb) infections globally. Immunocompromised individuals, such as those with HIV infection or type 2 diabetes mellitus (T2DM), are at an increased risk for EPTB. Previous studies have demonstrated that patients with HIV and T2DM exhibit diminished synthesis of glutathione (GSH) synthesizing enzymes. In a murine model, we showed that the diethyl maleate (DEM)-induced depletion of GSH in the lungs led to increased M.tb burden and an impaired pulmonary granulomatous response to M.tb infection. However, the effects of GSH depletion during active EPTB in the liver and spleen have yet to be elucidated. In this study, we evaluated hepatic GSH and malondialdehyde (MDA) levels, as well as cytokine profiles, in untreated and DEM-treated M.tb-infected wild-type (WT) C57BL/6 mice. Additionally, we assessed hepatic and splenic M.tb burdens and tissue pathologies. DEM treatment resulted in a significant decrease in the levels of the reduced form of GSH and an increase in MDA, oxidized GSH, and interleukin (IL)-6 levels. Furthermore, DEM-induced GSH decrease was associated with decreased production of IL-12 and IL-17 and elevated production of interferon-gamma (IFN-γ), tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β. A significant increase in M.tb growth was detected in the liver and spleen in DEM-treated M.tb-infected mice. Large, disorganized lymphocyte infiltrates were detected in the hepatic tissues of DEM-treated mice. Overall, GSH diminishment impaired the granulomatous response to M.tb in the liver and exacerbated M.tb growth in both the liver and spleen. These findings provide critical insights into the immunomodulatory role of GSH in TB pathogenesis and suggest potential therapeutic avenues for the treatment of extrapulmonary M.tb infections.
Collapse
Affiliation(s)
- Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Aishvaryaa Shree Mohan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Sonyeol Yoon
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Arshavir Karapetyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Afsal Kolloli
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Ranjeet Kumar
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Santhamani Ramasamy
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Selvakumar Subbian
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| |
Collapse
|
3
|
Musa BM, Dankishiya FS, Babashani M, Musa A, Saidu H, Saleh MK, Ibrahim HU, Adamu AL, Aliyu MH. Identification of Post-Tuberculosis Lung Function Impairment Early during the Course of Treatment. Am J Trop Med Hyg 2025; 112:143-149. [PMID: 39531728 PMCID: PMC11720773 DOI: 10.4269/ajtmh.24-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality and an important contributory factor to chronic lung disease. TB-associated permanent lung damage manifests with varying levels of respiratory disability long after TB has been successfully treated, which is a condition known as post-TB lung disease (PTLD). This study assessed whether lung function impairment associated with PTLD occurs early during TB treatment. Using a cross-sectional design, we enrolled newly diagnosed adult TB patients aged ≥18 years who had received anti-TB medication for ≥2 months from a large treatment center in northern Nigeria. We used spirometry and the Global Lung Initiative 2012 reference equations for African Americans to assess and characterize lung function for enrolled participants (N = 94). The median age (range) of participants was 34 (18-72) years. Approximately 5.3% (n = 5) of participants exhibited features of abnormal lung function, 4.2% (n = 4) showed features of obstructive lung abnormality, and 1.1% (n = 1) showed restrictive lung abnormality. Compared with historical patients recruited ≥6 months after TB treatment in the same center, our participants had significantly lower forced expiratory volume in one second and forced vital capacity values. Our findings suggest an opportunity for early intervention for primary and secondary prevention of PTLD to reduce the impact of severe respiratory impairment.
Collapse
Affiliation(s)
- Baba M. Musa
- African Center of Excellence for Population Health and Policy, Bayero University, Kano, Kano, Nigeria
- Department of Medicine, Bayero University, Kano, Kano, Nigeria
| | - Faisal S. Dankishiya
- African Center of Excellence for Population Health and Policy, Bayero University, Kano, Kano, Nigeria
| | - Musa Babashani
- Department of Medicine, Bayero University, Kano, Kano, Nigeria
| | - Aisha Musa
- Department of Radiology, Bayero University, Kano, Kano, Nigeria
| | - Hadiza Saidu
- Department of Medicine, Bayero University, Kano, Kano, Nigeria
| | | | | | - Aishatu L. Adamu
- Department of Community Medicine, Bayero University, Kano and Aminu Kano Teaching Hospital, Kano, Nigeria
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Muktar H. Aliyu
- Vanderbilt Institute of Global Health, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
4
|
Gai X, Allwood B, Sun Y. Advances in the awareness of tuberculosis-associated chronic obstructive pulmonary disease. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:250-256. [PMID: 39834582 PMCID: PMC11742363 DOI: 10.1016/j.pccm.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 01/05/2025]
Abstract
Tuberculosis (TB) significantly increases the risk of developing chronic obstructive pulmonary disease (COPD), positioning TB-associated COPD (TB-COPD) as a distinct category within the spectrum of respiratory diseases prevalent, especially in low- and middle-income countries. This condition results from the body's immune response to TB, leading to prolonged inflammation and consequent persistent lung damage. Diagnostic approaches, particularly post-bronchodilator spirometry, are vital for identifying airflow obstruction and confirming TB-COPD. Furthermore, exploring potential biomarkers is crucial for a deeper insight into the pathogenesis of TB-COPD and the improvement of treatment strategies. Currently, this condition is primarily managed using inhaled bronchodilators, with cautious use of inhaled corticosteroids advised owing to the increased risk of developing TB. This review delves into the epidemiology, clinical manifestations, pulmonary function, and imaging characteristics of TB-COPD, scrutinizing current and prospective biomarkers and therapeutic strategies. Furthermore, it underscores the necessity for focused research to bridge the knowledge and treatment gaps in this complex condition.
Collapse
Affiliation(s)
- Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Center for Chronic Airway Diseases, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Brian Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Academic Hospital, Cape Town 7505, South Africa
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Center for Chronic Airway Diseases, Peking University Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Pushpamithran G, Blomgran R. Macrophage-derived extracellular vesicles from Ascaris lumbricoides antigen exposure enhance Mycobacterium tuberculosis growth control, reduce IL-1β, and contain miR-342-5p, miR-516b-5p, and miR-570-3p that regulate PI3K/AKT and MAPK signaling pathways. Front Immunol 2024; 15:1454881. [PMID: 39569198 PMCID: PMC11576181 DOI: 10.3389/fimmu.2024.1454881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024] Open
Abstract
Background Helminth coinfection with tuberculosis (TB) can alter the phenotype and function of macrophages, which are the major host cells responsible for controlling Mycobacterium tuberculosis (Mtb). However, it is not known whether helminth infection stimulates the release of host-derived extracellular vesicles (EVs) to induce or maintain their regulatory network that suppresses TB immunity. We previously showed that pre-exposure of human monocyte-derived macrophages (hMDMs) with Ascaris lumbricoides protein antigens (ASC) results in reduced Mtb infection-driven proinflammation and gained bacterial control. This effect was entirely dependent on the presence of soluble components in the conditioned medium from helminth antigen-pre-exposed macrophages. Methods Our objective was to investigate the role of EVs released from helminth antigen-exposed hMDMs on Mtb-induced proinflammation and its effect on Mtb growth in hMDMs. Conditioned medium from 48-h pre-exposure with ASC or Schistosoma mansoni antigen (SM) was used to isolate EVs by ultracentrifugation. EVs were characterized by immunoblotting, flow cytometry, nanoparticle tracking assay, transmission electron microscopy, and a total of 377 microRNA (miRNA) from EVs screened by TaqMan array. Luciferase-expressing Mtb H37Rv was used to evaluate the impact of isolated EVs on Mtb growth control in hMDMs. Results EV characterization confirmed double-membraned EVs, with a mean size of 140 nm, expressing the classical exosome markers CD63, CD81, CD9, and flotillin-1. Specifically, EVs from the ASC conditioned medium increased the bacterial control in treatment-naïve hMDMs and attenuated Mtb-induced IL-1β at 5 days post-infection. Four miRNAs showed unique upregulation in response to ASC exposure in five donors. Pathway enrichment analysis showed that the MAPK and PI3K-AKT signaling pathways were regulated. Among the mRNA targets, relevant for regulating inflammatory responses and cellular stress pathways, CREB1 and MAPK13 were identified. In contrast, SM exposure showed significant regulation of the TGF-β signaling pathway with SMAD4 as a common target. Conclusion Overall, our findings suggest that miRNAs in EVs released from helminth-exposed macrophages regulate important signaling pathways that influence macrophage control of Mtb and reduce inflammation. Understanding these interactions between helminth-induced EVs, miRNAs, and macrophage responses may inform novel therapeutic strategies for TB management.
Collapse
Affiliation(s)
- Giggil Pushpamithran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Robert Blomgran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Auld SC, Barczak AK, Bishai W, Coussens AK, Dewi IMW, Mitini-Nkhoma SC, Muefong C, Naidoo T, Pooran A, Stek C, Steyn AJC, Tezera L, Walker NF. Pathogenesis of Post-Tuberculosis Lung Disease: Defining Knowledge Gaps and Research Priorities at the Second International Post-Tuberculosis Symposium. Am J Respir Crit Care Med 2024; 210:979-993. [PMID: 39141569 PMCID: PMC11531093 DOI: 10.1164/rccm.202402-0374so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Post-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023. The committee first identified six areas with high translational potential: 1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity; 2) fibroblasts and profibrotic activity; 3) granuloma fate and cell death pathways; 4) mycobacterial factors, including pathogen burden; 5) animal models; and 6) the impact of key clinical risk factors, including HIV, diabetes, smoking, malnutrition, and alcohol. We share the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.
Collapse
Affiliation(s)
- Sara C. Auld
- Departments of Medicine, Epidemiology, and Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Amy K. Barczak
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Intan M. W. Dewi
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, and
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Caleb Muefong
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Threnesan Naidoo
- Department of Forensic & Legal Medicine and
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, and
- University of Cape Town Lung Institute and Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liku Tezera
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; and
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
7
|
Jain S, Singh M, Sarhan M, Damiba N, Singh A, Villabona-Rueda A, Meza ON, Chen X, Ordonez A, D'Alessio F, Aboagye E, Carroll L. Proapoptotic Bcl-2 inhibitor as host directed therapy for pulmonary tuberculosis. RESEARCH SQUARE 2024:rs.3.rs-4926508. [PMID: 39281866 PMCID: PMC11398574 DOI: 10.21203/rs.3.rs-4926508/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue damage / fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68 + and CD11b + cells. Finally, positron emission tomography (PET) in live animals using novel, clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74) demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed using post-mortem studies. Our studies suggest that proapoptotic drugs such as navitoclax can improve pulmonary TB treatments, and should be evaluated in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Alok Singh
- Johns Hopkins University School of Medicine
| | | | | | - Xueyi Chen
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
8
|
Abbasnia S, Hashem Asnaashari AM, Sharebiani H, Soleimanpour S, Mosavat A, Rezaee SA. Mycobacterium tuberculosis and host interactions in the manifestation of tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100458. [PMID: 38983441 PMCID: PMC11231606 DOI: 10.1016/j.jctube.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The final step of epigenetic processes is changing the gene expression in a new microenvironment in the body, such as neuroendocrine changes, active infections, oncogenes, or chemical agents. The case of tuberculosis (TB) is an outcome of Mycobacterium tuberculosis (M.tb) and host interaction in the manifestation of active and latent TB or clearance. This comprehensive review explains and interprets the epigenetics findings regarding gene expressions on the host-pathogen interactions in the development and progression of tuberculosis. This review introduces novel insights into the complicated host-pathogen interactions, discusses the challengeable results, and shows the gaps in the clear understanding of M.tb behavior. Focusing on the biological phenomena of host-pathogen interactions, the epigenetic changes, and their outcomes provides a promising future for developing effective TB immunotherapies when converting gene expression toward appropriate host immune responses gradually becomes attainable. Overall, this review may shed light on the dark sides of TB pathogenesis as a life-threatening disease. Therefore, it may support effective planning and implementation of epigenetics approaches for introducing proper therapies or effective vaccines.
Collapse
Affiliation(s)
- Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Sehgal IS, Dhooria S, Muthu V, Salzer HJF, Agarwal R. Burden, clinical features, and outcomes of post-tuberculosis chronic obstructive lung diseases. Curr Opin Pulm Med 2024; 30:156-166. [PMID: 37902135 DOI: 10.1097/mcp.0000000000001026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
PURPOSE OF REVIEW Post-tuberculosis lung disease (PTLD) is an increasingly recognized and debilitating consequence of pulmonary tuberculosis (PTB). In this review, we provide a comprehensive overview of PTLD with airflow obstruction (PTLD-AFO), focusing on its burden, pathophysiology, clinical manifestations, diagnostic methods, and management strategies. RECENT FINDINGS The relationship between PTLD and airflow obstruction is complex and multifactorial. Approximately 60% of the patients with PTLD have some spirometric abnormality. Obstruction is documented in 18-22% of PTLD patients. The host susceptibility and host response to mycobacterium drive the pathogenic mechanism of PTLD. A balance between inflammatory, anti-inflammatory, and fibrotic pathways decides whether an individual with PTB would have PTLD after microbiological cure. An obstructive abnormality in PTLD-AFO is primarily due to destruction of bronchial walls, aberrant healing, and reduction of mucosal glands. The most common finding on computed tomography (CT) of thorax in patients with PTLD-AFO is bronchiectasis and cavitation. Therefore, the 'Cole's vicious vortex' described in bronchiectasis applies to PTLD. A multidisciplinary approach is required for diagnosis and treatment. The disability-adjusted life-years (DALYs) attributed to PTLD represent about 50% of the total estimated burden of DALYs due to tuberculosis (TB). Patients with PTLD require comprehensive care that includes psychosocial support, pulmonary rehabilitation, and vaccination against respiratory pathogens. In the absence of trials evaluating different treatments for PTLD-AFO, therapy is primarily symptomatic. SUMMARY PTLD with airflow obstruction has considerable burden and causes a significant morbidity and mortality. However, many aspects of PTLD-AFO still need to be answered. Studies are required to evaluate different phenotypes, especially concerning Aspergillus -related complications. The treatment should be personalized based on the predominant phenotype of airflow obstruction. Extensive studies to understand the exact burden, pathogenesis, and treatment of PTBLD-AFO are needed.
Collapse
Affiliation(s)
- Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine 4 - Pneumology, Kepler University Hospital
- Medical Faculty, Johannes Kepler University Linz, Linz
- Ignaz-Semmelweis-Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| |
Collapse
|
10
|
Song L, Zhang D, Wang H, Xia X, Huang W, Gonzales J, Via LE, Wang D. Automated quantitative assay of fibrosis characteristics in tuberculosis granulomas. Front Microbiol 2024; 14:1301141. [PMID: 38235425 PMCID: PMC10792068 DOI: 10.3389/fmicb.2023.1301141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Granulomas, the pathological hallmark of Mycobacterium tuberculosis (Mtb) infection, are formed by different cell populations. Across various stages of tuberculosis conditions, most granulomas are classical caseous granulomas. They are composed of a necrotic center surrounded by multilayers of histocytes, with the outermost layer encircled by fibrosis. Although fibrosis characterizes the architecture of granulomas, little is known about the detailed parameters of fibrosis during this process. Methods In this study, samples were collected from patients with tuberculosis (spanning 16 organ types), and Mtb-infected marmosets and fibrotic collagen were characterized by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy using a stain-free, fully automated analysis program. Results Histopathological examination revealed that most granulomas share common features, including necrosis, solitary and compact structure, and especially the presence of multinuclear giant cells. Masson's trichrome staining showed that different granuloma types have varying degrees of fibrosis. SHG imaging uncovered a higher proportion (4%~13%) of aggregated collagens than of disseminated type collagens (2%~5%) in granulomas from matched tissues. Furthermore, most of the aggregated collagen presented as short and thick clusters (200~620 µm), unlike the long and thick (200~300 µm) disseminated collagens within the matched tissues. Matrix metalloproteinase-9, which is involved in fibrosis and granuloma formation, was strongly expressed in the granulomas in different tissues. Discussion Our data illustrated that different tuberculosis granulomas have some degree of fibrosis in which collagen strings are short and thick. Moreover, this study revealed that the SHG imaging program could contribute to uncovering the fibrosis characteristics of tuberculosis granulomas.
Collapse
Affiliation(s)
- Li Song
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ding Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Hankun Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xuan Xia
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Weifeng Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Decheng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| |
Collapse
|
11
|
Seo W, Kim HW, Kim JS, Min J. Long term management of people with post-tuberculosis lung disease. Korean J Intern Med 2024; 39:7-24. [PMID: 38225822 PMCID: PMC10790047 DOI: 10.3904/kjim.2023.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
Post-tuberculosis lung disease (PTLD) is emerging as a significant area of global interest. As the number of patients surviving tuberculosis (TB) increases, the subsequent long-term repercussions have drawn increased attention due to their profound clinical and socioeconomic impacts. A primary obstacle to its comprehensive study has been its marked heterogeneity. The disease presents a spectrum of clinical manifestations which encompass tracheobronchial stenosis, bronchiectasis, granulomas with fibrosis, cavitation with associated aspergillosis, chronic pleural diseases, and small airway diseases-all persistent consequences of PTLD. The spectrum of symptoms a patient may experience varies based on the severity of the initial infection and the efficacy of the treatment received. As a result, the long-term management of PTLD necessitates a detailed and specific approach, addressing each manifestation individually-a tailored strategy. In the immediate aftermath (0-12 months after anti-TB chemotherapy), there should be an emphasis on monitoring for relapse, tracheobronchial stenosis, and smoking cessation. Subsequent management should focus on addressing hemoptysis, managing infection including aspergillosis, and TB-associated chronic obstructive pulmonary disease or restrictive lung function. There remains a vast expanse of knowledge to be discovered in PTLD. This review emphasizes the pressing need for comprehensive, consolidated guidelines for management of patients with PTLD.
Collapse
Affiliation(s)
- Wan Seo
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Hyung Woo Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Ju Sang Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Jinsoo Min
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
12
|
Santoso A, Rasiha R, Zainal ATF, Khairunnisa IN, Fais MK, Gunawan AMAK. Transforming growth factor-β and matrix metalloproteinases as potential biomarkers of fibrotic lesions induced by tuberculosis: a systematic review and meta-analysis. BMJ Open 2023; 13:e070377. [PMID: 37827747 PMCID: PMC10583088 DOI: 10.1136/bmjopen-2022-070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/26/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVES Very few studies and limited information are available regarding the mechanism of fibrosis in tuberculosis (TB). This study aimed to identify, describe and synthesise potential biomarkers of the development of tissue fibrosis induced by TB through a systematic method and meta-analysis. METHODS A literature search was performed using keywords according to the topic from electronic databases (ScienceDirect and PubMed) and other methods (websites, organisations and citations). Studies that matched predetermined eligibility criteria were included. The quality assessment tool used was the Quality Assessment of Diagnostic Accuracy Score 2, and the data obtained were processed using Review Manager V.5.3. RESULTS Of the 305 studies, 7 met the eligibility criteria with a total sample of 365. The results of the meta-analysis showed that the post-TB group of patients with pulmonary parenchymal fibrosis had a higher transforming growth factor (TGF)-β level (6.09) than the control group (1.82), with a 4.27 (95% CI: 0.92 to 7.61) mean difference. Moreover, patients with residual pleural thickening post-TB had a higher mean of TGF-β (0.61) than the control group (0.56), with a 0.05 (95% CI: 0.04 to 0.06) mean difference. Besides TGF-β, our qualitative synthesis also found that matrix metalloproteinase-1 might have a role in forming and developing pulmonary tissue fibrosis, thus, could be used as a predictor marker in the formation of fibrotic lesions in patients with TB. In addition, several other biomarkers were assessed in the included studies, such as tumour necrosis factor-α, interleukin (IL)-4, IL-8, IL-10, plasminogen activator inhibitor-1 and platelet-derived growth factor. However, this study is not intended to examine these biomarkers. CONCLUSIONS There were differences in the results of TGF-β levels in patients with fibrotic lesions compared with controls. TGF-β might be a biomarker of fibrotic tissue formation or increased pulmonary tissue fibrosis in post-TB patients. However, further studies are needed on a larger scale.
Collapse
Affiliation(s)
- Arif Santoso
- Department of Pulmonology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rasiha Rasiha
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | | |
Collapse
|
13
|
Nadeev AP, Abyshev AA, Marinkin IO. Study of the Morphogenesis of Granulomas in the Liver of Mice in Different Age Periods Treated with Oxidized Dextran. Bull Exp Biol Med 2023:10.1007/s10517-023-05818-x. [PMID: 37335448 DOI: 10.1007/s10517-023-05818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/21/2023]
Abstract
We studied granuloma formation and its outcomes in BCG-induced granulomatosis in the liver of mice of different age periods treated with oxidized dextran. Newborn C57BL/6 mice were intraperitoneally injected with BCG vaccine on the first day of life (group 1) or BCG vaccine solution on first day of life and oxidized dextran on the second day of life (group 2). Analysis was carried out on 3, 5, 10, 28, and 56 days of life. After injection of BCG vaccine, granulomas in the liver appeared starting from the day 28. In mice treated with oxidized dextran, granulomas on day 28 were smaller and less numerous than in group 1 animals. In BCG granulomatosis, fibroplastic processes in the liver develop mainly at the site of granulomas. Injection of oxidized dextran under conditions of BCG granulomatosis reduced the manifestations of fibrosis in the liver.
Collapse
Affiliation(s)
- A P Nadeev
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
| | - A A Abyshev
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - I O Marinkin
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
14
|
Bansal A, Yanamaladoddi VR, Sarvepalli SS, Vemula SL, Aramadaka S, Mannam R, Sankara Narayanan R. Surviving Pulmonary Tuberculosis: Navigating the Long Term Respiratory Effects. Cureus 2023; 15:e38811. [PMID: 37303367 PMCID: PMC10251183 DOI: 10.7759/cureus.38811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Tuberculosis is a transmissible disease caused by the bacteria Mycobacterium tuberculosis, which is a cause of significant morbidity and mortality all over the world. Tuberculosis has a number of risk factors, such as living in a developing country, poor ventilation, smoking, male sex, etc., which not only increase the chance of infection but may be independent factors for impairment in pulmonary function as well. In this review article, we have compiled several studies to learn how tuberculosis causes impaired lung function and further explored the long-term effects of tuberculosis on the same. We studied tuberculosis's effect on the lungs even after appropriate treatment and its relationship with obstructive and restrictive lung disorders. A significant relationship exists between chronic respiratory disorders and tuberculosis even after treatment; hence, we believe prevention is far superior to cure.
Collapse
Affiliation(s)
- Arpit Bansal
- Internal Medicine, Narayana Medical College, Nellore, IND
| | | | | | | | | | - Raam Mannam
- Internal Medicine, Narayana Medical College, Nellore, IND
| | | |
Collapse
|
15
|
Baik Y, Maenetje P, Schramm D, Tiemessen C, Ncube I, Churchyard G, Wallis R, Vangu MDT, Kornfeld H, Li Y, Auld SC, Bisson GP. Lung function and collagen 1a levels are associated with changes in 6 min walk test distance during treatment of TB among HIV-infected adults: a prospective cohort study. BMC Pulm Med 2023; 23:53. [PMID: 36737697 PMCID: PMC9896708 DOI: 10.1186/s12890-023-02325-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with tuberculosis (TB) and HIV often present with impairments in lung function and exercise capacity after treatment. We evaluated clinical and immunologic variables associated with a minimum clinically important difference (MCID) in the change in the 6 min walk test distance during the first 24 weeks of antiretroviral (ART) and anti-tubercular therapy. METHODS Adults initiating ART and anti-TB treatment in the setting of newly-diagnosed HIV and pulmonary TB were enrolled in a prospective cohort study in South Africa. Patients underwent 6 min walk tests and spirometry at weeks 0, 4, 12, and 24 and biomarker level measurements early during treatment, at weeks 0, 4, and 12, when inflammation levels are typically elevated. Biomarkers included matrix metalloproteinases-1 (MMP-1), tissue inhibitor of MMP (TIMP)-1, collagen 1a, IL-6, IL-8, vascular cell adhesion molecule 1 (VCAM-1), C-X-C motif chemokine 10 (CXCL-10), CXCL-11, macrophage colony-stimulating factor (M-CSF), plasminogen activator, vascular endothelial growth factor, and chemokine (C-C) motif-2 (CCL-2). An MCID was derived statistically, and achievement of an MCID was modeled as the outcome using logistic regression model. RESULTS Eighty-nine patients walked an average of 393 (± standard deviation = 69) meters at baseline, which increased by an average of 9% (430 ± 70 m) at week 24. The MCID for change in walk distance was estimated as 41 m. Patients experiencing an MCID on treatment had worse lung function, lower 6 min walk test distance, higher levels of proinflammatory biomarkers including TIMP-1 and M-CSF, and lower levels of collagen 1a at baseline. Experiencing an MCID during treatment was associated with increases in forced expiratory volume in 1-s [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.05-1.33] and increases in blood collagen 1a levels (OR = 1.31, 95%CI 1.06-1.62). CONCLUSIONS ART and TB treatment are associated with substantial improvements in 6 min walk test distance over time. Achievement of an MCID in the 6 min walk test in this study was associated with more severe disease at baseline and increases in collagen 1a levels and lung function during therapy.
Collapse
Affiliation(s)
- Yeonsoo Baik
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, 832 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA
| | | | - Diana Schramm
- Department of Virology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Caroline Tiemessen
- Department of Virology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Itai Ncube
- The Aurum Institute, Johannesburg, South Africa
| | - Gavin Churchyard
- The Aurum Institute, Johannesburg, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | | | - Mboyo-di-Tamba Vangu
- Department of Nuclear Medicine, CM Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, USA
| | - Yun Li
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, 832 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA
| | - Sara C Auld
- Department of Medicine, Emory University Rollins School of Public Health and School of Medicine, Atlanta, GA, USA
| | - Gregory P Bisson
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, 832 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA.
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol 2023; 65:101672. [PMID: 36469987 DOI: 10.1016/j.smim.2022.101672] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.
Collapse
|
17
|
Neila C, Rebollada-Merino A, Bezos J, de Juan L, Domínguez L, Rodríguez-Bertos A. Extracellular matrix proteins (fibronectin, collagen III, and collagen I) immunoexpression in goat tuberculous granulomas (Mycobacterium caprae). Vet Res Commun 2022; 46:1147-1156. [PMID: 36136210 DOI: 10.1007/s11259-022-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
The lesion resulting from the interaction between Mycobacterium and the host immune response is the tuberculous granuloma. Tuberculous granulomas, except in incipient stages, are partially or totally encapsulated by connective tissue. The aim of this study was to assess the immunoexpression of the extracellular matrix proteins fibronectin, collagen III, and collagen I in granulomas caused by Mycobacterium caprae in goats (Capra aegagrus hircus) to understand capsule development at different granuloma stages. For this purpose, a retrospective study of 56 samples of tuberculous granulomas in lung (n = 30) and mediastinal lymph node (n = 26) from 17 goats naturally infected with M. caprae in stages I (n = 15), II (n = 14) and III (n = 27) was carried out. Fibronectin immunoreaction was extracellular, fibrillar-reticular in the center of stage I, II and III granulomas and peripheral in stages II and III granulomas. Collagen III immunoexpression was extracellular and fibrillar in the center of stages I, II and III tuberculous granulomas in lung and mediastinal lymph node, and progressive expression was observed in the periphery of stages II and III granulomas. Finally, collagen I immunoexpression was extracellular and fibrillar, showing a progressive loss of central expression and an increase in peripheral expression in stage III granulomas compared to stage I granulomas. Immunoexpression of these extracellular matrix proteins could help understand fibrogenesis and dating in tuberculous granuloma in both animal models and humans.
Collapse
Affiliation(s)
- Carlos Neila
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Abstract
Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benjamin H. Gern
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kevin B. Urdahl
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
20
|
Song Q, Guo X, Zhang L, Yang L, Lu X. New Approaches in the Classification and Prognosis of Sign Clusters on Pulmonary CT Images in Patients With Multidrug-Resistant Tuberculosis. Front Microbiol 2021; 12:714617. [PMID: 34671326 PMCID: PMC8521176 DOI: 10.3389/fmicb.2021.714617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background: To date, radiographic sign clusters of multidrug-resistant pulmonary tuberculosis (MDR-TB) patients have not been reported. We conducted a study to investigate the classification and prognosis of sign clusters in pulmonary Computed Tomography (CT) images from patients with MDR-TB for the first time by using principal component analysis (PCA). Methods: The clinical data and pulmonary CT findings of 108 patients with MDR-TB in the Liupanshui Third Hospital were collected (from January 2018 to December 2020). PCA was used to analyze the sign clusters on pulmonary CT, and receiver operating characteristic (ROC) analysis was used to analyze the predictive value of the treatment outcome of MDR-TB patients. Results: Six cluster signs of MDR-TB were determined by PCA: nodules, infiltration, consolidation, cavities, destroyed lung and non-active lesions. Nine months after treatment, the area under the ROC curve (AUC) of MDR-TB patients with a cavity sign cluster was 0.818 (95% CI: 0.733–0.886), and the positive predictive value (PPV) and negative predictive value (NPV) of the treatment outcome were 79.6% (95% CI: 65.7–89.8%) and 72.9% (95% CI: 59.7–83.6%), respectively. Conclusion: PCA plays an important role in the classification of sign groups on pulmonary CT images of MDR-TB patients, and the sign clusters obtained from PCA are of great significance in predicting the treatment outcome.
Collapse
Affiliation(s)
- Qisheng Song
- Department of Internal Medicine, Dalian Public Health Clinical Center, Dalian, China
| | - Xiaohong Guo
- Department of Internal Medicine, Liupanshui Third Hospital, Liupanshui, China
| | - Liling Zhang
- Department of Internal Medicine, Liupanshui Third Hospital, Liupanshui, China
| | - Lianjun Yang
- Department of Internal Medicine, Dalian Public Health Clinical Center, Dalian, China
| | - Xiwei Lu
- Department of Internal Medicine, Dalian Public Health Clinical Center, Dalian, China
| |
Collapse
|
21
|
Mukundan S, Singh P, Shah A, Kumar R, O’Neill KC, Carter CL, Russell DG, Subbian S, Parekkadan B. In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines 2021; 9:1209. [PMID: 34572395 PMCID: PMC8470281 DOI: 10.3390/biomedicines9091209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is a public health concern that impacts 10 million people around the world. Current in vitro models are low throughput and/or lack caseation, which impairs drug effectiveness in humans. Here, we report the generation of THP-1 human monocyte/macrophage spheroids housing mycobacteria (TB spheroids). These TB spheroids have a central core of dead cells co-localized with mycobacteria and are hypoxic. TB spheroids exhibit higher levels of pro-inflammatory factor TNFα and growth factors G-CSF and VEGF when compared to non-infected control. TB spheroids show high levels of lipid deposition, characterized by MALDI mass spectrometry imaging. TB spheroids infected with strains of differential virulence, Mycobacterium tuberculosis (Mtb) HN878 and CDC1551 vary in response to Isoniazid and Rifampicin. Finally, we adapt the spheroid model to form peripheral blood mononuclear cells (PBMCs) and lung fibroblasts (NHLF) 3D co-cultures. These results pave the way for the development of new strategies for disease modeling and therapeutic discovery.
Collapse
Affiliation(s)
- Shilpaa Mukundan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA; (S.M.); (A.S.)
| | - Pooja Singh
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Jersey City, NJ 07103, USA; (P.S.); (R.K.); (S.S.)
| | - Aditi Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA; (S.M.); (A.S.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Jersey City, NJ 07103, USA; (P.S.); (R.K.); (S.S.)
| | - Kelly C. O’Neill
- Department Center for Discovery and Innovation, Hackensack Meridian Health, Neptune, NJ 07110, USA; (K.C.O.); (C.L.C.)
| | - Claire L. Carter
- Department Center for Discovery and Innovation, Hackensack Meridian Health, Neptune, NJ 07110, USA; (K.C.O.); (C.L.C.)
| | - David G. Russell
- Department of Microbiology and Immunology, School of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Jersey City, NJ 07103, USA; (P.S.); (R.K.); (S.S.)
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA; (S.M.); (A.S.)
- Department of Medicine, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Jersey City, NJ 08854, USA
| |
Collapse
|
22
|
Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J 2021; 35:e21853. [PMID: 34416038 DOI: 10.1096/fj.202001581rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| |
Collapse
|
23
|
Palmer MV, Thacker TC, Kanipe C, Boggiatto PM. Heterogeneity of Pulmonary Granulomas in Cattle Experimentally Infected With Mycobacterium bovis. Front Vet Sci 2021; 8:671460. [PMID: 34026898 PMCID: PMC8138452 DOI: 10.3389/fvets.2021.671460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
Mycobacterium bovis is the cause of tuberculosis in most animals, most notably cattle. The stereotypical lesion of bovine tuberculosis is the granuloma; a distinct morphological lesion where host and pathogen interact and disease outcome (i.e., dissemination, confinement, or resolution) is determined. Accordingly, it is critical to understand host-pathogen interactions at the granuloma level. Host-pathogen interactions within individual granulomas at different stages of disease have not been examined in cattle. We examined bacterial burden and cytokine expression in individual pulmonary granulomas from steers at 30, 90, 180, and 270 days after experimental aerosol infection with M. bovis. Bacterial burdens within individual granulomas examined 30 days after infection were greater and more heterogenous (variable) than those examined 90 to 270 days after infection. Bacterial burdens did not correlate with expression of IFN-γ, TNF-α, TGF-β, granuloma stage, or lung lesion score, although there was a modest positive correlation with IL-10 expression. Granuloma stage did have modest positive and negative correlations with TNF-α and IL-10, respectively. Heterogeneity and mean expression of IFN-γ, IL-10 and TNF-α did not differ significantly over time, however, expression of TGF-β at 90 days was significantly greater than that seen at 30 days after infection.
Collapse
Affiliation(s)
- Mitchell V Palmer
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Tyler C Thacker
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Ames, IA, United States
| | - Carly Kanipe
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.,Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Paola M Boggiatto
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
24
|
Banerjee U, Baloni P, Singh A, Chandra N. Immune Subtyping in Latent Tuberculosis. Front Immunol 2021; 12:595746. [PMID: 33897680 PMCID: PMC8059438 DOI: 10.3389/fimmu.2021.595746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Latent tuberculosis infection (LTBI) poses a major roadblock in the global effort to eradicate tuberculosis (TB). A deep understanding of the host responses involved in establishment and maintenance of TB latency is required to propel the development of sensitive methods to detect and treat LTBI. Given that LTBI individuals are typically asymptomatic, it is challenging to differentiate latently infected from uninfected individuals. A major contributor to this problem is that no clear pattern of host response is linked with LTBI, as molecular correlates of latent infection have been hard to identify. In this study, we have analyzed the global perturbations in host response in LTBI individuals as compared to uninfected individuals and particularly the heterogeneity in such response, across LTBI cohorts. For this, we constructed individualized genome-wide host response networks informed by blood transcriptomes for 136 LTBI cases and have used a sensitive network mining algorithm to identify top-ranked host response subnetworks in each case. Our analysis indicates that despite the high heterogeneity in the gene expression profiles among LTBI samples, clear patterns of perturbation are found in the immune response pathways, leading to grouping LTBI samples into 4 different immune-subtypes. Our results suggest that different subnetworks of molecular perturbations are associated with latent tuberculosis.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Priyanka Baloni
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
25
|
Gern BH, Adams KN, Plumlee CR, Stoltzfus CR, Shehata L, Moguche AO, Busman-Sahay K, Hansen SG, Axthelm MK, Picker LJ, Estes JD, Urdahl KB, Gerner MY. TGFβ restricts expansion, survival, and function of T cells within the tuberculous granuloma. Cell Host Microbe 2021; 29:594-606.e6. [DOI: 10.1016/j.chom.2021.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
|
26
|
Cronan MR, Hughes EJ, Brewer WJ, Viswanathan G, Hunt EG, Singh B, Mehra S, Oehlers SH, Gregory SG, Kaushal D, Tobin DM. A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. Cell 2021; 184:1757-1774.e14. [PMID: 33761328 PMCID: PMC8055144 DOI: 10.1016/j.cell.2021.02.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation
- Disease Models, Animal
- Epithelioid Cells/cytology
- Epithelioid Cells/immunology
- Epithelioid Cells/metabolism
- Granuloma/immunology
- Granuloma/metabolism
- Granuloma/pathology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Immunity/physiology
- Interferon-gamma/metabolism
- Interleukin-12/metabolism
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Mycobacterium Infections, Nontuberculous/immunology
- Mycobacterium Infections, Nontuberculous/pathology
- Mycobacterium marinum/isolation & purification
- Mycobacterium marinum/physiology
- Necrosis
- Receptors, Interleukin-4/antagonists & inhibitors
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/metabolism
- STAT6 Transcription Factor/antagonists & inhibitors
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Signal Transduction
- Zebrafish/growth & development
- Zebrafish/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Erika J Hughes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27710, USA
| | - W Jared Brewer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emily G Hunt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, Australia; The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, NSW, Australia
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol 2021; 39:611-637. [PMID: 33637017 DOI: 10.1146/annurev-immunol-093019-010426] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection with Mycobacterium tuberculosis causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter M. tuberculosis, and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to M. tuberculosis infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils-cells normally associated with control of bacterial infection-are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; ,
| | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; , .,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Gupte AN, Selvaraju S, Gaikwad S, Mave V, Kumar P, Babu S, Andrade BB, Checkley W, Bollinger R, Gupta A. Higher interleukin-6 levels and changes in transforming growth factor-β are associated with lung impairment in pulmonary tuberculosis. ERJ Open Res 2021; 7:00390-2020. [PMID: 33532468 PMCID: PMC7836581 DOI: 10.1183/23120541.00390-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
Pulmonary tuberculosis (PTB) is associated with granuloma formation, necrosis and cavitation in lung tissue. Lung injury in PTB can persist despite microbiological cure and is associated with COPD independent of smoking exposure [1]. Furthermore, pulmonary sequelae of PTB are an under-recognised cause of respiratory disability and excess mortality [2]. Higher levels of IL-6 and slow-to-resolve TGF-β are associated with lung impairment in treated tuberculosis. These results have important implications for clinical trials of immunomodulatory therapies to prevent tuberculosis-associated lung disease.https://bit.ly/2FQEtsz
Collapse
Affiliation(s)
- Akshay N Gupte
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Clinical Global Health Education, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sriram Selvaraju
- Dept of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Sanjay Gaikwad
- Dept of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College, Pune, India
| | - Vidya Mave
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Clinical Global Health Education, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Kumar
- National Institutes of Health - National Institute for Research in Tuberculosis - International Center for Excellence in Research, Chennai, India
| | - Subash Babu
- National Institutes of Health - National Institute for Research in Tuberculosis - International Center for Excellence in Research, Chennai, India
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organisation Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - William Checkley
- Division of Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Bollinger
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Clinical Global Health Education, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amita Gupta
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Clinical Global Health Education, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation. PLoS Comput Biol 2020; 16:e1008520. [PMID: 33370784 PMCID: PMC7793262 DOI: 10.1371/journal.pcbi.1008520] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection causes tuberculosis (TB), a disease characterized by development of granulomas. Granulomas consist of activated immune cells that cluster together to limit bacterial growth and restrict dissemination. Control of the TB epidemic has been limited by lengthy drug regimens, antibiotic resistance, and lack of a robustly efficacious vaccine. Fibrosis commonly occurs during treatment and is associated with both positive and negative disease outcomes in TB but little is known about the processes that initiate fibrosis in granulomas. Human and nonhuman primate granulomas undergoing fibrosis can have spindle-shaped macrophages with fibroblast-like morphologies suggesting a relationship between macrophages, fibroblasts, and granuloma fibrosis. This relationship has been difficult to investigate because of the limited availability of human pathology samples, the time scale involved in human TB, and overlap between fibroblast and myeloid cell markers in tissues. To better understand the origins of fibrosis in TB, we used a computational model of TB granuloma biology to identify factors that drive fibrosis over the course of local disease progression. We validated the model with granulomas from nonhuman primates to delineate myeloid cells and lung-resident fibroblasts. Our results suggest that peripheral granuloma fibrosis, which is commonly observed, can arise through macrophage-to-myofibroblast transformation (MMT). Further, we hypothesize that MMT is induced in M1 macrophages through a sequential combination of inflammatory and anti-inflammatory signaling in granuloma macrophages. We predict that MMT may be a mechanism underlying granuloma-associated fibrosis and warrants further investigation into myeloid cells as drivers of fibrotic disease. Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), a bacterium that infects over a third of the world’s population. The only available vaccine for TB has limited efficacy and drug treatment involves several antibiotics that are taken for several months. These drugs can have significant side-effects and a lack of compliance can lead to drug resistance in Mtb. A hallmark of Mtb infection is the development of clusters of cells that form around infected macrophages to contain the infection called granulomas. Older granulomas, or granulomas in patients treated with antibiotic, often become fibrotic and this can cause chronic lung problems long after the Mtb infection has cleared. The process that drives a fibrotic outcome has been difficult to assess in vivo. Herein we combined wet-lab and computational experimentation to identify a novel mechanism leading to peripheral fibrosis in granulomas. We find that macrophages transforming into myofibroblast-like cells, may be a key pathway to granuloma-associated fibrosis, a phenomena that has not been well characterized in vivo. Further we identified factors that can inhibit fibrosis development during TB that could be therapeutic targets during TB treatment to limit the risk of long-term tissue damage in TB.
Collapse
|
30
|
Siddharthan T, Gupte A, Barnes PJ. Chronic Obstructive Pulmonary Disease Endotypes in Low- and Middle-Income Country Settings: Precision Medicine for All. Am J Respir Crit Care Med 2020; 202:171-172. [PMID: 32396738 PMCID: PMC7365372 DOI: 10.1164/rccm.202001-0165ed] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Trishul Siddharthan
- Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimore, Maryland
| | - Akshay Gupte
- Division of Infectious DiseasesJohns Hopkins UniversityBaltimore, Marylandand
| | - Peter J Barnes
- National Health and Lung InstituteImperial CollegeLondon, United Kingdom
| |
Collapse
|
31
|
Naftalin CM, Leek F, Hallinan JTPD, Khor LK, Totman JJ, Wang J, Wang YT, Paton NI. Comparison of 68Ga-DOTANOC with 18F-FDG using PET/MRI imaging in patients with pulmonary tuberculosis. Sci Rep 2020; 10:14236. [PMID: 32859979 PMCID: PMC7455716 DOI: 10.1038/s41598-020-71127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022] Open
Abstract
We compared the somatostatin analog radioligand, DOTANOC, with FDG, to determine whether there was increased detection of active or sub-clinical lesions in pulmonary tuberculosis (TB) with DOTANOC. Three groups were recruited: (1) active pulmonary TB; (2) IGRA-positive household TB contacts; (3) pneumonia (non-TB). DOTANOC PET/MRI followed by FDG PET/MRI was performed in active TB and pneumonia groups. TB contacts underwent FDG PET/MRI, then DOTANOC PET/MRI if abnormalities were detected. Quantitative and qualitative analyses were performed for total lung and individual lesions. Eight active TB participants, three TB contacts and three pneumonia patients had paired PET/MRI scans. In the active TB group, median SUVmax[FDG] for parenchymal lesions was 7.69 (range 3.00–15.88); median SUVmax[DOTANOC] was 2.59 (1.48–6.40). Regions of tracer uptake were fairly similar for both radioligands, albeit more diffusely distributed in the FDG scans. In TB contacts, two PET/MRIs had parenchymal lesions detected with FDG (SUVmax 5.50 and 1.82), with corresponding DOTANOC uptake < 1. FDG and DOTANOC uptake was similar in pneumonia patients (SUVmax[FDG] 4.17–6.18; SUVmax[DOTANOC] 2.92–4.78). DOTANOC can detect pulmonary TB lesions, but FDG is more sensitive for both active and sub-clinical lesions. FDG remains the preferred ligand for clinical studies, although DOTANOC may provide additional value for pathogenesis studies.
Collapse
Affiliation(s)
- Claire M Naftalin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| | - Francesca Leek
- Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore
| | - James T P D Hallinan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.,Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | - Lih Kin Khor
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| | - John J Totman
- Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore
| | - Jing Wang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| | - Yee Tang Wang
- Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore, Singapore
| | - Nicholas I Paton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore. .,University Medicine Cluster, National University Health System, Singapore, Singapore.
| |
Collapse
|
32
|
Singh M, Vaughn C, Sasaninia K, Yeh C, Mehta D, Khieran I, Venketaraman V. Understanding the Relationship between Glutathione, TGF-β, and Vitamin D in Combating Mycobacterium tuberculosis Infections. J Clin Med 2020; 9:jcm9092757. [PMID: 32858837 PMCID: PMC7563738 DOI: 10.3390/jcm9092757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a pervasive global health threat. A significant proportion of the world's population that is affected by latent tuberculosis infection (LTBI) is at risk for reactivation and subsequent transmission to close contacts. Despite sustained efforts in eradication, the rise of multidrug-resistant strains of Mycobacteriumtuberculosis (M. tb) has rendered traditional antibiotic therapy less effective at mitigating the morbidity and mortality of the disease. Management of TB is further complicated by medications with various off-target effects and poor compliance. Immunocompromised patients are the most at-risk in reactivation of a LTBI, due to impairment in effector immune responses. Our laboratory has previously reported that individuals suffering from Type 2 Diabetes Mellitus (T2DM) and HIV exhibited compromised levels of the antioxidant glutathione (GSH). Restoring the levels of GSH resulted in improved control of M. tb infection. The goal of this review is to provide insights on the diverse roles of TGF- β and vitamin D in altering the levels of GSH, granuloma formation, and clearance of M. tb infection. We propose that these pathways represent a potential avenue for future investigation and development of new TB treatment modalities.
Collapse
Affiliation(s)
- Mohkam Singh
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Charles Vaughn
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Kayvan Sasaninia
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Devanshi Mehta
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Ibrahim Khieran
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
- Correspondence: ; Tel.: +1-909-706-3736
| |
Collapse
|
33
|
Winchell CG, Mishra BB, Phuah JY, Saqib M, Nelson SJ, Maiello P, Causgrove CM, Ameel CL, Stein B, Borish HJ, White AG, Klein EC, Zimmerman MD, Dartois V, Lin PL, Sassetti CM, Flynn JL. Evaluation of IL-1 Blockade as an Adjunct to Linezolid Therapy for Tuberculosis in Mice and Macaques. Front Immunol 2020; 11:891. [PMID: 32477361 PMCID: PMC7235418 DOI: 10.3389/fimmu.2020.00891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In 2017 over 550,000 estimated new cases of multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) occurred, emphasizing a need for new treatment strategies. Linezolid (LZD) is a potent antibiotic for drug-resistant Gram-positive infections and is an effective treatment for TB. However, extended LZD use can lead to LZD-associated host toxicities, most commonly bone marrow suppression. LZD toxicities may be mediated by IL-1, an inflammatory pathway important for early immunity during M. tuberculosis infection. However, IL-1 can contribute to pathology and disease severity late in TB progression. Since IL-1 may contribute to LZD toxicity and does influence TB pathology, we targeted this pathway with a potential host-directed therapy (HDT). We hypothesized LZD efficacy could be enhanced by modulation of IL-1 pathway to reduce bone marrow toxicity and TB associated-inflammation. We used two animal models of TB to test our hypothesis, a TB-susceptible mouse model and clinically relevant cynomolgus macaques. Antagonizing IL-1 in mice with established infection reduced lung neutrophil numbers and partially restored the erythroid progenitor populations that are depleted by LZD. In macaques, we found no conclusive evidence of bone marrow suppression associated with LZD, indicating our treatment time may have been short enough to avoid the toxicities observed in humans. Though treatment was only 4 weeks (the FDA approved regimen at the time of study), we observed sterilization of the majority of granulomas regardless of co-administration of the FDA-approved IL-1 receptor antagonist (IL-1Rn), also known as Anakinra. However, total lung inflammation was significantly reduced in macaques treated with IL-1Rn and LZD compared to LZD alone. Importantly, IL-1Rn administration did not impair the host response against Mtb or LZD efficacy in either animal model. Together, our data support that inhibition of IL-1 in combination with LZD has potential to be an effective HDT for TB and the need for further research in this area.
Collapse
Affiliation(s)
- Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bibhuti B. Mishra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jia Yao Phuah
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chelsea M. Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brianne Stein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of the University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
34
|
Leonard-Duke J, Evans S, Hannan RT, Barker TH, Bates JHT, Bonham CA, Moore BB, Kirschner DE, Peirce SM. Multi-scale models of lung fibrosis. Matrix Biol 2020; 91-92:35-50. [PMID: 32438056 DOI: 10.1016/j.matbio.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
The architectural complexity of the lung is crucial to its ability to function as an organ of gas exchange; the branching tree structure of the airways transforms the tracheal cross-section of only a few square centimeters to a blood-gas barrier with a surface area of tens of square meters and a thickness on the order of a micron or less. Connective tissue comprised largely of collagen and elastic fibers provides structural integrity for this intricate and delicate system. Homeostatic maintenance of this connective tissue, via a balance between catabolic and anabolic enzyme-driven processes, is crucial to life. Accordingly, when homeostasis is disrupted by the excessive production of connective tissue, lung function deteriorates rapidly with grave consequences leading to chronic lung conditions such as pulmonary fibrosis. Understanding how pulmonary fibrosis develops and alters the link between lung structure and function is crucial for diagnosis, prognosis, and therapy. Further information gained could help elaborate how the healing process breaks down leading to chronic disease. Our understanding of fibrotic disease is greatly aided by the intersection of wet lab studies and mathematical and computational modeling. In the present review we will discuss how multi-scale modeling has facilitated our understanding of pulmonary fibrotic disease as well as identified opportunities that remain open and have produced techniques that can be incorporated into this field by borrowing approaches from multi-scale models of fibrosis beyond the lung.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Riley T Hannan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Jason H T Bates
- Department of Medicine, Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Catherine A Bonham
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville VA 22908, USA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
35
|
Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020; 250:636-646. [PMID: 32108337 DOI: 10.1002/path.5407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has co-evolved with the human immune system and utilizes multiple strategies to persist within infected cells, to hijack several immune mechanisms, and to cause severe pathology and tissue damage in the host. This delays the efficacy of current antibiotic therapy and contributes to the evolution of multi-drug-resistant strains. These challenges led to the development of the novel approach in TB treatment that involves therapeutic targeting of host immune response to control disease pathogenesis and pathogen growth, namely, host-directed therapies (HDTs). Such HDT approaches can (1) enhance the effect of antibiotics, (2) shorten treatment duration for any clinical form of TB, (3) promote development of immunological memory that could protect against relapse, and (4) ameliorate the immunopathology including matrix destruction and fibrosis associated with TB. In this review we discuss TB-HDT candidates shown to be of clinical relevance that thus could be developed to reduce pathology, tissue damage, and subsequent impairment of pulmonary function. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, USA
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
36
|
Wong EA, Evans S, Kraus CR, Engelman KD, Maiello P, Flores WJ, Cadena AM, Klein E, Thomas K, White AG, Causgrove C, Stein B, Tomko J, Mattila JT, Gideon H, Lin PL, Reimann KA, Kirschner DE, Flynn JL. IL-10 Impairs Local Immune Response in Lung Granulomas and Lymph Nodes during Early Mycobacterium tuberculosis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:644-659. [PMID: 31862711 PMCID: PMC6981067 DOI: 10.4049/jimmunol.1901211] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be a major global health problem. Lung granulomas are organized structures of host immune cells that function to contain the bacteria. Cytokine expression is a critical component of the protective immune response, but inappropriate cytokine expression can exacerbate TB. Although the importance of proinflammatory cytokines in controlling M. tuberculosis infection has been established, the effects of anti-inflammatory cytokines, such as IL-10, in TB are less well understood. To investigate the role of IL-10, we used an Ab to neutralize IL-10 in cynomolgus macaques during M. tuberculosis infection. Anti-IL-10-treated nonhuman primates had similar overall disease outcomes compared with untreated control nonhuman primates, but there were immunological changes in granulomas and lymph nodes from anti-IL-10-treated animals. There was less thoracic inflammation and increased cytokine production in lung granulomas and lymph nodes from IL-10-neutralized animals at 3-4 wk postinfection compared with control animals. At 8 wk postinfection, lung granulomas from IL-10-neutralized animals had reduced cytokine production but increased fibrosis relative to control animals. Although these immunological changes did not affect the overall disease burden during the first 8 wk of infection, we paired computational modeling to explore late infection dynamics. Our findings support that early changes occurring in the absence of IL-10 may lead to better bacterial control later during infection. These unique datasets provide insight into the contribution of IL-10 to the immunological balance necessary for granulomas to control bacterial burden and disease pathology in M. tuberculosis infection.
Collapse
Affiliation(s)
- Eileen A Wong
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Carolyn R Kraus
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, MA 02126
| | - Kathleen D Engelman
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, MA 02126
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Walter J Flores
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, MA 02126
| | - Anthony M Cadena
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kayla Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Chelsea Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Brianne Stein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261; and
| | - Hannah Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - P Ling Lin
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Keith A Reimann
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, MA 02126
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219;
| |
Collapse
|
37
|
Seyedhosseini FS, Mohammadi S, Zare Ebrahimabad M, Khodabakhshi B, Abbasi A, Yazdani Y. Interleukin-6, Interleukin-17 and Transforming Growth Factor-Beta are Overexpressed in Newly Diagnosed Tuberculosis Patients; Potent Biomarkers of Mycobacterial Infection. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019; 14. [DOI: 10.5812/archcid.68417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Yang L, Chen PP, Luo M, Shi WL, Hou DS, Gao Y, Xu SF, Deng J. Inhibitory effects of total ginsenoside on bleomycin-induced pulmonary fibrosis in mice. Biomed Pharmacother 2019; 114:108851. [DOI: 10.1016/j.biopha.2019.108851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
|
39
|
Palmer MV, Wiarda J, Kanipe C, Thacker TC. Early Pulmonary Lesions in Cattle Infected via Aerosolized Mycobacterium bovis. Vet Pathol 2019; 56:544-554. [PMID: 30895908 DOI: 10.1177/0300985819833454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycobacterium bovis is a serious zoonotic pathogen and the cause of tuberculosis in many mammalian species, most notably, cattle. The hallmark lesion of tuberculosis is the granuloma. It is within the developing granuloma where host and pathogen interact; therefore, it is critical to understand host-pathogen interactions at the granuloma level. Cytokines and chemokines drive cell recruitment, activity, and function and ultimately determine the success or failure of the host to control infection. In calves, early lesions (ie, 15 and 30 days) after experimental aerosol infection were examined microscopically using in situ hybridization and immunohistochemistry to demonstrate early infiltrates of CD68+ macrophages within alveoli and alveolar interstitium, as well as the presence of CD4, CD8, and γδ T cells. Unlike lesions at 15 days, lesions at 30 days after infection contained small foci of necrosis among infiltrates of macrophages, lymphocytes, neutrophils, and multinucleated giant cells and extracellular acid-fast bacilli within necrotic areas. At both time points, there was abundant expression of the chemokines CXCL9, MCP-1/CCL2, and the cytokine transforming growth factor (TGF)-β. The proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β, as well as the anti-inflammatory cytokine IL-10, were expressed at moderate levels at both time points, while expression of IFN-γ was limited. These findings document the early pulmonary lesions after M. bovis infection in calves and are in general agreement with the proposed pathogenesis of tuberculosis described in laboratory animal and nonhuman primate models of tuberculosis.
Collapse
Affiliation(s)
- Mitchell V Palmer
- 1 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA
| | - Jayne Wiarda
- 1 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA.,2 Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Carly Kanipe
- 1 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA.,2 Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
40
|
Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 2018; 27:27/147/170077. [PMID: 29491034 PMCID: PMC6019552 DOI: 10.1183/16000617.0077-2017] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
A past history of pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognised, despite its relatively high prevalence and its association with reduced quality of life. Importantly, specific host and pathogen factors causing lung impairment remain unclear. Host immune responses probably play a dominant role in lung damage, as excessive inflammation and elevated expression of lung matrix-degrading proteases are common during TB. Variability in host genes that modulate these immune responses may determine the severity of lung impairment, but this hypothesis remains largely untested. In this review, we provide an overview of the epidemiological literature on post-TB lung impairment and link it to data on the pathogenesis of lung injury from the perspective of dysregulated immune responses and immunogenetics. Host factors driving lung injury in TB likely contribute to variable patterns of pulmonary impairment after TBhttp://ow.ly/a3of30hBsxB
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hardy Kornfeld
- Dept of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Drew Weissman
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory P Bisson
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Dept of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Affiliation(s)
- Ajay Kumar Verma
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
42
|
Warsinske HC, Pienaar E, Linderman JJ, Mattila JT, Kirschner DE. Deletion of TGF-β1 Increases Bacterial Clearance by Cytotoxic T Cells in a Tuberculosis Granuloma Model. Front Immunol 2017; 8:1843. [PMID: 29326718 PMCID: PMC5742530 DOI: 10.3389/fimmu.2017.01843] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/06/2017] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis is the pathogenic bacterium that causes tuberculosis (TB), one of the most lethal infectious diseases in the world. The only vaccine against TB is minimally protective, and multi-drug resistant TB necessitates new therapeutics to treat infection. Developing new therapies requires a better understanding of the complex host immune response to infection, including dissecting the processes leading to formation of granulomas, the dense cellular lesions associated with TB. In this work, we pair experimental and computational modeling studies to explore cytokine regulation in the context of TB. We use our next-generation hybrid multi-scale model of granuloma formation (GranSim) to capture molecular, cellular, and tissue scale dynamics of granuloma formation. We identify TGF-β1 as a major inhibitor of cytotoxic T-cell effector function in granulomas. Deletion of TGF-β1 from the system results in improved bacterial clearance and lesion sterilization. We also identify a novel dichotomous regulation of cytotoxic T cells and macrophages by TGF-β1 and IL-10, respectively. These findings suggest that increasing cytotoxic T-cell effector functions may increase bacterial clearance in granulomas and highlight potential new therapeutic targets for treating TB.
Collapse
Affiliation(s)
- Hayley C Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elsje Pienaar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Warsinske HC, DiFazio RM, Linderman JJ, Flynn JL, Kirschner DE. Identifying mechanisms driving formation of granuloma-associated fibrosis during Mycobacterium tuberculosis infection. J Theor Biol 2017. [PMID: 28642013 DOI: 10.1016/j.jtbi.2017.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a pulmonary pathogen of major global concern. A key feature of Mtb infection in primates is the formation of granulomas, dense cellular structures surrounding infected lung tissue. These structures serve as the main site of host-pathogen interaction in TB, and thus to effectively treat TB we must clarify mechanisms of granuloma formation and their function in disease. Fibrotic granulomas are associated with both good and bad disease outcomes. Fibrosis can serve to isolate infected tissue from healthy tissue, but it can also cause difficulty breathing as it leaves scars. Little is known about fibrosis in TB, and data from non-human primates is just beginning to clarify the picture. This work focuses on constructing a hybrid multi-scale model of fibrotic granuloma formation, in order to identify mechanisms driving development of fibrosis in Mtb infected lungs. We combine dynamics of molecular, cellular, and tissue scale models from previously published studies to characterize the formation of two common sub-types of fibrotic granulomas: peripherally fibrotic, with a cuff of collagen surrounding granulomas, and centrally fibrotic, with collagen throughout granulomas. Uncertainty and sensitivity analysis, along with large simulation sets, enable us to identify mechanisms differentiating centrally versus peripherally fibrotic granulomas. These findings suggest that heterogeneous cytokine environments exist within granulomas and may be responsible for driving tissue scale morphologies. Using this model we are primed to better understand the complex structure of granulomas, a necessity for developing successful treatments for TB.
Collapse
Affiliation(s)
- Hayley C Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Robert M DiFazio
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States of America
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States of America
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|
44
|
Palmer MV, Thacker TC, Waters WR. Differential Cytokine Gene Expression in Granulomas from Lungs and Lymph Nodes of Cattle Experimentally Infected with Aerosolized Mycobacterium bovis. PLoS One 2016; 11:e0167471. [PMID: 27902779 PMCID: PMC5130274 DOI: 10.1371/journal.pone.0167471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/15/2016] [Indexed: 12/26/2022] Open
Abstract
The hallmark lesion of tuberculosis in humans and animals is the granuloma. The granuloma represents a distinct host cellular immune response composed of epithelioid macrophages, lymphocytes, and multinucleated giant cells, often surrounding a caseous necrotic core. Within the granuloma, host-pathogen interactions determine disease outcome. Factors within the granulomas such as cytokines and chemokines drive cell recruitment, activity, function and ultimately the success or failure of the host's ability to control infection. Hence, an understanding of the granuloma-level cytokine response is necessary to understand tuberculosis pathogenesis. In-situ cytokine expression patterns were measured using a novel in situ hybridization assay, known as RNAScope® in granulomas of the lungs, tracheobronchial lymph nodes and caudal mediastinal lymph nodes of cattle experimentally infected with Mycobacterium bovis via aerosol exposure. In spite of microscopic morphological similarities, significant differences were seen between late stage granulomas of the lung compared to those of the tracheobronchial lymph nodes for IL-17A, IFN-γ, TGF-β, IL10 and IL-22 but not for TNF-α. Additionally, significant differences were noted between granulomas from two different thoracic lymph nodes that both receive afferent lymphatics from the lungs (i.e., tracheobronchial and caudal mediastinal lymph nodes) for TNF-α, IL-17A, IFN-γ, TGF-β and IL-10 but not for IL-22. These findings show that granuloma morphology alone is not a reliable indicator of granuloma function as granulomas of similar morphologies can have disparate cytokine expression patterns. Moreover, anatomically distinct lymph nodes (tracheobronchial vs caudal mediastinal) differ in cytokine expression patterns even when both receive afferent lymphatics from a lung containing tuberculoid granulomas. These findings show that selection of tissue and anatomic location are critical factors in assessing host immune response to M. bovis and should be considered carefully.
Collapse
Affiliation(s)
- Mitchell V. Palmer
- Infectious Bacterial Diseases of Livestock Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
- * E-mail:
| | - Tyler C. Thacker
- Infectious Bacterial Diseases of Livestock Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - W. Ray Waters
- Infectious Bacterial Diseases of Livestock Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| |
Collapse
|