1
|
Peacock L, Kay C, Collett C, Bailey M, Gibson W. Development of the livestock pathogen Trypanosoma (Nannomonas) simiae in the tsetse fly with description of putative sexual stages from the proboscis. Parasit Vectors 2023; 16:231. [PMID: 37434196 DOI: 10.1186/s13071-023-05847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Tsetse-transmitted African animal trypanosomiasis is recognised as an important disease of ruminant livestock in sub-Saharan Africa, but also affects domestic pigs, with Trypanosoma simiae notable as a virulent suid pathogen that can rapidly cause death. Trypanosoma simiae is widespread in tsetse-infested regions, but its biology has been little studied compared to T. brucei and T. congolense. METHODS Trypanosoma simiae procyclics were cultured in vitro and transfected using protocols developed for T. brucei. Genetically modified lines, as well as wild-type trypanosomes, were transmitted through tsetse flies, Glossina pallidipes, to study T. simiae development in the tsetse midgut, proventriculus and proboscis. The development of proventricular trypanosomes was also studied in vitro. Image and mensural data were collected and analysed. RESULTS A PFR1::YFP line successfully completed development in tsetse, but a YFP::HOP1 line failed to progress beyond midgut infection. Analysis of image and mensural data confirmed that the vector developmental cycles of T. simiae and T. congolense are closely similar, but we also found putative sexual stages in T. simiae, as judged by morphological similarity to these stages in T. brucei. Putative meiotic dividers were abundant among T. simiae trypanosomes in the proboscis, characterised by a large posterior nucleus and two anterior kinetoplasts. Putative gametes and other meiotic intermediates were also identified by characteristic morphology. In vitro development of proventricular forms of T. simiae followed the pattern previously observed for T. congolense: long proventricular trypanosomes rapidly attached to the substrate and shortened markedly before commencing cell division. CONCLUSIONS To date, T. brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, which occurs in the fly salivary glands. By analogy, sexual stages of T. simiae or T. congolense are predicted to occur in the proboscis, where the corresponding portion of the developmental cycle takes place. While no such stages have been observed in T. congolense, for T. simiae putative sexual stages were abundant in the tsetse proboscis. Although our initial attempt to demonstrate expression of a YFP-tagged, meiosis-specific protein was unsuccessful, the future application of transgenic approaches will facilitate the identification of meiotic stages and hybrids in T. simiae.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Chris Kay
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Clare Collett
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Pathogen Immunology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
2
|
Kwak HJ, Lee SG, Park SC, Kim JH, Weisblat DA, Park C, Cho SJ. Head transcriptome profiling of glossiphoniid leech ( Helobdella austinensis) reveals clues about proboscis development. Open Biol 2022; 12:210298. [PMID: 35232253 PMCID: PMC8889196 DOI: 10.1098/rsob.210298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cephalization refers to the evolutionary trend towards the concentration of neural tissues, sensory organs, mouth and associated structures at the front end of bilaterian animals. Comprehensive studies on gene expression related to the anterior formation in invertebrate models are currently lacking. In this study, we performed de novo transcriptional profiling on a proboscis-bearing leech (Helobdella austinensis) to identify differentially expressed genes (DEGs) in the anterior versus other parts of the body, in particular to find clues as to the development of the proboscis. Between the head and the body, 132 head-specific DEGs were identified, of which we chose 11 to investigate their developmental function during embryogenesis. Analysis of the spatial expression of these genes using in situ hybridization showed that they were characteristically expressed in the anterior region of the developing embryo, including the proboscis. Our results provide information on the genes related to head formation and insights into the function of proboscis-related genes during organogenesis with the potential roles of genes not yet characterized.
Collapse
Affiliation(s)
- Hee-Jin Kwak
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea,Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sung-Gwon Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soon Cheol Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung-Hyeuk Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Incheon 22689, Republic of Korea
| | - David A. Weisblat
- Department of Molecular and Cell Biology, University of California, 385 Weill Hall, Berkeley, CA 94720-3200, USA
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
3
|
Krige AS, Thompson RCA, Wills A, Burston G, Thorn S, Clode PL. 'A flying start': Wildlife trypanosomes in tissues of Australian tabanids (Diptera: Tabanidae). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105152. [PMID: 34823027 DOI: 10.1016/j.meegid.2021.105152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Tabanids (syn. horse flies) are biting-flies of medical and veterinary significance because of their ability to transmit a range of pathogens including trypanosomes - some species of which carry a combined health and biosecurity risk. Invertebrate vectors responsible for transmitting species of Trypanosoma between Australian wildlife remains unknown, thus establishing the role of potential vector candidates such as tabanids is of utmost importance. The current study aimed to investigate the presence of indigenous trypanosomes in tabanids from an endemic area of south-west Australia. A total of 148 tabanids were collected, with morphological analysis revealing two subgenera: Scaptia (Pseudoscione) and S. (Scaptia) among collected flies. A parasitological survey using an HRM-qPCR and sequencing approach revealed a high (105/148; 71%) prevalence of trypanosomatid DNA within collected tabanids. Individual tissues - proboscis (labrum, labium and mandibles, hypopharynx), salivary glands, proventriculus, midgut, and hindgut and rectum - were also tested from a subset of 20 tabanids (n = 140 tissues), confirming the presence of Trypanosoma noyesi in 31% of screened tissues, accompanied by T. copemani (3%) and T. vegrandis/T.gilletti (5%). An unconfirmed trypanosomatid sp. was also detected (9%) within tissues. The difference between tissues infected with T. noyesi compared with tissues infected with other trypanosome species was statistically significant (p < 0.05), revealing T. noyesi as the more frequent species detected in the tabanids examined. Fluorescence in situ hybridisation (FISH) and scanning electron microscopy (SEM) confirmed intact parasites within salivary glands and the proboscis respectively, suggesting that both biological and mechanical modes of transmission could occur. This study reveals the presence of Australian Trypanosoma across tabanid tissues and confirms intact parasites within tabanid salivary glands and the proboscis for the first time. Further investigations are required to determine whether tabanids have the vectorial competence to transmit Australian trypanosomes between wildlife.
Collapse
Affiliation(s)
- Anna-Sheree Krige
- UWA School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Allan Wills
- Department of Biodiversity, Conservation and Attractions (DBCA), Locked Bag 2, Manjimup, Western Australia 6258, Australia
| | - Glen Burston
- Maroo Wildlife Refuge Inc., Southern Forests, 161 Perup Rd, Manjimup, Western Australia 6258, Australia
| | - Sian Thorn
- UWA School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Peta L Clode
- UWA School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
4
|
Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens 2021; 10:pathogens10060679. [PMID: 34072674 PMCID: PMC8229994 DOI: 10.3390/pathogens10060679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites affecting humans, livestock and game animals. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense are human infective sub-species of T. brucei causing human African trypanosomiasis (HAT—sleeping sickness). The related T. b. brucei parasite lacks the resistance to survive in human serum, and only inflicts animal infections. Animal trypanosomiasis (AT) is not restricted to Africa, but is present on all continents. T. congolense and T. vivax are the most widespread pathogenic trypanosomes in sub-Saharan Africa. Through mechanical transmission, T. vivax has also been introduced into South America. T. evansi is a unique animal trypanosome that is found in vast territories around the world and can cause atypical human trypanosomiasis (aHT). All salivarian trypanosomes are well adapted to survival inside the host’s immune system. This is not a hostile environment for these parasites, but the place where they thrive. Here we provide an overview of the latest insights into the host-parasite interaction and the unique survival strategies that allow trypanosomes to outsmart the immune system. In addition, we review new developments in treatment and diagnosis as well as the issues that have hampered the development of field-applicable anti-trypanosome vaccines for the implementation of sustainable disease control.
Collapse
|
5
|
Fernandes FDF, Bahia AC, Secundino NFC, Pimenta PFP. Ultrastructural Analysis of Mouthparts of Adult Horn Fly (Diptera: Muscidae) From the Brazilian Midwest Region. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1447-1458. [PMID: 32424423 DOI: 10.1093/jme/tjaa085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 06/11/2023]
Abstract
The ultrastructure of the mouthparts of Haematobia irritans (L.) was investigated by scanning electron microscopy. The morphological characteristics of the maxillary palps, labium (prementum and postmentum), labrum, hypopharynx, haustellum, and labellar lobes are described, as well as of the sensilla evidenced on all the surface of the mouthparts, and the set of different positions assumed by the mouth apparatus of this fly. Based on their morphology, 12 well-differentiated sensilla were identified, among three types of cuticular sensilla: trichoidea, coeloconica, and campaniformia. A slight sexual dimorphism in the sensilla patterns found in the mouthparts of H. irritans was evidenced. These observations are discussed with reference to the current literature on the functional morphology of sense organs of Insecta. These results could facilitate the recognition of the chemosensory sensilla by electrophysiological techniques, and foment future taxonomic and phylogenetic studies to better elucidate the evolution of Diptera, Muscomorpha.
Collapse
Affiliation(s)
- Fernando de Freitas Fernandes
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, MG, Brazil
- Division of Entomology, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Ana Cristina Bahia
- Laboratory of Insects and Parasites Biochemistry, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Paulo Filemon Paolucci Pimenta
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Andreani A, Sacchetti P, Belcari A. Evolutionary adaptations in four hippoboscid fly species belonging to three different subfamilies. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:344-363. [PMID: 32407606 DOI: 10.1111/mve.12448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Lipoptena cervi (Linnaeus, 1758), Lipoptena fortisetosa Maa, 1965, Hippobosca equina Linnaeus, 1758, and Pseudolynchia canariensis (Macquart, 1840) (Diptera: Hippoboscidae) are haematophagous ectoparasites that infest different mammal and bird species and occasionally attack humans. They are known for the health implications they have as vectors of pathogens to humans and animals, and for the injuries they inflict on their host's skin. This study focused on the morphological structures evolved by parasites in terms of their biology and the different environment types that they inhabit. To this aim, we examined four hippoboscid species, as well as their hosts' fur (ungulate and horse), and feather (pigeon) through light and Scanning Electron Microscopy (SEM) observations in order to highlight the main morphological features that evolved differently in these flies and to explain the effect of hosts' fur/feather microhabitats on the morphological specializations observed in the investigated ectoparasites. The studied species showed main convergent characters in mouthparts while remarkable differences have been detected on the antennal sensillar pattern as well as on the leg acropod that displayed divergent characters evolved in relation to the host.
Collapse
Affiliation(s)
- A Andreani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - P Sacchetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - A Belcari
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| |
Collapse
|
7
|
Peacock L, Gibson W. Tsetse Fly Transmission Studies of African Trypanosomes. Methods Mol Biol 2020; 2116:49-67. [PMID: 32221913 DOI: 10.1007/978-1-0716-0294-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
African trypanosomes are naturally transmitted by bloodsucking tsetse flies in sub-Saharan Africa and these transmission cycles can be reproduced in the laboratory if clean tsetse flies and suitable trypanosomes are available for experiments. Tsetse transmission gives access to more trypanosome developmental stages than are available from in vitro culture, albeit in very small numbers; for example, the sexual stages of Trypanosoma brucei have been isolated from infected tsetse salivary glands, but have not yet been reported from culture. Tsetse transmission also allows for the natural transition between different developmental stages to be studied.Both wild-type and genetically modified trypanosomes have been successfully fly transmitted, and it is possible to manipulate the trypanosome environment inside the fly to some extent, for example, the induction of expression of genes controlled by the Tet repressor by feeding flies with tetracycline.
Collapse
Affiliation(s)
- Lori Peacock
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK
| | - Wendy Gibson
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Andreani A, Sacchetti P, Belcari A. Comparative morphology of the deer ked Lipoptena fortisetosa first recorded from Italy. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:140-153. [PMID: 30478849 DOI: 10.1111/mve.12342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/25/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
Hippoboscidae flies parasitize various animal species. Knowledge about these insects remains sparse, although they are known to cause stress and damage to their hosts, and can also accidentally infest humans, causing different sanitary risks. Research conducted in Tuscany assessing the biology and distribution of Lipoptena cervi (Linnaeus, 1758) (Diptera: Hippoboscidae), the most common ectoparasite of ungulates in Italy, revealed the presence of Lipoptena fortisetosa Maa, 1965 in Italy for the first time. This study includes a morphological comparative description of L. cervi and L. fortisetosa, emphasizing the peculiar differences between the two species to facilitate their accurate identification. The most pertinent morphological differences between the two species are highlighted, such as the external features of the antennae, distribution of bristles, and different features in the external genitalia. In both species, scanning electron microscopy of mouthparts revealed strong adaptive convergence in the feeding apparatus. Modified palps and a very thin proboscis are described in relation to feeding behaviour.
Collapse
Affiliation(s)
- A Andreani
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
| | - P Sacchetti
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
| | - A Belcari
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
| |
Collapse
|
9
|
Krüger T, Schuster S, Engstler M. Beyond Blood: African Trypanosomes on the Move. Trends Parasitol 2018; 34:1056-1067. [DOI: 10.1016/j.pt.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
|
10
|
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Front Immunol 2018; 9:2253. [PMID: 30333827 PMCID: PMC6175991 DOI: 10.3389/fimmu.2018.02253] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and T. equiperdum, (iii) Trypanosoma congolense and (iv) Trypanosoma vivax. Infections with these parasites are marked by excessive immune dysfunction and immunopathology, both related to prolonged inflammatory host immune responses. Here we review the classification and global distribution of these parasites, highlight the adaptation of human infective trypanosomes that allow them to survive innate defense molecules unique to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction of trypanosomes in the tsetse vector. With respect to the immunology of mammalian host-parasite interactions, the review highlights recent findings with respect to the B cell destruction capacity of trypanosomes and the role of T cells in the governance of infection control. Understanding infection-associated dysfunction and regulation of both these immune compartments is crucial to explain the continued failures of anti-trypanosome vaccine developments as well as the lack of any field-applicable vaccine based anti-trypanosomosis intervention strategy. Finally, the link between infection-associated inflammation and trypanosomosis induced anemia is covered in the context of both livestock and human infections.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Nick Vereecke
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Deleeuw
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joar Pinto
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|