1
|
Amaya-Mejia W, Pavan L, Lilly M, Swei A, Dirzo R, Sehgal RNM. Determinants of vector-borne avian pathogen occurrence in a mosaic of habitat fragmentation in California. Parasit Vectors 2025; 18:110. [PMID: 40089710 PMCID: PMC11909916 DOI: 10.1186/s13071-025-06742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND As habitat fragmentation increases, ecological processes, including patterns of vector-borne pathogen prevalence, will likely be disrupted, but ongoing investigations are necessary to examine this relationship. Here, we report the differences in the prevalence of Lyme disease (Borrelia burgdorferi sensu lato, s.l.) and haemoproteosis (Haemoproteus spp.) pathogens in avian populations of a fragmented habitat. B. burgdorferi s.l. is a generalist pathogen that is transmitted by Ixodes pacificus vectors in California, and Haemoproteus is an avian parasite transmitted by Culicoides vectors. METHODS To determine whether biotic (avian and mammalian abundance) or abiotic characteristics (patch size and water availability) correlated with infection prevalence change, we screened 176 birds sampled across seven sites in oak woodland habitat in northern California. RESULTS While biotic factors correlated with an increase in both pathogens, infection prevalence of Haemoproteus spp. was only associated with individual-level traits, specifically foraging substrate and diet, and B. burgdorferi s.l. was associated with community-level characteristics, both total mammal and, specifically, rodent abundance. Proximity to water was the only abiotic factor found to be significant for both pathogens and reinforces the importance of water availability for transmission cycles. Larger patch sizes did not significantly affect infection prevalence of Haemoproteus, but did increase the prevalence of B. burgdorferi. CONCLUSIONS These results highlight that while environmental factors (specifically habitat fragmentation) have a limited role in vector-borne pathogen prevalence, the indirect impact to biotic factors (community composition) can have consequences for both Haemoproteus and B. burgdorferi prevalence in birds. Given the pervasiveness of habitat fragmentation, our results are of broad significance.
Collapse
Affiliation(s)
- Wilmer Amaya-Mejia
- University of California, Los Angeles, California, USA.
- San Francisco State University, San Francisco, California, USA.
| | - Lucas Pavan
- Stanford University, Stanford, California, USA.
| | - Marie Lilly
- Columbia University, New York, New York, USA
- San Francisco State University, San Francisco, California, USA
| | - Andrea Swei
- San Francisco State University, San Francisco, California, USA
| | | | | |
Collapse
|
2
|
Slama D, Essid R, Sghaier S, Babba H. Host blood meal analysis of Culicoides oxystoma (Diptera: Ceratopogonidae) in Tunisia. Parasitol Res 2025; 124:27. [PMID: 40042621 PMCID: PMC11882646 DOI: 10.1007/s00436-025-08471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Culicoides are small hematophagous biting midges belonging to the family Ceratopogonidae. The genus is distributed worldwide yet remains poorly studied. This study investigated the vector and host specificity of Culicoides oxystoma, a species of significant relevance to the surveillance of vector-borne diseases in Tunisia and globally. The research was conducted in two Tunisian governments: Tozeur and Kairouan. A total of 24,366 adult midges were collected using two types of suction traps: the Center for Disease Control trap and the Onderstepoort Veterinary Institute trap. Females of Culicoides oxystoma were isolated, carefully dissected, and slide mounted in a phenol alcohol balsam mixture. A portion of the abdomen was excised for total DNA extraction to identify the origin of the blood meal. A total of 108 engorged females were analyzed using polymerase chain reaction (PCR) to amplify specific fragments of the cytochrome b gene, followed by sequencing and sequence analysis. However, DNA sequences were successfully obtained for only 56 individuals. Sequence analysis revealed that the midges fed on a variety of mammalian hosts, including humans, with a prevalence of Mus musculus and Bos taurus. This represents the first study aiming to identify a wide range of hosts in Tunisia and North Africa, providing valuable insights into the hosts utilized by Culicoides oxystoma for blood feeding.
Collapse
Affiliation(s)
- Darine Slama
- Faculté de Pharmacie, Laboratory of Parasitology-Mycology Medical and Molecular, Université de Monastir, LR12ES085000, Monastir, Tunisia
| | - Rania Essid
- Faculté de Pharmacie, Laboratory of Parasitology-Mycology Medical and Molecular, Université de Monastir, LR12ES085000, Monastir, Tunisia
| | - Soufien Sghaier
- Food and Agriculture Organization (FAO), Subregional Office for North Africa, Les Berges du Lac 1, 1053, Tunis, Tunisia
| | - Hamouda Babba
- Faculté de Pharmacie, Laboratory of Parasitology-Mycology Medical and Molecular, Université de Monastir, LR12ES085000, Monastir, Tunisia.
- Laboratory of the Maternity, Neonatology Center of Monastir, Monastir, Tunisia.
| |
Collapse
|
3
|
Kyi Soe B, Kaewmee S, Mano C, Pattanawong U, Tipparawong N, Siriyasatien P, Gatherer D, Urbaniak MD, Bates PA, Jariyapan N. Molecular detection of parasites and host preference in wild-caught Culicoides biting midges (Diptera: Ceratopogonidae) in Chiang Mai and Nakhon Si Thammarat Provinces, Thailand. Parasite 2025; 32:2. [PMID: 39840894 PMCID: PMC11752737 DOI: 10.1051/parasite/2024082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) have been reported as potential vectors for haemoparasites. Information about host-vector-parasite specificity is required to confirm their status. Here, molecular detection of haemosporidians, Leishmania, trypanosomatids, and filarial nematodes in biting midges was conducted to understand their potential role as vectors, and their host preference was determined. Wild-caught biting midges were collected from six different localities of Chiang Mai and Nakhon Si Thammarat provinces, Thailand. A total of 6,578 individual Culicoides (170 males, 6,408 females) comprising 15 species of six sub-genera and two groups were collected. Also, 738 parous females and 29 engorged females were examined for parasites and host blood meals, respectively. Culicoides arakawae, C. mahasarakhamense, C. peregrinus and C. innoxius in Chiang Mai province, and C. innoxius and C. peregrinus in Nakhon Si Thammarat province were the most dominant species. Leucocytozoon spp., Leucocytozoon caulleryi and Plasmodium juxtanucleare were identified in five Culicoides species including C. mahasarakhamense, C. arakawae, C. oxystoma, C. fulvus, and C. guttifer. This study is the first record of L. caulleryi in the biting midge C. arakawae in Thailand. Blood meal analysis revealed that Culicoides primarily fed on cattle (17/29, 58.6%), followed by chickens (10/29, 34.5%), and humans (2/29, 6.9%). Our findings confirmed the existence of several Culicoides species in Thailand, which might be potential vectors for transmission of haemosporidians (Leucocytozoon and Plasmodium). Information from host blood meal analyses underlined their preference for large mammals, followed by domestic chickens. More anthropophilic Culicoides species remain to be discovered.
Collapse
Affiliation(s)
- Baby Kyi Soe
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| | - Saowalak Kaewmee
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| | - Chonlada Mano
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| | - Nopporn Tipparawong
- Department of Pathology, King Chulalongkorn Memorial Hospital Bangkok 10330 Thailand
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| | - Derek Gatherer
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University Lancaster LA1 4YG United Kingdom
| | - Michael D. Urbaniak
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University Lancaster LA1 4YG United Kingdom
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University Lancaster LA1 4YG United Kingdom
| | - Narissara Jariyapan
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
4
|
Hanekom J, Ebersohn K, Penzhorn L, Quan M, Leisewitz A, Guthrie A, Fosgate GT. Bluetongue Virus Infection in Farm Dogs Exposed to an Infected Sheep Flock in South Africa. Transbound Emerg Dis 2024; 2024:2446398. [PMID: 40303113 PMCID: PMC12016953 DOI: 10.1155/2024/2446398] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 05/02/2025]
Abstract
In 2021, a pregnant Rottweiler dog living on a sheep farm was diagnosed with clinical bluetongue (BT) infection. This study reports on the investigation of this farm where bluetongue virus (BTV) infection was diagnosed in this atypical host species. Samples were collected during farm visits 14, 28, 60, and 89 days after the onset of clinical signs in the pregnant Rottweiler. Blood was collected from all farm dogs (n = 6) and tested for BTV genome using a reverse-transcriptase quantitative PCR (RT-qPCR) assay and BTV antibodies with the competitive ELISA (cELISA) and dogs positive by RT-qPCR were further tested using virus neutralization (VN) serological testing. Blood was also collected from 16 sick sheep and tested using RT-qPCR. Midges were trapped on the study farm using an Onderstepoort UV light trap placed above a sheep pen for 36 hr at the first farm (14 days) visit. Parous/gravid midges were tested by BTV RT-qPCR in batches of up to 200 midges per species. Blood-fed midges (n = 308) were tested using a PCR species probe (KAPA Multiplex Master Mix) to identify the host species on which the midge had fed. Three dogs (n = 3/6) had detectable BTV RNA with RT-qPCR and high VN antibody titers to BTV. All RT-qPCR-positive dogs and one additional dog tested cELISA seropositive (n = 4/6). Bluetongue virus RNA was detected in 5/16 sheep tested. The most abundant midge species was Culicoides imicola (99.3%) and BTV was only detected in this species (n = 3/4 batches of 200 parous midges). Dog blood was not detected in any blood-fed midges tested. The occurrence of natural BT viraemia in exposed dogs creates a potential risk of BTV entry into BT-free countries through dog importation. It remains unclear whether BT viremia in dogs is capable of onward transmission.
Collapse
Affiliation(s)
- Josef Hanekom
- Companion Animal Clinical StudiesUniversity of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
| | - Karen Ebersohn
- Department of Tropical DiseasesUniversity of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
| | - Lisa Penzhorn
- Equine Research CenterUniversity of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
| | - Melvyn Quan
- Department of Tropical DiseasesUniversity of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
| | - Andrew Leisewitz
- Companion Animal Clinical StudiesUniversity of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
- University of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
| | - Alan Guthrie
- Equine Research CenterUniversity of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
| | - Geoffrey T. Fosgate
- Production Animal StudiesUniversity of PretoriaFaculty of Veterinary Science, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
5
|
Ogola EO, Bastos ADS, Slothouwer I, Getugi C, Osalla J, Omoga DCA, Ondifu DO, Sang R, Torto B, Junglen S, Tchouassi DP. Viral diversity and blood-feeding patterns of Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae). Front Microbiol 2024; 14:1325473. [PMID: 38249470 PMCID: PMC10797016 DOI: 10.3389/fmicb.2023.1325473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of arboviral pathogens that primarily affect livestock represented by Schmallenberg virus (SBV), epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV). In Kenya, studies examining the bionomic features of Culicoides including species diversity, blood-feeding habits, and association with viruses are limited. Methods Adult Culicoides were surveyed using CDC light traps in two semi-arid ecologies, Baringo and Kajiado counties, in Kenya. Blood-fed specimens were analysed through polymerase chain reaction (PCR) and sequencing of cytochrome oxidase subunit 1 (cox1) barcoding region. Culicoides pools were screened for virus infection by generic RT-PCR and next-generation sequencing (NGS). Results Analysis of blood-fed specimens confirmed that midges had fed on cattle, goats, sheep, zebra, and birds. Cox1 barcoding of the sampled specimens revealed the presence of known vectors of BTV and epizootic hemorrhagic disease virus (EHDV) including species in the Imicola group (Culicoides imicola) and Schultzei group (C. enderleni, C. kingi, and C. chultzei). Culicoides leucostictus and a cryptic species distantly related to the Imicola group were also identified. Screening of generated pools (11,006 individuals assigned to 333 pools) by generic RT-PCR revealed presence of seven phylogenetically distinct viruses grouping in the genera Goukovirus, Pacuvirus and Orthobunyavirus. The viruses showed an overall minimum infection rate (MIR) of 7.0% (66/333, 95% confidence interval (CI) 5.5-8.9). In addition, full coding sequences of two new iflaviruses, tentatively named Oloisinyai_1 and Oloisinyai_2, were generated by next-generation sequencing (NGS) from individual homogenate of Culicoides pool. Conclusion The results indicate a high genetic diversity of viruses in Kenyan biting midges. Further insights into host-vector-virus interactions as well as investigations on the potential clinical significance of the detected viruses are warranted.
Collapse
Affiliation(s)
- Edwin O. Ogola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Inga Slothouwer
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Caroline Getugi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Josephine Osalla
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dorcus C. A. Omoga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dickens O. Ondifu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
6
|
González MA, Bravo-Barriga D, López-Mercadal J, Miranda MÁ, Gutiérrez-López R, Barceló C. First report of Culicoides caucoliberensis in Spain: Exploring molecular phylogeny, host-feeding behaviour and avian haemosporidian parasites. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:871-877. [PMID: 37458405 DOI: 10.1111/mve.12679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 11/08/2023]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of pathogens that affect wildlife and livestock. Understanding the composition and distribution of vector species is crucial for implementing control strategies and preventing the spread of infectious diseases. This study provides a morphological and molecular characterisation of Culicoides caucoliberensis, which represents the first record for Spain, increasing the number of Culicoides species in the country to 85. A total of 213 specimens were collected using Onderstepoort-ultraviolet down-draught light traps on a rocky coastline in the Balearic Islands during two sampling periods in 2022. Phylogenetic analysis showed that C. caucoliberensis forms a monophyletic cluster within the Maritimus group. Host preferences were determined for the first time and showed propensity to feed on the European shag (Phalacrocorax aristotelis). The vector role of C. caucoliberensis for haemosporidian transmission remains unclear since molecular detection of Haemosporidians (Haemoproteus and Plasmodium) was negative for all the pools of parous and engorged females analysed. This study emphasises the importance of conducting entomofauna studies in lesser-known Mediterranean islet landscapes and highlights the need for research on vectors within the One Health framework.
Collapse
Affiliation(s)
- Mikel A González
- Department of Wetland Ecology, Biological Station of Doñana (EBD-CSIC), Sevilla, Spain
- Applied Zoology and Animal Conservation, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Daniel Bravo-Barriga
- Faculty of Veterinary, Department of Animal Health, Parasitology, University of Extremadura, Cáceres, Spain
| | - Júlia López-Mercadal
- Applied Zoology and Animal Conservation, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Miguel Ángel Miranda
- Applied Zoology and Animal Conservation, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Rafael Gutiérrez-López
- Applied Zoology and Animal Conservation, University of the Balearic Islands, Palma de Mallorca, Spain
- Animal Health Research Center, National Food and Agriculture Research and Technology Institute (INIA-CISA-CSIC), Valdeolmos, Spain
| | - Carlos Barceló
- Applied Zoology and Animal Conservation, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
7
|
Kamyingkird K, Choocherd S, Chimnoi W, Klinkaew N, Kengradomkij C, Phoosangwalthong P, Thammasonthijarern N, Pattanatanang K, Inpankaew T, Phasuk J, Nimsuphan B. Molecular Identification of Culicoides Species and Host Preference Blood Meal in the African Horse Sickness Outbreak-Affected Area in Hua Hin District, Prachuap Khiri Khan Province, Thailand. INSECTS 2023; 14:369. [PMID: 37103184 PMCID: PMC10141043 DOI: 10.3390/insects14040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
African horse sickness (AHS) was reported as an outbreak in Thailand in 2020. Hematophagous insects from the genus Culicoides are the suspected vector responsible for AHS transmission. Horses in Hua Hin district, Prachuab Khiri Khan province, Thailand, were affected and died from AHS in 2020. However, the potential Culicoides species and its host preference blood meal in the affected areas are unknown. To investigate the potential vectors of AHS, Culicoides were collected using ultraviolet light traps placed near horse stables. Six horse farms, including five farms with AHS history and one farm without AHS history, were included in this study. Morphological and molecular identification of the Culicoides species was performed. Polymerase chain reaction (PCR) targeting the cytochrome b oxidase I (COXI) gene for confirmation of the Culicoides species, identification of the prepronociceptin (PNOC) gene for host preference blood meal, and bidirectional sequencing were conducted. Consequently, 1008 female Culicoides were collected, consisting of 708 and 300 samples captured at positions A and B at a distance of <2 and >5 m from the horse, respectively. Twelve Culicoides species identified by morphology were noted, including C. oxystoma (71.92%), C. imicola (20.44%), C. actoni (2.28%), C. flavipunctatus (1.98%), C. asiana (0.99%), C. peregrinus (0.60%), C. huffi (0.60%), C. brevitarsis (0.40%), C. innoxius (0.30%), C. histrio (0.30%), C. minimus (0.10%), and C. geminus (0.10%). The PCR detection of the Culicoides COXI gene confirmed Culicoides species in 23 DNA samples. PCR targeting the PNOC gene revealed that the Culicoides collected in this study fed on Equus caballus (86.25%), Canis lupus familiaris (6.25%), Sus scrofa (3.75%), and Homo sapiens (3.75%) for their blood meal. Human blood was identified from two samples of C. oxystoma and a sample of C. imicola. Three dominant species including C. oxystoma, C. imicola, and C. actoni that were reported in the Hua Hin area prefer to feed on horse blood. Moreover, C. oxystoma, C. imicola, and C. bravatarsis also feed on canine blood. This study revealed the species of Culicoides in Hua Hin district, Thailand, after the AHS outbreak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Burin Nimsuphan
- Correspondence: (J.P.); (B.N.); Tel.: +66-02-942-8438 (J.P.)
| |
Collapse
|
8
|
Bellekom B, Bailey A, England M, Langlands Z, Lewis OT, Hackett TD. Effects of storage conditions and digestion time on DNA amplification of biting midge (Culicoides) blood meals. Parasit Vectors 2023; 16:13. [PMID: 36635709 PMCID: PMC9837887 DOI: 10.1186/s13071-022-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Molecular analysis of blood meals is increasingly used to identify the hosts of biting insects such as midges and mosquitoes. Successful host identification depends on the availability of sufficient host DNA template for PCR amplification, making it important to understand how amplification success changes under different storage conditions and with different durations of blood meal digestion within the insect gut before being placed into the storage medium. METHOD We characterised and compared the digestion profile of two species of Culicoides over a 96-h period using a novel set of general vertebrate primers targeting the 16S rRNA gene. A set number of individuals from each species were killed over 13 time points post-blood feeding and preserved in 95% ethanol. Samples were stored either at ambient room temperature or in a - 20 °C freezer to examine the effect of storage condition on the PCR amplification success of host DNA. RESULTS We found that amplification success across the 96-h sampling period post-feeding was reduced from 96 to 6% and 96% to 14% for Culicoides nubeculosus and Culicoides sonorensis, respectively. We found no effect of storage condition on PCR amplification success, and storage in 95% ethanol was sufficient to maintain high rates of amplifiable host DNA for at least 9 months, even at room temperature. CONCLUSIONS These findings highlight the limited time frame during which an individual may contain amplifiable host DNA and demonstrate the importance of timely sample capture and processing post-blood feeding. Moreover, storage in 95% ethanol alone is sufficient to limit host DNA degradation. These results are relevant to the design of studies investigating the biting behaviour and disease transmission potential of Culicoides and other biting Diptera.
Collapse
Affiliation(s)
- Ben Bellekom
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Abigail Bailey
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Marion England
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Zoe Langlands
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Owen T. Lewis
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Talya D. Hackett
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| |
Collapse
|
9
|
Kar S, Mondal B, Pal A, Harsha R, Mazumdar A. Blood meal analysis of Culicoides species associated with livestock in West Bengal, India. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:503-510. [PMID: 35599276 DOI: 10.1111/mve.12588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Knowledge gaps exist on the feeding pattern and host range of bluetongue virus vectors, Culicoides species, associated with livestock in India. Adult midges were trapped with ultraviolet light traps at 13 household farms adjacent to human biotope. Host DNA was isolated from individual females (n = 101; blood engorged-82, gravid-4 and parous-15) and subjected to PCR amplification targeting CytB and 16S rRNA gene fragments followed by sequencing of amplified DNA samples. However, DNA sequences from only 71 individuals (70.3%) comprising of 10 Culicoides species were obtained. Blood meal analysis revealed at least 10 species that fed on five mammalian hosts including humans, but surprisingly none tested positive for birds. Results revealed that Culicoides innoxius tested positive for four not previously recognized species indicating a potential role as a vector species. Likewise, Culicoides shortti and Culicoides hegneri preferred goat and cattle respectively as hosts, whereas Culicoides palpifer preferred cattle along with buffalo as hosts, which is being reported for the first time. This is the first document on DNA-based blood meal identification and feeding preference of Culicoides midges associated with livestock in India.
Collapse
Affiliation(s)
- Surajit Kar
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Biswajit Mondal
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Arjun Pal
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Rupa Harsha
- Department of Zoology, Balurghat College, Balurghat, West Bengal, India
| | - Abhijit Mazumdar
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
10
|
Sunantaraporn S, Hortiwakul T, Kraivichian K, Siriyasatien P, Brownell N. Molecular Identification of Host Blood Meals and Detection of Blood Parasites in Culicoides Latreille (Diptera: Ceratopogonidae) Collected from Phatthalung Province, Southern Thailand. INSECTS 2022; 13:insects13100912. [PMID: 36292860 PMCID: PMC9604321 DOI: 10.3390/insects13100912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
Five hundred and fifty-nine female biting midges were collected, and seventeen species in six subgenera (Avaritia, Haemophoructus, Hoffmania, Meijerehelea, Remmia, and Trithecoides) and two groups (Clavipalpis and Shortti) were identified. The dominant Culicoides species was C. peregrinus (30.94%), followed by C. subgenus Trithecoides. From blood meal analysis of engorged biting midges, they were found to feed on cows, dogs, pigs, and avians. The majority of blood preferences of biting midges (68%; 49/72) displayed a mixed pattern of host blood DNA (cow and avian). The overall non-engorged biting midge field infectivity rate was 1.44 % (7/487). We detected Leucocytozoon sp. in three Culicoides specimens, one from each species: C. fulvus, C. oxystoma, and C. subgenus Trithecoides. Crithidia sp. was found in two C. peregrinus specimens, and Trypanosoma sp. and P. juxtanucleare were separately found in two C. guttifer. More consideration should be paid to the capacity of biting midges to transmit pathogens such as avian haemosporidian and trypanosomatid parasites. To demonstrate that these biting midges are natural vectors of trypanosomatid parasites, additional research must be conducted with a greater number of biting midges in other endemic regions.
Collapse
Affiliation(s)
- Sakone Sunantaraporn
- Medical Science Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanyarat Kraivichian
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narisa Brownell
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
11
|
Seatamanoch N, Kongdachalert S, Sunantaraporn S, Siriyasatien P, Brownell N. Microsporidia, a Highly Adaptive Organism and Its Host Expansion to Humans. Front Cell Infect Microbiol 2022; 12:924007. [PMID: 35782144 PMCID: PMC9245026 DOI: 10.3389/fcimb.2022.924007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Emerging infectious disease has become the center of attention since the outbreak of COVID-19. For the coronavirus, bats are suspected to be the origin of the pandemic. Consequently, the spotlight has fallen on zoonotic diseases, and the focus now expands to organisms other than viruses. Microsporidia is a single-cell organism that can infect a wide range of hosts such as insects, mammals, and humans. Its pathogenicity differs among species, and host immunological status plays an important role in infectivity and disease severity. Disseminated disease from microsporidiosis can be fatal, especially among patients with a defective immune system. Recently, there were two Trachipleistophora hominis, a microsporidia species which can survive in insects, case reports in Thailand, one patient had disseminated microsporidiosis. This review gathered data of disseminated microsporidiosis and T. hominis infections in humans covering the biological and clinical aspects. There was a total of 22 cases of disseminated microsporidiosis reports worldwide. Ten microsporidia species were identified. Maximum likelihood tree results showed some possible correlations with zoonotic transmissions. For T. hominis, there are currently eight case reports in humans, seven of which had Human Immunodeficiency Virus (HIV) infection. It is observed that risks are higher for the immunocompromised to acquire such infections, however, future studies should look into the entire life cycle, to identify the route of transmission and establish preventive measures, especially among the high-risk groups.
Collapse
Affiliation(s)
- Nirin Seatamanoch
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Switt Kongdachalert
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sakone Sunantaraporn
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Padet Siriyasatien
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narisa Brownell
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Narisa Brownell,
| |
Collapse
|
12
|
González MA, Goiri F, Prosser SWJ, Cevidanes A, Hernández-Triana LM, Barandika JF, Hebert PDN, García-Pérez AL. Culicoides species community composition and feeding preferences in two aquatic ecosystems in northern Spain. Parasit Vectors 2022; 15:199. [PMID: 35690834 PMCID: PMC9188056 DOI: 10.1186/s13071-022-05297-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Aquatic ecosystems provide breeding sites for blood-sucking insects such as Culicoides biting midges (Diptera: Ceratopogonidae), but factors affecting their distribution and host choice are poorly understood. A study was undertaken at two nature reserves in northern Spain to examine the abundance, species composition, population dynamics and feeding patterns of biting midges between 2018 and 2019. Methods Culicoides were captured by light suction traps baited with CO2 and by sweep netting vegetation. Blood meals and species identification of blood-fed specimens were determined using cytochrome c oxidase I subunit (COI) DNA barcoding. Multivariate generalized linear models were used to evaluate the associations between the abundance of Culicoides, the species richness and other parameters. Results The 4973 identified specimens comprised 28 species of Culicoides. These included two species reported for the first time in northern Spain, thus raising to 54 the number of Culicoides species described in the region. Specimens of all 28 species and 99.6% of the total specimens collected were caught in suction traps, while sweep netting vegetation revealed just 11 species and 0.4% of the total specimens. Midge abundance peaked in June/early July, with five species comprising > 80% of the captures: Culicoides alazanicus (24.9%), Culicoides griseidorsum (20.3%), Culicoides poperinghensis (16.2%), Culicoides kibunensis (10.7%) and Culicoides clastrieri (9.6%). DNA barcode analysis of blood meals from eight Culicoides species revealed that they fed on 17 vertebrate species (3 mammals and 14 birds). Species in the subgenus Avaritia were primarily ornithophilic, except for C. griseidorsum and C. poperinghensis. Host DNA from blood meals was successfully amplified from 75% of blood-fed females. A pictorial blood meal digestion scale is provided to accurately assess the blood-fed status of female Culicoides. Conclusions The large number of different blood meal sources identified in the midges captured in this study signals the likely importance of wild birds and mammals (e.g. red deer and wild boar) as reservoir/amplifying hosts for pathogens. Available hosts are more exposed to being bitten by biting midge populations in aquatic ecosystems in late spring and early summer. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05297-5.
Collapse
Affiliation(s)
- Mikel A González
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.,Applied Zoology and Animal Conservation Research Group, Department of Biology, University of the Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Fátima Goiri
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Sean W J Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Aitor Cevidanes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Luis M Hernández-Triana
- Vector-Borne Diseases Research Group, Virology Department-Animal and Plant Health Agency, Addlestone, UK
| | - Jesús F Barandika
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Ana L García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.
| |
Collapse
|
13
|
Romiti F, Fochetti R, Magliano A, Vinciguerra V, Ermenegildi A, De Liberato C. First Report of Culicoides Biting Midges (Diptera: Ceratopogonidae) Attacking People in Italy, With the Description of Extreme Larval Breeding Sites and Diurnal Activity of Culicoides riethi. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:772-776. [PMID: 34971396 PMCID: PMC8924964 DOI: 10.1093/jme/tjab212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) play a paramount role in medical and veterinary entomology worldwide, particularly as vectors of pathogens which cause animal diseases. Biting midges are also infamous for the nuisance they provoke to people involved in outdoor activities. Nonetheless, attacks to man by midges from any Culicoides species have not been reported in Italy. An entomological investigation was performed following repeated attacks to man in a nature park near Rome (central Italy). The study area is a natural degassing zone, characterized by widespread hazardous gas emissions of CO2 and H2S, with several water bodies including permanent lakes, ponds, and pools. The biting midge C. riethi Kieffer, 1914 was very active during daytime in the period April-June. The species has been identified as responsible for attacks on people in the area. An in-depth analysis of the extreme environmental conditions revealed the ability of larvae to thrive in several water bodies, characterized by an extremely low pH and a high concentration of sulfates.
Collapse
Affiliation(s)
- Federico Romiti
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Romolo Fochetti
- Department for Innovation in Biological, Agro-food and Forest systems, Viterbo University, Viterbo, Italy
| | - Adele Magliano
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Vittorio Vinciguerra
- Department for Innovation in Biological, Agro-food and Forest systems, Viterbo University, Viterbo, Italy
| | - Arianna Ermenegildi
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Claudio De Liberato
- Laboratory of Entomology, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| |
Collapse
|
14
|
Langat SK, Eyase F, Bulimo W, Lutomiah J, Oyola SO, Imbuga M, Sang R. Profiling of RNA Viruses in Biting Midges ( Ceratopogonidae) and Related Diptera from Kenya Using Metagenomics and Metabarcoding Analysis. mSphere 2021; 6:e0055121. [PMID: 34643419 PMCID: PMC8513680 DOI: 10.1128/msphere.00551-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Vector-borne diseases (VBDs) cause enormous health burden worldwide, as they account for more than 17% of all infectious diseases and over 700,000 deaths each year. A significant number of these VBDs are caused by RNA virus pathogens. Here, we used metagenomics and metabarcoding analysis to characterize RNA viruses and their insect hosts among biting midges from Kenya. We identified a total of 15 phylogenetically distinct insect-specific viruses. These viruses fall into six families, with one virus falling in the recently proposed negevirus taxon. The six virus families include Partitiviridae, Iflaviridae, Tombusviridae, Solemoviridae, Totiviridae, and Chuviridae. In addition, we identified many insect species that were possibly associated with the identified viruses. Ceratopogonidae was the most common family of midges identified. Others included Chironomidae and Cecidomyiidae. Our findings reveal a diverse RNA virome among Kenyan midges that includes previously unknown viruses. Further, metabarcoding analysis based on COI (cytochrome c oxidase subunit 1 mitochondrial gene) barcodes reveal a diverse array of midge species among the insects used in the study. Successful application of metagenomics and metabarcoding methods to characterize RNA viruses and their insect hosts in this study highlights a possible simultaneous application of these two methods as cost-effective approaches to virus surveillance and host characterization. IMPORTANCE The majority of the viruses that currently cause diseases in humans and animals are RNA viruses, and more specifically arthropod-transmitted viruses. They cause diseases such as dengue, West Nile infection, bluetongue disease, Schmallenberg disease, and yellow fever, among others. Several sequencing investigations have shown us that a diverse array of RNA viruses among insect vectors remain unknown. Some of these could be ancient lineages that could aid in comprehensive studies on RNA virus evolution. Such studies may provide us with insights into the evolution of the currently pathogenic viruses. Here, we applied metagenomics to field-collected midges and we managed to characterize several RNA viruses, where we recovered complete and nearly complete genomes of these viruses. We also characterized the insect host species that are associated with these viruses. These results add to the currently known diversity of RNA viruses among biting midges as well as their associated insect hosts.
Collapse
Affiliation(s)
- Solomon K. Langat
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Fredrick Eyase
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate—Africa, Nairobi, Kenya
| | - Wallace Bulimo
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Joel Lutomiah
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Mabel Imbuga
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Rosemary Sang
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
15
|
Carvalho LPC, Pereira Júnior AM, de Paulo PFM, Silva GS, Costa GDS, Freitas MTDS, Pessoa FAC, Medeiros JF. DNA-based blood meal analysis of Culicoides (Diptera: Ceratopogonidae) species from Jamari National Forest, Southwestern Amazon, Brazil. Acta Trop 2021; 221:106025. [PMID: 34175266 DOI: 10.1016/j.actatropica.2021.106025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022]
Abstract
Culicoides biting midges are insects involved in the transmission of filarial nematodes, protozoans, and viruses. Greater knowledge of Culicoides blood meal sources could improve our understanding of parasite transmission cycles. Our study used molecular tools to evaluate the blood meal sources of Culicoides biting midges from sylvatic environments. This study was conducted in Jamari National Forest, Rondônia, Brazil. Culicoides were captured using HP light traps positioned at ground level (1.5 m above ground) and in canopy (15 m above ground). To identify blood meal sources, females were subjected to DNA extraction and PCR targeting the cytb gene fragment, and the obtained sequences were analyzed and compared with sequences from GenBank. DNA extraction and PCR were performed on 455 Culicoides females, and blood meal sources were identified in 186 females. Thirty Culicoides specimens were collected from the Potosi trail and 156 were collected from the Santa Maria trail. A total of 22 species were captured; all 22 species were collected in canopy (100%) but only three species were collected at ground level (13.6%). The cytb fragment was amplified in 162 of 186 samples. Sample sequencing identified cytb DNA from nine blood-meal sources: Pauxi sp., Psophia viridis, Ramphastos tucanus tucanus, Choloepus didactylus, Choloepus hoffmanni, Tamandua tetradactyla, Ateles chamek, Homo sapiens and Pithecia irrorata. We observed that several different blood meal sources were utilized by a high diversity of Culicoides species. The abundance of Culicoides in the canopy may be related to the fact that the majority of blood meal hosts feed in treetops. We observed that C. (Hoffmania) sp. and C. coutinhoi tend to be more generalist, feeding on a range of mammals and piciform, gruiform and galliform birds. This data improves our knowledge of the feeding profile of biting midges from forest environments and should serve as a future basis for defining zoonotic transmission cycles.
Collapse
Affiliation(s)
- Luis Paulo Costa Carvalho
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, BR 364, Km 9.5, Porto Velho, RO, Brazil; Laboratório de Entomologia, Fiocruz Rondônia, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil.
| | - Antônio Marques Pereira Júnior
- Laboratório de Entomologia, Fiocruz Rondônia, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil
| | | | - Geisiane Santos Silva
- Laboratório de Entomologia, Fiocruz Rondônia, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil
| | - Glaucilene da Silva Costa
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, BR 364, Km 9.5, Porto Velho, RO, Brazil; Laboratório de Entomologia, Fiocruz Rondônia, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil
| | | | - Felipe Arley Costa Pessoa
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil; Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Rua Terezina, 476, Adrianópolis, Manaus, AM, Brazil
| | - Jansen Fernandes Medeiros
- Laboratório de Entomologia, Fiocruz Rondônia, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Rua da Beira, 7671, Lagoa, Porto Velho, RO, Brazil
| |
Collapse
|
16
|
Kasičová Z, Schreiberová A, Kimáková A, Kočišová A. Blood meal analysis: host-feeding patterns of biting midges (Diptera, Ceratopogonidae, Culicoides Latreille) in Slovakia. Parasite 2021; 28:58. [PMID: 34283022 PMCID: PMC8336726 DOI: 10.1051/parasite/2021058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Biting midges of the genus Culicoides are vectors of important pathogens affecting domestic and wild animals and have played a major role in the re-emergence of new outbreaks of bluetongue (BTV) and Schmallenberg (SBV) viruses in Europe. To determine vector-host specificity, trophic preference from blood meal analysis is of major importance in the surveillance of arthropod-borne diseases. Of 28,752 specimens collected, we identified 17 Culicoides species and investigated a total of 48 host sequences from the blood meals. Culicoides obsoletus/C. scoticus, C. dewulfi, C. pulicaris, C. lupicaris, C. punctatus, C. newsteadi, C. riethi, and C. furcillatus were found to feed on mammals (cattle, horses, and humans), birds (domestic chickens), small rodents (Apodemus flavicollis), and hares (Lepus europaeus). To our knowledge, this is the first study investigating trophic preferences of Culicoides spp. in Slovakia. This study demonstrated that Culicoides species are able to feed on domesticated host vertebrates as well as birds, rodents, and humans.
Collapse
Affiliation(s)
- Zuzana Kasičová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Andrea Schreiberová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Andrea Kimáková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Alica Kočišová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| |
Collapse
|
17
|
Validation of an Effective Protocol for Culicoides Latreille (Diptera: Ceratopogonidae) Detection Using eDNA Metabarcoding. INSECTS 2021; 12:insects12050401. [PMID: 33946322 PMCID: PMC8146839 DOI: 10.3390/insects12050401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary All organisms shed genetic material into the environment, which is known as environmental DNA. Current molecular technologies allow for sequencing molecular markers in complex environmental samples. The use of these methods permits an effective identification and monitoring of flighted insects such as Culicoides species. These biting midges are agricultural pests of significant economic concern. This study identified Culicoides species using a novel molecular-based approach for this group and compared these results to morphological identifications of the specimens collected. There were forty-two Culicoides specimens collected in total, using a saturated salt solution as a collection fluid. Molecular identification detected four species. Using morphological identification, we identified two out of these four taxonomic ranks at the species level and one at the subgenus level. The inconsistency in identifying Culicoides specimens to the species level indicates the need for curated DNA reference libraries for molecular-based identification. The saturated salt solution used in the traps preserved the morphological characteristics and the organisms’ environmental DNA, which is an essential contribution of this study. Abstract eDNA metabarcoding is an effective molecular-based identification method for the biosurveillance of flighted insects. An eDNA surveillance approach maintains specimens for secondary morphological identification useful for regulatory applications. This study identified Culicoides species using eDNA metabarcoding and compared these results to morphological identifications of trapped specimens. Insects were collected using ultraviolet (UV) lighted fan traps containing a saturated salt (NaCl) solution from two locations in Guelph, Ontario, Canada. There were forty-two Culicoides specimens collected in total. Molecular identification detected four species, C. biguttatus, C. stellifer, C. obsoletus, and C. mulrennani. Using morphological identification, two out of these four taxonomic ranks were confirmed at the species level (C. biguttatus and C. stellifer) and one was confirmed at the subgenus level (Avaritia [C. obsoletus]). No molecular detection of Culicoides species occurred in traps with an abundance of less than three individuals per taxon. The inconsistency in identifying Culicoides specimens to the species level punctuates the need for curated DNA reference libraries for Culicoides. In conclusion, the saturated salt (NaCl) solution preserved the Culicoides’ morphological characteristics and the eDNA.
Collapse
|
18
|
Quantifying and Modeling the Acquisition and Retention of Lumpy Skin Disease Virus by Hematophagus Insects Reveals Clinically but Not Subclinically Affected Cattle Are Promoters of Viral Transmission and Key Targets for Control of Disease Outbreaks. J Virol 2021; 95:JVI.02239-20. [PMID: 33568514 PMCID: PMC8104101 DOI: 10.1128/jvi.02239-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes a severe systemic disease characterized by cutaneous nodules in cattle. LSDV is a rapidly emerging pathogen, having spread since 2012 into Europe and Russia and across Asia. Lumpy skin disease virus (LSDV) is a vector-transmitted poxvirus that causes disease in cattle. Vector species involved in LSDV transmission and their ability to acquire and transmit the virus are poorly characterized. Using a highly representative bovine experimental model of lumpy skin disease, we fed four model vector species (Aedes aegypti, Culex quinquefasciatus, Stomoxys calcitrans, and Culicoides nubeculosus) on LSDV-inoculated cattle in order to examine their acquisition and retention of LSDV. Subclinical disease was a more common outcome than clinical disease in the inoculated cattle. Importantly, the probability of vectors acquiring LSDV from a subclinical animal (0.006) was very low compared with that from a clinical animal (0.23), meaning an insect feeding on a subclinical animal was 97% less likely to acquire LSDV than one feeding on a clinical animal. All four potential vector species studied acquired LSDV from the host at a similar rate, but Aedes aegypti and Stomoxys calcitrans retained the virus for a longer time, up to 8 days. There was no evidence of virus replication in the vector, consistent with mechanical rather than biological transmission. The parameters obtained in this study were combined with data from studies of LSDV transmission and vector life history parameters to determine the basic reproduction number of LSDV in cattle mediated by each of the model species. This reproduction number was highest for Stomoxys calcitrans (19.1), followed by C. nubeculosus (7.1) and Ae. aegypti (2.4), indicating that these three species are potentially efficient transmitters of LSDV; this information can be used to inform LSD control programs. IMPORTANCE Lumpy skin disease virus (LSDV) causes a severe systemic disease characterized by cutaneous nodules in cattle. LSDV is a rapidly emerging pathogen, having spread since 2012 into Europe and Russia and across Asia. The vector-borne nature of LSDV transmission is believed to have promoted this rapid geographic spread of the virus; however, a lack of quantitative evidence about LSDV transmission has hampered effective control of the disease during the current epidemic. Our research shows subclinical cattle play little part in virus transmission relative to clinical cattle and reveals a low probability of virus acquisition by insects at the preclinical stage. We have also calculated the reproductive number of different insect species, therefore identifying efficient transmitters of LSDV. This information is of utmost importance, as it will help to define epidemiological control measures during LSDV epidemics and of particular consequence in resource-poor regions where LSD vaccination may be less than adequate.
Collapse
|
19
|
Hristescu D, Bărbuceanu F, Dascălu L, Nițescu C, Goffredo M, Santilli A, Quaglia M, Balenghien T, Predoi G. Species composition and relative abundance of the genus Culicoides (Diptera: Ceratopogonidae) in Romania. Parasit Vectors 2020; 13:393. [PMID: 32746908 PMCID: PMC7397577 DOI: 10.1186/s13071-020-04247-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background Culicoides biting midges are vectors involved in the biological transmission cycle of important animal diseases such as bluetongue and African horse sickness. In Romania, the first outbreaks of bluetongue were reported in 2014, leading to increased activities within the existing entomological surveillance network. The main goals of the surveillance activities were the establishment of the vector free period in relation to animal trade and the identification of Culicoides species involved in the transmission of the pathogen. This study was conducted on the composition and relative abundance of the species belonging to the genus Culicoides (Diptera: Ceratopogonidae) in certain regions of Romania and provided the opportunity to update the existing checklist of Culicoides species of this country. Methods The study was conducted in 33 of the 42 administrative units (counties), including a total of 659 catches, in 102 locations. The collections were carried out with UV blacklight suction traps (OVI type). The collected insects were preserved in 70% ethanol. Morphological insect identification was carried out using a stereomicroscope, according to established identification keys. In ten localities the relative abundance of the cryptic species of the Obsoletus complex was determined by multiplex PCR assay based on the ITS2 segment. The identification of the Culicoides chiopterus (Meigen) species by morphological examination was confirmed by PCR assay based on the ITS1 segment. Results Eleven species were identified using morphological and PCR tools. The rest of the individuals were separated into five taxa. The species of the Obsoletus complex (grouping Culicoides obsoletus (Meigen) and Culicoides scoticus Downes & Kettle) were the most abundant, accounting for 59% of the total number of captured Culicoides spp. Three of the identified species are mentioned, according to our knowledge, for the first time in Romania: Culicoides newsteadi Austen, Culicoides flavipulicaris Dzhafarov and Culicoides bysta Sarvašová, Kočisová, Candolfi & Mathieu. Conclusions Our study demonstrates that the Culicoides species most commonly cited as being involved in the transmission of arboviruses in Europe (i.e. bluetongue and Schmallenberg viruses) make up a high proportion of adult Culicoides trapped in Romania. ![]()
Collapse
Affiliation(s)
- Doru Hristescu
- Institute for Diagnosis and Animal Health, Bucharest, Romania.
| | - Florica Bărbuceanu
- Institute for Diagnosis and Animal Health, Bucharest, Romania.,Faculty of Veterinary Medicine, Bucharest, Romania
| | - Lenuța Dascălu
- Institute for Diagnosis and Animal Health, Bucharest, Romania
| | | | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Adriana Santilli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Michela Quaglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Thomas Balenghien
- ASTRE, University of Montpellier, Cirad, INRA, Montpellier, France.,Cirad, UMR ASTRE, 10101, Rabat, Morocco.,Unité Parasitologie et maladies parasitaires, Institut Agronomique et Vétérinaire Hassan II, 10100, Rabat, Morocco
| | | |
Collapse
|
20
|
Tomazatos A, Marschang RE, Maranda I, Baum H, Bialonski A, Spînu M, Lühken R, Schmidt-Chanasit J, Cadar D. Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes ( Natrix natrix). Viruses 2020; 12:v12020243. [PMID: 32098186 PMCID: PMC7077223 DOI: 10.3390/v12020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023] Open
Abstract
The discovery and characterization of novel arthropod-borne viruses provide valuable information on their genetic diversity, ecology, evolution and potential to threaten animal or public health. Arbovirus surveillance is not conducted regularly in Romania, being particularly very scarce in the remote and diverse areas like the Danube Delta. Here we describe the detection and genetic characterization of a novel orbivirus (Reoviridae: Orbivirus) designated as Letea virus, which was found in grass snakes (Natrix natrix) during a metagenomic and metatranscriptomic survey conducted between 2014 and 2017. This virus is the first orbivirus discovered in reptiles. Phylogenetic analyses placed Letea virus as a highly divergent species in the Culicoides-/sand fly-borne orbivirus clade. Gene reassortment and intragenic recombination were detected in the majority of the nine Letea virus strains obtained, implying that these mechanisms play important roles in the evolution and diversification of the virus. However, the screening of arthropods, including Culicoides biting midges collected within the same surveillance program, tested negative for Letea virus infection and could not confirm the arthropod vector of the virus. The study provided complete genome sequences for nine Letea virus strains and new information about orbivirus diversity, host range, ecology and evolution. The phylogenetic associations warrant further screening of arthropods, as well as sustained surveillance efforts for elucidation of Letea virus natural cycle and possible implications for animal and human health.
Collapse
Affiliation(s)
- Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Rachel E. Marschang
- Cell Culture Lab, Microbiology Department, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany;
| | - Iulia Maranda
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Heike Baum
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Alexandra Bialonski
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Marina Spînu
- Department of Clinical Sciences-Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Correspondence:
| |
Collapse
|