1
|
Bergevin MD, Ng V, Ludwig A, Sadeghieh T, Menzies P, Mubareka S, Clow KM. A Scoping Review on the Epidemiology of Orthobunyaviruses of Canadian Public and Animal Health Relevance in the Context of Vector Species. Vector Borne Zoonotic Dis 2024; 24:564-577. [PMID: 38687337 DOI: 10.1089/vbz.2023.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background: Mosquito-borne orthobunyaviruses are a growing priority for public and animal health in Canada. It is anticipated that disease incidence will increase due to a warming climate, given that habitats are expanding for reservoir hosts and vectors, particularly in Canada. Little is known about the ecology of primary vectors that perpetuate these orthobunyaviruses, including the viral transmission cycle and the impact of climatic and landscape factors. Methods: A scoping review was conducted to describe the current state of knowledge on the epidemiology of orthobunyaviruses relevant to Canada. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines was used to characterize studies focused on vector species. A literature search was conducted in six databases and gray literature. Eligible studies characterized orthobunyavirus epidemiology related to vector species, including viral competency, geospatial distributions, seasonal trends, and/or risk factors. Results: A total of 1734 unique citations were identified. Screening of these citations revealed 172 relevant studies, from which 87 studies presented primary data related to vectors. The orthobunyaviruses included Cache Valley virus (CVV), Jamestown Canyon virus (JCV), Snowshoe Hare virus (SHV), and La Crosse virus (LACV). Surveillance was the predominant study focus, with most citations representing the United States, specifically, LACV surveillance in Tennessee, followed by CVV and JCV in Connecticut. Orthobunyaviruses were detected in many mosquito species across multiple genera, with high vector specificity only being reported for LACV, which included Aedes triseriatus, Aedes albopictus, and Aedes japonicus. Peridomestic areas were positively associated with infected mosquitoes compared with dense forests. Orthobunyavirus infections, coinfections, and gut microbiota affected mosquito feeding and breeding behavior. Conclusion: Knowledge gaps included Canadian surveillance data, disease modeling, and risk projections. Further research in these areas, especially accounting for climate change, is needed to guide health policy for prevention of orthobunyaviral disease.
Collapse
Affiliation(s)
- Michele D Bergevin
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Victoria Ng
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Guelph, Canada
| | - Antoinette Ludwig
- National Microbiology Laboratory Branch, Public Health Agency of Canada, St. Hyacinthe, Canada
| | - Tara Sadeghieh
- Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Canada
| | - Paula Menzies
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
2
|
Gierek M, Ochała-Gierek G, Woźnica AJ, Zaleśny G, Jarosz A, Niemiec P. Winged Threat on the Offensive: A Literature Review Due to the First Identification of Aedes japonicus in Poland. Viruses 2024; 16:703. [PMID: 38793584 PMCID: PMC11125806 DOI: 10.3390/v16050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genetic studies preceded by the observation of an unknown mosquito species in Mikołów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical presence, raising concerns about potential disease transmission given its vector competence for chikungunya virus, dengue virus, West Nile virus, and Zika virus. This first genetically confirmed identification of Ae. japonicus in Poland initiates a comprehensive review of the literature on Ae. japonicus, its biology and ecology, and the viral infections transmitted by this species. This paper also presents the circumstances of the observation of Ae. japonicus in Poland and a methodology for identifying this species.
Collapse
Affiliation(s)
- Marcin Gierek
- Center for Burns Treatment, 41-100 Siemianowice Śląskie, Poland;
| | | | - Andrzej Józef Woźnica
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Grzegorz Zaleśny
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| |
Collapse
|
3
|
Turner EA, Christofferson RC. Exploring the transmission modalities of Bunyamwera virus. Exp Biol Med (Maywood) 2024; 249:10114. [PMID: 38510492 PMCID: PMC10954195 DOI: 10.3389/ebm.2024.10114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024] Open
Abstract
Bunyamwera virus (BUNV) (Bunyamwera orthobunyavirus) has been found in Sub-Saharan Africa and demonstrated recently as cocirculating with Rift Valley Fever Virus (RVFV). Little is known regarding the breadth of transmission modalities of Bunyamwera. Given its co-occurence with RVFV, we hypothesized the transmission system of BUNV shared similarities to the RVFV system including transmission by Ae. aegypti mosquitoes and environmentally mediated transmission through fomites and environmental contamination. We exposed Ae. aegypti mosquitoes to BUNV and evaluated their ability to transmit both vertically and horizontally. Further, we investigated the potential for a novel transmission modality via environmental contamination. We found that the LSU colony of Ae. aegypti was not competent for the virus for either horizontal or vertical transmission; but, 20% of larva exposed to virus via contaminated aquatic habitat were positive. However, transstadial clearance of the virus was absolute. Finally, under simulated temperature conditions that matched peak transmission in Rwanda, we found that BUNV was stable in both whole blood and serum for up to 28 days at higher total volume in tubes at moderate quantities (103-5 genome copies/mL). In addition, infectiousness of these samples was demonstrated in 80% of the replicates. At lower volume samples (in plates), infectiousness was retained out to 6-8 days with a maximum infectious titer of 104 PFU/mL. Thus, the potential for contamination of the environment and/or transmission via contaminated fomites exists. Our findings have implications for biosafety and infection control, especially in the context of food animal production.
Collapse
|
4
|
Bisia M, Montenegro-Quinoñez CA, Dambach P, Deckert A, Horstick O, Kolimenakis A, Louis VR, Manrique-Saide P, Michaelakis A, Runge-Ranzinger S, Morrison AC. Secondary vectors of Zika Virus, a systematic review of laboratory vector competence studies. PLoS Negl Trop Dis 2023; 17:e0011591. [PMID: 37651473 PMCID: PMC10499269 DOI: 10.1371/journal.pntd.0011591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND After the unprecedented Zika virus (ZIKV) outbreak in the western hemisphere from 2015-2018, Aedes aegypti and Ae. albopictus are now well established primary and secondary ZIKV vectors, respectively. Consensus about identification and importance of other secondary ZIKV vectors remain. This systematic review aims to provide a list of vector species capable of transmitting ZIKV by reviewing evidence from laboratory vector competence (VC) studies and to identify key knowledge gaps and issues within the ZIKV VC literature. METHODS A search was performed until 15th March 2022 on the Cochrane Library, Lilacs, PubMed, Web of Science, WHOLIS and Google Scholar. The search strings included three general categories: 1) "ZIKA"; 2) "vector"; 3) "competence", "transmission", "isolation", or "feeding behavior" and their combinations. Inclusion and exclusion criteria has been predefined and quality of included articles was assessed by STROBE and STROME-ID criteria. FINDINGS From 8,986 articles retrieved, 2,349 non-duplicates were screened by title and abstracts,103 evaluated using the full text, and 45 included in this analysis. Main findings are 1) secondary vectors of interest include Ae. japonicus, Ae. detritus, and Ae. vexans at higher temperature 2) Culex quinquefasciatus was not found to be a competent vector of ZIKV, 3) considerable heterogeneity in VC, depending on the local mosquito strain and virus used in testing was observed. Critical issues or gaps identified included 1) inconsistent definitions of VC parameters across the literature; 2) equivalency of using different mosquito body parts to evaluate VC parameters for infection (mosquito bodies versus midguts), dissemination (heads, legs or wings versus salivary glands), and transmission (detection or virus amplification in saliva, FTA cards, transmission to neonatal mice); 3) articles that fail to use infectious virus assays to confirm the presence of live virus; 4) need for more studies using murine models with immunocompromised mice to infect mosquitoes. CONCLUSION Recent, large collaborative multi-country projects to conduct large scale evaluations of specific mosquito species represent the most appropriate approach to establish VC of mosquito species.
Collapse
Affiliation(s)
- Marina Bisia
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Carlos Alberto Montenegro-Quinoñez
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Instituto de Investigaciones, Centro Universitario de Zacapa, Universidad de San Carlos de Guatemala, Zacapa, Guatemala
| | - Peter Dambach
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Andreas Deckert
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Olaf Horstick
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Antonios Kolimenakis
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Valérie R. Louis
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos (UCBE), Universidad Autónoma de Yucatán, Mérida, México
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Silvia Runge-Ranzinger
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
5
|
Gloria-Soria A, Brackney DE, Armstrong PM. Saliva collection via capillary method may underestimate arboviral transmission by mosquitoes. Parasit Vectors 2022; 15:103. [PMID: 35331315 PMCID: PMC8944160 DOI: 10.1186/s13071-022-05198-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Arthropod-borne viruses (arboviruses) impose a major health and economic burden on human populations globally, with mosquitoes serving as important vectors. Measuring the ability of a mosquito population to transmit an arbovirus is important in terms of evaluating its public health risk. In the laboratory, a variety of methods are used to estimate arboviral transmission by mosquitoes, including indirect methods involving viral detection from mosquito saliva collected by forced salivation. The accuracy of indirect methods to estimate arbovirus transmission to live animal hosts has not been fully evaluated. METHODS We compared three commonly used proxies of arboviral transmission, namely, the presence of virus in mosquito legs, in salivary glands (SG) and in saliva collected in capillary tubes using forced salivation, with direct transmission estimates from mosquitoes to suckling mice. We analyzed five vector-virus combinations, including Aedes aegypti infected with chikungunya virus, West Nile virus and Zika virus; Culex quinquefasciatus infected with West Nile virus; and Aedes triseriatus infected with La Crosse virus. RESULTS Comparatively, the methods of detecting virus infection in mosquito legs and in SG were equally accurate in predicting transmission. Overall, the presence of virus in mosquito legs was a more accurate predictor of transmission than the commonly implemented viral detection method using forced salivation into a capillary tube, and was subject to less technical variation. CONCLUSIONS These results suggest that, in general, forced salivation methods tend to underestimate virus transmission, and they provide confidence in the use of mosquito leg screens to evaluate the transmission potential of a mosquito population.
Collapse
Affiliation(s)
- A. Gloria-Soria
- Center for Vector Biology & Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06504 USA
| | - D. E. Brackney
- Center for Vector Biology & Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06504 USA
| | - P. M. Armstrong
- Center for Vector Biology & Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06504 USA
| |
Collapse
|
6
|
Dieme C, Maffei JG, Diarra M, Koetzner CA, Kuo L, Ngo KA, Dupuis AP, Zink SD, Bryon Backenson P, Kramer LD, Ciota AT. Aedes albopictus and Cache Valley virus: a new threat for virus transmission in New York State. Emerg Microbes Infect 2022; 11:741-748. [PMID: 35179429 PMCID: PMC8903793 DOI: 10.1080/22221751.2022.2044733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7–62.1% transmission rates) and CVV 15041084 (27.3–48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.
Collapse
Affiliation(s)
- Constentin Dieme
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Joseph G Maffei
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Maryam Diarra
- Institut Pasteur de Dakar, Dakar, Senegal (M. Diarra)
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Kiet A Ngo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Steven D Zink
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York (P.B. Backenson)
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| |
Collapse
|
7
|
Laredo-Tiscareño SV, Garza-Hernandez JA, Rodríguez-Alarcón CA, Adame-Gallegos JR, Beristain-Ruiz DM, Barajas-López IN, González-Peña R, Baylon-Jaquez D, Camacho-Perea A, Vega-Durán A, Rubio-Tabares E, Rivera-Barreno R, Montelongo-Ponce C, Tangudu CS, Blitvich BJ. Detection of Antibodies to Lokern, Main Drain, St. Louis Encephalitis, and West Nile Viruses in Vertebrate Animals in Chihuahua, Guerrero, and Michoacán, Mexico. Vector Borne Zoonotic Dis 2021; 21:884-891. [PMID: 34652234 DOI: 10.1089/vbz.2021.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We conducted serologic surveillance for flaviviruses and orthobunyaviruses in vertebrate animals in Mexico in 2018-2019. Sera were collected from 856 vertebrate animals, including 323 dogs, 223 horses, and 121 cows, from 16 species. The animals were from 3 states: Chihuahua in northwest Mexico (704 animals) and Guerrero and Michoacán on the Pacific Coast (27 and 125 animals, respectively). Sera were assayed by plaque reduction neutralization test using four flaviviruses (dengue type 2, St. Louis encephalitis, West Nile, and Zika viruses) and six orthobunyaviruses from the Bunyamwera (BUN) serogroup (Cache Valley, Lokern, Main Drain, Northway, Potosi, and Tensaw viruses). Antibodies to West Nile virus (WNV) were detected in 154 animals of 9 species, including 89 (39.9%) horses, 3 (21.4%) Indian peafowl, and 41 (12.7%) dogs. Antibodies to St. Louis encephalitis virus (SLEV) were detected in seven animals, including three (0.9%) dogs. Antibodies to Lokern virus (LOKV) were detected in 22 animals: 19 (8.5%) horses, 2 (1.7%) cows, and a dog (0.3%). Antibodies to Main Drain virus (MDV) were detected in three (1.3%) horses. WNV and LOKV activity was detected in all three states, SLEV activity was detected in Chihuahua and Michoacán, and MDV activity was detected in Chihuahua. None of the animals was seropositive for Cache Valley virus, the most common and widely distributed BUN serogroup virus in North America. In conclusion, we provide serologic evidence that select flaviviruses and BUN serogroup viruses infect vertebrate animals in Chihuahua, Guerrero, and Michoacán. We also provide the first evidence of LOKV and MDV activity in Mexico.
Collapse
Affiliation(s)
| | - Javier A Garza-Hernandez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Carlos A Rodríguez-Alarcón
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | | | - Diana M Beristain-Ruiz
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | | | | | - David Baylon-Jaquez
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Adriana Camacho-Perea
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Alfonso Vega-Durán
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Ezequiel Rubio-Tabares
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Ramón Rivera-Barreno
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Carolina Montelongo-Ponce
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
McIntire KM, Juliano SA. Detrimental effects of a failed infection by a co-invasive parasite on a native congeneric parasite and its native host. Biol Invasions 2021; 23:1637-1648. [DOI: 10.1007/s10530-021-02464-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|