1
|
Kura K, Hardwick RJ, Truscott JE, Anderson RM. What is the impact of acquired immunity on the transmission of schistosomiasis and the efficacy of current and planned mass drug administration programmes? PLoS Negl Trop Dis 2021; 15:e0009946. [PMID: 34851952 PMCID: PMC8635407 DOI: 10.1371/journal.pntd.0009946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/23/2021] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis causes severe morbidity in many countries with endemic infection with the schistosome digenean parasites in Africa and Asia. To control and eliminate the disease resulting from infection, regular mass drug administration (MDA) is used, with a focus on school-aged children (SAC; 5-14 years of age). In some high transmission settings, the World Health Organization (WHO) also recommends the inclusion of at-risk adults in MDA treatment programmes. The question of whether ecology (age-dependant exposure) or immunity (resistance to reinfection), or some combination of both, determines the form of observed convex age-intensity profile is still unresolved, but there is a growing body of evidence that the human hosts acquire some partial level of immunity after a long period of repeated exposure to infection. In the majority of past research modelling schistosome transmission and the impact of MDA programmes, the effect of acquired immunity has not been taken into account. Past work has been based on the assumption that age-related contact rates generate convex horizontal age-intensity profiles. In this paper, we use an individual based stochastic model of transmission and MDA impact to explore the effect of acquired immunity in defined MDA programmes. Compared with scenarios with no immunity, we find that acquired immunity makes the MDA programme less effective with a slower decrease in the prevalence of infection. Therefore, the time to achieve morbidity control and elimination as a public health problem is longer than predicted by models with just age-related exposure and no build-up of immunity. The level of impact depends on the baseline prevalence prior to treatment (the magnitude of the basic reproductive number R0) and the treatment frequency, among other factors. We find that immunity has a larger impact within moderate to high transmission settings such that it is very unlikely to achieve morbidity and transmission control employing current MDA programmes.
Collapse
Affiliation(s)
- Klodeta Kura
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
| | - Robert J. Hardwick
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| | - James E. Truscott
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| | - Roy M. Anderson
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, London, United Kingdom
- The DeWorm3 Project, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
2
|
Kura K, Hardwick RJ, Truscott JE, Toor J, Hollingsworth TD, Anderson RM. The impact of mass drug administration on Schistosoma haematobium infection: what is required to achieve morbidity control and elimination? Parasit Vectors 2020; 13:554. [PMID: 33203467 PMCID: PMC7672840 DOI: 10.1186/s13071-020-04409-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/21/2020] [Indexed: 12/01/2022] Open
Abstract
Background Schistosomiasis remains an endemic parasitic disease causing much morbidity and, in some cases, mortality. The World Health Organization (WHO) has outlined strategies and goals to combat the burden of disease caused by schistosomiasis. The first goal is morbidity control, which is defined by achieving less than 5% prevalence of heavy intensity infection in school-aged children (SAC). The second goal is elimination as a public health problem (EPHP), achieved when the prevalence of heavy intensity infection in SAC is reduced to less than 1%. Mass drug administration (MDA) of praziquantel is the main strategy for control. However, there is limited availability of praziquantel, particularly in Africa where there is high prevalence of infection. It is therefore important to explore whether the WHO goals can be achieved using the current guidelines for treatment based on targeting SAC and, in some cases, adults. Previous modelling work has largely focused on Schistosoma mansoni, which in advance cases can cause liver and spleen enlargement. There has been much less modelling of the transmission of Schistosoma haematobium, which in severe cases can cause kidney damage and bladder cancer. This lack of modelling has largely been driven by limited data availability and challenges in interpreting these data. Results In this paper, using an individual-based stochastic model and age-intensity profiles of S. haematobium from two different communities, we calculate the probability of achieving the morbidity and EPHP goals within 15 years of treatment under the current WHO treatment guidelines. We find that targeting SAC only can achieve the morbidity goal for all transmission settings, regardless of the burden of infection in adults. The EPHP goal can be achieved in low transmission settings, but in some moderate to high settings community-wide treatment is needed. Conclusions We show that the key determinants of achieving the WHO goals are the precise form of the age-intensity of infection profile and the baseline SAC prevalence. Additionally, we find that the higher the burden of infection in adults, the higher the chances that adults need to be included in the treatment programme to achieve EPHP.
Collapse
Affiliation(s)
- Klodeta Kura
- London Centre for Neglected Tropical Disease Research, London, UK. .,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK. .,MRC Centre for Global Infectious Disease Analysis, London, UK.
| | - Robert J Hardwick
- London Centre for Neglected Tropical Disease Research, London, UK.,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK.,MRC Centre for Global Infectious Disease Analysis, London, UK.,The DeWorm3 Project, The Natural History Museum of London, London, UK
| | - James E Truscott
- London Centre for Neglected Tropical Disease Research, London, UK.,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK.,MRC Centre for Global Infectious Disease Analysis, London, UK.,The DeWorm3 Project, The Natural History Museum of London, London, UK
| | - Jaspreet Toor
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - T Deirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Roy M Anderson
- London Centre for Neglected Tropical Disease Research, London, UK.,Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK.,MRC Centre for Global Infectious Disease Analysis, London, UK.,The DeWorm3 Project, The Natural History Museum of London, London, UK
| |
Collapse
|
3
|
King CH, Kittur N, Binder S, Campbell CH, N'Goran EK, Meite A, Utzinger J, Olsen A, Magnussen P, Kinung'hi S, Fenwick A, Phillips AE, Gazzinelli-Guimaraes PH, Dhanani N, Ferro J, Karanja DMS, Mwinzi PNM, Montgomery SP, Wiegand RE, Secor WE, Hamidou AA, Garba A, Colley DG. Impact of Different Mass Drug Administration Strategies for Gaining and Sustaining Control of Schistosoma mansoni and Schistosoma haematobium Infection in Africa. Am J Trop Med Hyg 2020; 103:14-23. [PMID: 32400356 PMCID: PMC7351298 DOI: 10.4269/ajtmh.19-0829] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This report summarizes the design and outcomes of randomized controlled operational research trials performed by the Bill & Melinda Gates Foundation–funded Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) from 2009 to 2019. Their goal was to define the effectiveness and test the limitations of current WHO-recommended schistosomiasis control protocols by performing large-scale pragmatic trials to compare the impact of different schedules and coverage regimens of praziquantel mass drug administration (MDA). Although there were limitations to study designs and performance, analysis of their primary outcomes confirmed that all tested regimens of praziquantel MDA significantly reduced local Schistosoma infection prevalence and intensity among school-age children. Secondary analysis suggested that outcomes in locations receiving four annual rounds of MDA were better than those in communities that had treatment holiday years, in which no praziquantel MDA was given. Statistical significance of differences was obscured by a wider-than-expected variation in community-level responses to MDA, defining a persistent hot spot obstacle to MDA success. No MDA schedule led to elimination of infection, even in those communities that started at low prevalence of infection, and it is likely that programs aiming for elimination of transmission will need to add supplemental interventions (e.g., snail control, improvement in water, sanitation and hygiene, and behavior change interventions) to achieve that next stage of control. Recommendations for future implementation research, including exploration of the value of earlier program impact assessment combined with intensification of intervention in hot spot locations, are discussed.
Collapse
Affiliation(s)
- Charles H King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio.,Schistosomiasis Consortium for Operational Research and Evaluation, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Nupur Kittur
- Schistosomiasis Consortium for Operational Research and Evaluation, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Sue Binder
- Schistosomiasis Consortium for Operational Research and Evaluation, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Carl H Campbell
- Schistosomiasis Consortium for Operational Research and Evaluation, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Eliézer K N'Goran
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Aboulaye Meite
- Programme National de Lutte Contre les Maladies Tropicales Négligées à Chimiothérapie Préventive (PNLMTN-CP), Abidjan, Côte d'Ivoire
| | - Jürg Utzinger
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Annette Olsen
- Section for Parasitology and Aquatic Pathobiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pascal Magnussen
- Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Alan Fenwick
- Schistosomiasis Control Initiative, Imperial College, London, United Kingdom
| | - Anna E Phillips
- Schistosomiasis Control Initiative, Imperial College, London, United Kingdom
| | | | - Neerav Dhanani
- Schistosomiasis Control Initiative, Imperial College, London, United Kingdom
| | - Josefo Ferro
- Catholic University of Mozambique, Beira, Mozambique
| | - Diana M S Karanja
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Pauline N M Mwinzi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Ryan E Wiegand
- Centers for Disease Control and Prevention, Atlanta, Georgia.,University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Amina A Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Amadou Garba
- Department of Control of Neglected Tropical Diseases, Preventive Chemotherapy and Transmission Control Unit, World Health Organization, Geneva, Switzerland
| | - Daniel G Colley
- Department of Microbiology, University of Georgia, Athens, Georgia.,Schistosomiasis Consortium for Operational Research and Evaluation, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
4
|
Kayuni SA, O'Ferrall AM, Baxter H, Hesketh J, Mainga B, Lally D, Al-Harbi MH, LaCourse EJ, Juziwelo L, Musaya J, Makaula P, Stothard JR. An outbreak of intestinal schistosomiasis, alongside increasing urogenital schistosomiasis prevalence, in primary school children on the shoreline of Lake Malawi, Mangochi District, Malawi. Infect Dis Poverty 2020; 9:121. [PMID: 32867849 PMCID: PMC7456765 DOI: 10.1186/s40249-020-00736-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intestinal schistosomiasis was not considered endemic in Lake Malawi until November 2017 when populations of Biomphalaria pfeifferi were first reported; in May 2018, emergence of intestinal schistosomiasis was confirmed. This emergence was in spite of ongoing control of urogenital schistosomiasis by preventive chemotherapy. Our current study sought to ascertain whether intestinal schistosomiasis is transitioning from emergence to outbreak, to judge if stepped-up control interventions are needed. METHODS During late-May 2019, three cross-sectional surveys of primary school children for schistosomiasis were conducted using a combination of rapid diagnostic tests, parasitological examinations and applied morbidity-markers; 1) schistosomiasis dynamics were assessed at Samama (n = 80) and Mchoka (n = 80) schools, where Schistosoma mansoni was first reported, 2) occurrence of S. mansoni was investigated at two non-sampled schools, Mangochi Orphan Education and Training (MOET) (n = 60) and Koche (n = 60) schools, where B. pfeifferi was nearby, and 3) rapid mapping of schistosomiasis, and B. pfeifferi, conducted across a further 8 shoreline schools (n = 240). After data collection, univariate analyses and Chi-square testing were performed, followed by binary logistic regression using generalized linear models, to investigate epidemiological associations. RESULTS In total, 520 children from 12 lakeshore primary schools were examined, mean prevalence of S. mansoni by 'positive' urine circulating cathodic antigen (CCA)-dipsticks was 31.5% (95% confidence interval [CI]: 27.5-35.5). Upon comparisons of infection prevalence in May 2018, significant increases at Samama (relative risk [RR] = 1.7, 95% CI: 1.4-2.2) and Mchoka (RR = 2.7, 95% CI: 1.7-4.3) schools were observed. Intestinal schistosomiasis was confirmed at MOET (18.3%) and Koche (35.0%) schools, and in all rapid mapping schools, ranging from 10.0 to 56.7%. Several populations of B. pfeifferi were confirmed, with two new eastern shoreline locations noted. Mean prevalence of urogenital schistosomiasis was 24.0% (95% CI: 20.3-27.7). CONCLUSIONS We notify that intestinal schistosomiasis, once considered non-endemic in Lake Malawi, is now transitioning from emergence to outbreak. Once control interventions can resume after coronavirus disease 2019 (COVID-19) suspensions, we recommend stepped-up preventive chemotherapy, with increased community-access to treatments, alongside renewed efforts in appropriate environmental control.
Collapse
Affiliation(s)
- Sekeleghe A Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK.,Medi Clinic Limited, Medical Aid Society of Malawi (MASM), 22 Lower Sclatter Road, P.O. Box 1254, Blantyre, Malawi
| | - Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Hamish Baxter
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Josie Hesketh
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Bright Mainga
- Laboratory Department, Mangochi District Hospital, P.O. Box 42, Mangochi, Malawi
| | - David Lally
- Malawi Liverpool Wellcome Trust Programme of Clinical Tropical Research, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Blantyre, Malawi
| | | | - E James LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Lazarus Juziwelo
- National Schistosomiasis and STH Control Programme, Ministry of Health, Lilongwe, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Trust Programme of Clinical Tropical Research, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096, Blantyre, Malawi.,Department of Basic Medical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Peter Makaula
- Research for Health Environment and Development, P.O. Box 345, Mangochi, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK.
| |
Collapse
|
5
|
Bergquist NR. Schistosomiasis Consortium for Operational Research and Evaluation: Mission Accomplished. Am J Trop Med Hyg 2020; 103:1-4. [PMID: 32400351 PMCID: PMC7351299 DOI: 10.4269/ajtmh.19-0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 11/30/2022] Open
Abstract
The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), a program focusing on schistosomiasis control in sub-Saharan Africa between 2008 and 2019, investigated ways to improve coverage and efficacy of ongoing chemotherapy programs and concluded that because of continued transmission, mass distribution of praziquantel cannot eliminate the disease without complementary control activities. Schistosomiasis Consortium for Operational Research and Evaluation's activities comprised large-scale, multicountry field studies comparing various mass drug administration strategies and some specific research avenues, such as assessment of high-sensitivity diagnostics, identification of hotspots, quantification of the role of the snail host, predictive modeling, and changes in schistosome population genetics under drug pressure. The discoveries made and the insights gained regarding cost-effective strategies for delivering preventive chemotherapy should assist policy makers to develop guidelines for the control and ultimate elimination of schistosomiasis.
Collapse
|
6
|
Michael E, Smith ME, Singh BK, Katabarwa MN, Byamukama E, Habomugisha P, Lakwo T, Tukahebwa E, Richards FO. Data-driven modelling and spatial complexity supports heterogeneity-based integrative management for eliminating Simulium neavei-transmitted river blindness. Sci Rep 2020; 10:4235. [PMID: 32144362 PMCID: PMC7060237 DOI: 10.1038/s41598-020-61194-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/24/2020] [Indexed: 11/28/2022] Open
Abstract
Concern is emerging regarding the challenges posed by spatial complexity for modelling and managing the area-wide elimination of parasitic infections. While this has led to calls for applying heterogeneity-based approaches for addressing this complexity, questions related to spatial scale, the discovery of locally-relevant models, and its interaction with options for interrupting parasite transmission remain to be resolved. We used a data-driven modelling framework applied to infection data gathered from different monitoring sites to investigate these questions in the context of understanding the transmission dynamics and efforts to eliminate Simulium neavei- transmitted onchocerciasis, a macroparasitic disease that causes river blindness in Western Uganda and other regions of Africa. We demonstrate that our Bayesian-based data-model assimilation technique is able to discover onchocerciasis models that reflect local transmission conditions reliably. Key management variables such as infection breakpoints and required durations of drug interventions for achieving elimination varied spatially due to site-specific parameter constraining; however, this spatial effect was found to operate at the larger focus level, although intriguingly including vector control overcame this variability. These results show that data-driven modelling based on spatial datasets and model-data fusing methodologies will be critical to identifying both the scale-dependent models and heterogeneity-based options required for supporting the successful elimination of S. neavei-borne onchocerciasis.
Collapse
Affiliation(s)
- Edwin Michael
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Morgan E Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brajendra K Singh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Moses N Katabarwa
- The Carter Center, One Copenhill, 453 Freedom Parkway, Atlanta, GA, 30307, USA
| | - Edson Byamukama
- The Carter Center, Uganda, 15 Bombo Road, P.O. Box, 12027, Kampala, Uganda
| | - Peace Habomugisha
- The Carter Center, Uganda, 15 Bombo Road, P.O. Box, 12027, Kampala, Uganda
| | - Thomson Lakwo
- Vector Control Division, Ministry of Health, 15 Bombo Road, P.O. Box, 1661, Kampala, Uganda
| | - Edridah Tukahebwa
- Vector Control Division, Ministry of Health, 15 Bombo Road, P.O. Box, 1661, Kampala, Uganda
| | - Frank O Richards
- The Carter Center, One Copenhill, 453 Freedom Parkway, Atlanta, GA, 30307, USA
| |
Collapse
|
7
|
Faust CL, Crotti M, Moses A, Oguttu D, Wamboko A, Adriko M, Adekanle EK, Kabatereine N, Tukahebwa EM, Norton AJ, Gower CM, Webster JP, Lamberton PHL. Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda. Parasit Vectors 2019; 12:607. [PMID: 31881923 PMCID: PMC6935072 DOI: 10.1186/s13071-019-3860-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND A key component of schistosomiasis control is mass drug administration with praziquantel. While control interventions have been successful in several endemic regions, mass drug administration has been less effective in others. Here we focus on the impact of repeated praziquantel treatment on the population structure and genetic diversity of Schistosoma mansoni. METHODS We examined S. mansoni epidemiology, population genetics, and variation in praziquantel susceptibility in parasites isolated from children across three primary schools in a high endemicity region at the onset of the Ugandan National Control Programme. Children were sampled at 11 timepoints over two years, including one week and four weeks post-praziquantel treatment to evaluate short-term impacts on clearance and evidence of natural variation in susceptibility to praziquantel. RESULTS Prevalence of S. mansoni was 85% at baseline. A total of 3576 miracidia larval parasites, isolated from 203 individual children, were genotyped at seven loci. Overall, genetic diversity was high and there was low genetic differentiation, indicating high rates of parasite gene flow. Schistosome siblings were found both pre-treatment and four weeks post-treatment, demonstrating adult worms surviving treatment and natural praziquantel susceptibility variation in these populations at the beginning of mass drug administration. However, we did not find evidence for selection on these parasites. While genetic diversity decreased in the short-term (four weeks post-treatment), diversity did not decrease over the entire period despite four rounds of mass treatment. Furthermore, within-host genetic diversity was affected by host age, host sex, infection intensity and recent praziquantel treatment. CONCLUSIONS Our findings suggest that praziquantel treatments have short-term impacts on these parasite populations but impacts were transient and no long-term reduction in genetic diversity was observed. High gene flow reduces the likelihood of local adaptation, so even though parasites surviving treatment were observed, these were likely to be diluted at the beginning of the Ugandan National Control Programme. Together, these results suggest that MDA in isolation may be insufficient to reduce schistosome populations in regions with high genetic diversity and gene flow.
Collapse
Affiliation(s)
- Christina L. Faust
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Marco Crotti
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Arinaitwe Moses
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - David Oguttu
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Aidah Wamboko
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Moses Adriko
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | - Elizabeth K. Adekanle
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | | | - Alice J. Norton
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Charlotte M. Gower
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Joanne P. Webster
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead, UK
| | - Poppy H. L. Lamberton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
8
|
Harris M, Caldwell JM, Mordecai EA. Climate drives spatial variation in Zika epidemics in Latin America. Proc Biol Sci 2019; 286:20191578. [PMID: 31455188 PMCID: PMC6732388 DOI: 10.1098/rspb.2019.1578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Between 2015 and 2017, Zika virus spread rapidly through populations in the Americas with no prior exposure to the disease. Although climate is a known determinant of many Aedes-transmitted diseases, it is currently unclear whether climate was a major driver of the Zika epidemic and how climate might have differentially impacted outbreak intensity across locations within Latin America. Here, we estimated force of infection for Zika over time and across provinces in Latin America using a time-varying susceptible–infectious–recovered model. Climate factors explained less than 5% of the variation in weekly transmission intensity in a spatio-temporal model of force of infection by province over time, suggesting that week to week transmission within provinces may be too stochastic to predict. By contrast, climate and population factors were highly predictive of spatial variation in the presence and intensity of Zika transmission among provinces, with pseudo-R2 values between 0.33 and 0.60. Temperature, temperature range, rainfall and population size were the most important predictors of where Zika transmission occurred, while rainfall, relative humidity and a nonlinear effect of temperature were the best predictors of Zika intensity and burden. Surprisingly, force of infection was greatest in locations with temperatures near 24°C, much lower than previous estimates from mechanistic models, potentially suggesting that existing vector control programmes and/or prior exposure to other mosquito-borne diseases may have limited transmission in locations most suitable for Aedes aegypti, the main vector of Zika, dengue and chikungunya viruses in Latin America.
Collapse
Affiliation(s)
- Mallory Harris
- Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA 30602, USA
| | - Jamie M Caldwell
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, USA
| | - Erin A Mordecai
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, USA
| |
Collapse
|
9
|
Low Praziquantel Treatment Coverage for Schistosoma mansoni in Mayuge District, Uganda, Due to the Absence of Treatment Opportunities, Rather Than Systematic Non-Compliance. Trop Med Infect Dis 2018; 3:tropicalmed3040111. [PMID: 30297642 PMCID: PMC6306755 DOI: 10.3390/tropicalmed3040111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/26/2022] Open
Abstract
The World Health Organization (WHO) recommends praziquantel mass drug administration (MDA) to control schistosomiasis in endemic regions. We aimed to quantify recent and lifetime praziquantel coverage, and reasons for non-treatment, at an individual level to guide policy recommendations to help Uganda reach WHO goals. Cross-sectional household surveys (n = 681) encompassing 3208 individuals (adults and children) were conducted in 2017 in Bugoto A and B, Mayuge District, Uganda. Participants were asked if they had received praziquantel during the recent MDA (October 2016) and whether they had ever received praziquantel in their lifetime. A multivariate logistic regression analysis with socio-economic and individual characteristics as covariates was used to determine factors associated with praziquantel uptake. In the MDA eligible population (≥5 years of age), the most recent MDA coverage was 48.8%. Across individuals’ lifetimes, 31.8% of eligible and 49.5% of the entire population reported having never taken praziquantel. Factors that improved individuals’ odds of taking praziquantel included school enrolment, residence in Bugoto B and increasing years of village-residency. Not being offered (49.2%) and being away during treatment (21.4%) were the most frequent reasons for not taking the 2016 praziquantel MDA. Contrary to expectations, chronically-untreated individuals were rarely systematic non-compliers, but more commonly not offered treatment.
Collapse
|
10
|
FALADE MO, OTARIGHO B. Comparative Functional Study of Thioester-containing Related Proteins in the Recently Sequenced Genome of Biomphalaria glabrata. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:79-88. [PMID: 29963089 PMCID: PMC6019584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/19/2017] [Indexed: 12/03/2022]
Abstract
BACKGROUND There is paucity of information on functional relationship and characterization of Biomphalaria glabrata thioester-containing proteins (BgTEP) to other well-annotated homologues. We performed functional characterization studies of BgTEP to homologues in Anopheles gambiae and in disparate invertebrates. METHODS Genomic sequences of TEPs were retrieved after annotation of the B. glabrata genome. In addition, TEP sequences deposited in NCBI protein database were also retrieved and utilized for sequence analysis. BgTEP relatedness to its other homologues as well as functional domain and protein-protein interaction analysis was performed. RESULTS Our analysis resulted in the identification of TEPs in a number of organisms including, B. glabrata, A. gambiae, and Chlamys farreri. In addition, we identified 19 TEP sequences spread across 10 animal species. The B. glabrata genome contains 14190 unannotated proteins after filtration with about 85% of its proteome annotated. The phylogenetics, functional domain and protein-protein interaction analyses suggest an immunological role for BgTEP in B. glabrata. CONCLUSION The predicted role of thioester-containing proteins to be involved in immunological role in B. glabrata may have a strong effect on resistance to infection.
Collapse
Affiliation(s)
- Mofolusho O. FALADE
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Benson OTARIGHO
- Dept. of Biological Science, Edo University, Iyamho, Edo State, Nigeria
- Dept. of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
11
|
Michael E, Singh BK, Mayala BK, Smith ME, Hampton S, Nabrzyski J. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med 2017; 15:176. [PMID: 28950862 PMCID: PMC5615442 DOI: 10.1186/s12916-017-0933-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND There are growing demands for predicting the prospects of achieving the global elimination of neglected tropical diseases as a result of the institution of large-scale nation-wide intervention programs by the WHO-set target year of 2020. Such predictions will be uncertain due to the impacts that spatial heterogeneity and scaling effects will have on parasite transmission processes, which will introduce significant aggregation errors into any attempt aiming to predict the outcomes of interventions at the broader spatial levels relevant to policy making. We describe a modeling platform that addresses this problem of upscaling from local settings to facilitate predictions at regional levels by the discovery and use of locality-specific transmission models, and we illustrate the utility of using this approach to evaluate the prospects for eliminating the vector-borne disease, lymphatic filariasis (LF), in sub-Saharan Africa by the WHO target year of 2020 using currently applied or newly proposed intervention strategies. METHODS AND RESULTS: We show how a computational platform that couples site-specific data discovery with model fitting and calibration can allow both learning of local LF transmission models and simulations of the impact of interventions that take a fuller account of the fine-scale heterogeneous transmission of this parasitic disease within endemic countries. We highlight how such a spatially hierarchical modeling tool that incorporates actual data regarding the roll-out of national drug treatment programs and spatial variability in infection patterns into the modeling process can produce more realistic predictions of timelines to LF elimination at coarse spatial scales, ranging from district to country to continental levels. Our results show that when locally applicable extinction thresholds are used, only three countries are likely to meet the goal of LF elimination by 2020 using currently applied mass drug treatments, and that switching to more intensive drug regimens, increasing the frequency of treatments, or switching to new triple drug regimens will be required if LF elimination is to be accelerated in Africa. The proportion of countries that would meet the goal of eliminating LF by 2020 may, however, reach up to 24/36 if the WHO 1% microfilaremia prevalence threshold is used and sequential mass drug deliveries are applied in countries. CONCLUSIONS We have developed and applied a data-driven spatially hierarchical computational platform that uses the discovery of locally applicable transmission models in order to predict the prospects for eliminating the macroparasitic disease, LF, at the coarser country level in sub-Saharan Africa. We show that fine-scale spatial heterogeneity in local parasite transmission and extinction dynamics, as well as the exact nature of intervention roll-outs in countries, will impact the timelines to achieving national LF elimination on this continent.
Collapse
Affiliation(s)
- Edwin Michael
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - Brajendra K Singh
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Benjamin K Mayala
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Morgan E Smith
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN, 46556, USA
| | - Scott Hampton
- Center for Research Computing, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jaroslaw Nabrzyski
- Center for Research Computing, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
12
|
The Interdependence between Schistosome Transmission and Protective Immunity. Trop Med Infect Dis 2017; 2:tropicalmed2030042. [PMID: 30270899 PMCID: PMC6082113 DOI: 10.3390/tropicalmed2030042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 01/14/2023] Open
Abstract
Mass drug administration (MDA) for control of schistosomiasis is likely to affect transmission dynamics through a combination of passive vaccination and reduction of local transmission intensity. This is indicated in phenomenological models of immunity and the impact of MDA, yet immunity parameters in these models are not validated by empirical data that reflects protective immunity to reinfection. There is significant empirical evidence supporting the role of IgE in acquired protective immunity. This is proposed to be a form of delayed concomitant immunity, driven at least in part by protective IgE responses to the tegument allergen-like (TAL) family of proteins. Specific questions have arisen from modeling studies regarding the strength and duration of the protective immune response. At present, field studies have not been specifically designed to address these questions. There is therefore a need for field studies that are explicitly designed to capture epidemiological effects of acquired immunity to elucidate these immunological interactions. In doing so, it is important to address the discourse between theoretical modelers and immuno-epidemiologists and develop mechanistic models that empirically define immunity parameters. This is of increasing significance in a climate of potential changing transmission dynamics following long-term implementation of MDA.
Collapse
|
13
|
Riccardi N, Nosenzo F, Peraldo F, Sarocchi F, Taramasso L, Traverso P, Viscoli C, Di Biagio A, Derchi LE, De Maria A. Increasing prevalence of genitourinary schistosomiasis in Europe in the Migrant Era: Neglected no more? PLoS Negl Trop Dis 2017; 11:e0005237. [PMID: 28301463 PMCID: PMC5354244 DOI: 10.1371/journal.pntd.0005237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Niccolò Riccardi
- Department of Health Sciences (DISSAL), Infectious Disease Section, IRCCS AOU San Martino-IST, Genoa, Italy
- * E-mail:
| | - Francesca Nosenzo
- Department of Health Sciences (DISSAL), Radiology Section, University of Genoa, Genoa, Italy
| | - Francesca Peraldo
- Department of Surgical Science (DISC), Luciano Giuliani Department of Urology, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Francesca Sarocchi
- Department of Surgery (DISC), Pathology Section, University of Genoa, Genoa, Italy
| | - Lucia Taramasso
- Department of Health Sciences (DISSAL), Infectious Disease Section, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paolo Traverso
- Department of Surgical Science (DISC), Luciano Giuliani Department of Urology, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Claudio Viscoli
- Department of Health Sciences (DISSAL), Infectious Disease Section, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Antonio Di Biagio
- Department of Health Sciences (DISSAL), Infectious Disease Section, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lorenzo E. Derchi
- Department of Health Sciences (DISSAL), Radiology Section, University of Genoa, Emergency Radiology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Andrea De Maria
- Department of Health Sciences (DISSAL), Infectious Disease Section, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
14
|
Fenwick A, Jourdan P. Schistosomiasis elimination by 2020 or 2030? Int J Parasitol 2016; 46:385-8. [PMID: 26907938 DOI: 10.1016/j.ijpara.2016.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/02/2023]
Abstract
Schistosomiasis has been a public health burden in a number of countries across the globe for centuries and probably beyond. The World Health Organization and partners are currently preparing to move towards elimination of this disease. However, given the historical challenges and barriers to ridding areas of this water-borne parasite infection, we question whether the current targets for eliminating schistosomiasis as a global health problem can be achieved.
Collapse
Affiliation(s)
- Alan Fenwick
- Schistosomiasis Control Initiative (SCI), School of Public Health, Imperial College London, W2 1PG London, United Kingdom.
| | - Peter Jourdan
- Schistosomiasis Control Initiative (SCI), School of Public Health, Imperial College London, W2 1PG London, United Kingdom
| |
Collapse
|
15
|
Anderson RM, Turner HC, Farrell SH, Truscott JE. Studies of the Transmission Dynamics, Mathematical Model Development and the Control of Schistosome Parasites by Mass Drug Administration in Human Communities. ADVANCES IN PARASITOLOGY 2016; 94:199-246. [PMID: 27756455 DOI: 10.1016/bs.apar.2016.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schistosomiasis is global in extent within developing countries, but more than 90% of the at-risk population lives in sub-Saharan Africa. In total, 261 million people are estimated to require preventive treatment. However, with increasing drug availability through donation, the World Health Organization has set a goal of increasing coverage to 75% of at-risk children in endemic countries and elimination in some regions. In this chapter, we discuss key biological and epidemiological processes involved in the schistosome transmission cycle and review the history of modelling schistosomiasis and the impact of mass drug administration, including both deterministic and stochastic approaches. In particular, we look at the potential impact of the WHO 2020 schistosomiasis treatment goals.
Collapse
Affiliation(s)
- R M Anderson
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - H C Turner
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - S H Farrell
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - J E Truscott
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| |
Collapse
|