1
|
Cintra AM, Noda-Nicolau NM, Soman MLDO, Affonso PHDA, Valente GT, Grotto RMT. The Main Arboviruses and Virus Detection Methods in Vectors: Current Approaches and Future Perspectives. Pathogens 2025; 14:416. [PMID: 40430737 DOI: 10.3390/pathogens14050416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Arthropod-borne viruses (arboviruses) represent a growing concern for global public and veterinary health, with cases reported across all continents. This review presents a broad overview of the geographic distribution of arboviruses transmitted by insect vectors, emphasizing the importance of early viral detection as a cornerstone of surveillance and outbreak preparedness. Special attention is given to the phenomenon of zoonotic spillover, where viruses maintained in natural transmission cycles often involving wildlife reservoirs and arthropod vectors cross into human populations, triggering emergent or re-emergent outbreaks. This article discusses key arboviral families of medical and veterinary significance, including Togaviridae, Flaviviridae, Nairoviridae, Phenuiviridae, Peribunyaviridae, and Orthomyxoviridae, highlighting their molecular and structural characteristics. These features are essential for guiding the development and implementation of specific and sensitive detection strategies. In addition, this work provides a comparative analysis of diverse laboratory methodologies for viral detection in vectors. From serological assays and viral isolation to advanced molecular tools and next-generation sequencing, we explore their principles, practical applications, and context-dependent advantages and limitations. By compiling this information, we aim to support researchers and public health professionals in selecting the most appropriate tools for vector surveillance, ultimately contributing to improved response strategies in the face of arboviral threats.
Collapse
Affiliation(s)
- Amanda Montezano Cintra
- Multiuser Central Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Nathália Mayumi Noda-Nicolau
- Multiuser Central Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Milena Leite de Oliveira Soman
- Multiuser Central Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | | | - Guilherme Targino Valente
- Clinical Hospital of School Medicine of São Paulo State University, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Rejane Maria Tommasini Grotto
- Multiuser Central Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
- Clinical Hospital of School Medicine of São Paulo State University, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| |
Collapse
|
2
|
Mojica J, Arévalo V, Juarez JG, Galarza X, Gonzalez K, Carrazco A, Suazo H, Harris E, Coloma J, Ponce P, Balmaseda A, Cevallos V. A numbers game: mosquito-based arbovirus surveillance in two distinct geographic regions of Latin America. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:220-224. [PMID: 39308414 PMCID: PMC11735261 DOI: 10.1093/jme/tjae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of 1 year of Aedes ageypti (Linnaeus, 1762) mosquito-based arbovirus surveillance in 2 geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from 8 distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time reverse transcription-polymerase chain reaction. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.
Collapse
Affiliation(s)
- Jacqueline Mojica
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Jose G Juarez
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Ximena Galarza
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Karla Gonzalez
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Andrés Carrazco
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Harold Suazo
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Josefina Coloma
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Angel Balmaseda
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| |
Collapse
|
3
|
Mojica J, Arévalo V, Juarez JG, Galarza X, Gonzalez K, Carrazco A, Suazo H, Harris E, Coloma J, Ponce P, Balmaseda A, Cevallos V. A numbers game: Mosquito-based arbovirus surveillance in two distinct geographic regions of Latin America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585246. [PMID: 38562865 PMCID: PMC10983856 DOI: 10.1101/2024.03.15.585246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of one year of mosquito-based arbovirus surveillance in two geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from eight distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time RT-PCR. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.
Collapse
Affiliation(s)
| | - Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | | | - Ximena Galarza
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | | | - Andrés Carrazco
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Harold Suazo
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | | | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| |
Collapse
|
4
|
Hien AS, Sangaré I, Ouattara ELP, Sawadogo SP, Soma DD, Maiga H, Diabaté A, Bonnet E, Ridde V, Fournet F, Hawkes FM, Kaupra C, Bouyer J, Abd-Alla AMM, Dabiré RK. Chikungunya (Togaviridae) and dengue 2 (Flaviviridae) viruses detected from Aedes aegypti mosquitoes in Burkina Faso by qRT-PCR technique: Preliminary results and perspective for molecular characterization of arbovirus circulation in vector populations. FRONTIERS IN TROPICAL DISEASES 2022; 3. [DOI: 10.3389/fitd.2022.920224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In 2016, an entomological study was carried out in a railway transect between Banfora and Ouagadougou, Burkina Faso. The objective was to assess the risk factors of arbovirus outbreaks, including vector-borne infection status within representative regions of the country. Aedes aegypti mosquitoes were collected at the larval stage from their natural rearing habitats in four study sites when estimating the main larval index, then reared until adult stage and kept in RNAlater for the detection of arbovirus RNA. In the laboratory, mosquito samples were tested for dengue virus (DENV) and Chikungunya virus (CHIKV) using a real-time qRT-PCR stage. A DENV-2 positive pool was detected in Ouagadougou with a minimum infection rate (MIR) of 16.67 and other six CHIKV-positive pools with a MIR of 66.67 in Ouagadougou, Banfora, and Boromo. This qRT-PCR approach, if validated with various samples also comprising wild blood-fed adults, is a useful tool for arbovirus circulation and disease monitoring in Burkina Faso.
Collapse
|
5
|
Group-size effects on virus prevalence depend on the presence of an invasive species. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03040-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|