1
|
Usmani S, Gebhardt ME, Simubali L, Saili K, Hamwata W, Chilusu H, Muleba M, McMeniman CJ, Martin AC, Moss WJ, Norris DE, Ali RLMN. Phylogenetic taxonomy of the Zambian Anopheles coustani group using a mitogenomics approach. RESEARCH SQUARE 2025:rs.3.rs-5976492. [PMID: 40297676 PMCID: PMC12036473 DOI: 10.21203/rs.3.rs-5976492/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Mosquito species belonging to the Anopheles coustani group have been implicated in driving residual malaria transmission in sub-Saharan Africa and are regarded as an established primary vector in Madagascar. The morphological identification of mosquitoes in this group is challenging due to cryptic features and their molecular confirmation is difficult due to a paucity of reference sequence data representing all members of the group. Conventional molecular barcoding with the cytochrome oxidase I (COI) gene and the internal transcribed spacer 2 (ITS2) region targets is limited in their discrimination and conclusive identification of members of species complexes. In contrast, complete mitochondrial genomes (mitogenomes) have demonstrated much improved power over barcodes to be useful in rectifying taxonomic discrepancies in Culicidae. Methods We utilized a genome skimming approach via shallow shotgun sequencing on individual mosquito specimens to generate sequence reads for mitogenome assembly. Bayesian inferred phylogenies and molecular dating estimations were perfomed on the concatenated protein coding genes using the Bayesian Evolutionary Analysis by Sampling Trees 2 (BEAST 2) platform. Divergence estimates were calibrated on published calucations for Anopheles-Aedes. Results This study generated 17 new complete mitogenomes which were comprable to reference An. coustani mitogenomes in the GenBank repository by having 13 protein coding, 22 transfer RNA and 2 ribosomal RNA genes, with an average length of 15,400 bp and AT content of 78.3%. Bayesian inference using the concatenated protein coding genes from the generated and publicly available mitogenomes yielded six clades: one for each of the four taxa targeted in this study, the GenBank references, and a currently unknown species. Divergence times estimated that the An. coustani group separated from the An. gambiae complex approximately 110 million years ago (MYA), and members within the complex diverged at times points ranging from~34 MYA to as recent as ~7 MYA. Conclusions These findings demonstrate the value of mitochondrial genomes in differentiating cryptic taxa and help to confirm morphological identities of An. coustani s.s., An. paludis, An. zeimanni and An. tenebrosus. Divergence estimates with the An. coustani group are similar to those for well-studied anopheline vector groups. These analyses also highlight the likely prescence of other cryptic An. coustani group members circulating in Zambia.
Collapse
Affiliation(s)
- Soha Usmani
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | - Mary E Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | | | | | | | | | | | - Conor J McMeniman
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | - Anne C Martin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| | - Reneé L M N Ali
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health
| |
Collapse
|
2
|
Bega AG, Goryacheva II, Moskaev AV, Andrianov BV. Mitochondrial genome variation of mosquito species in the subgenus Stegomyia of the genus Aedes (Diptera: Culicidae). Vavilovskii Zhurnal Genet Selektsii 2025; 29:219-229. [PMID: 40264805 PMCID: PMC12011629 DOI: 10.18699/vjgb-25-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 09/06/2024] [Indexed: 04/24/2025] Open
Abstract
Mosquitoes in the subgenus Stegomyia of the genus Aedes are vectors of a number of vertebrate viruses, including human arboviral fevers. Of particular interest is the study of the genetic characteristics of invasive populations of species in this group. We obtained, annotated and described the mitochondrial genomes of three Stegomyia mosquito species of the genus Aedes: Ae. albopictus, Ae. flavopictus and Ae. sibiricus. The mitochondrial genomes of Ae. flavopictus and Ae. sibiricus were obtained from mosquitoes from synanthropic populations in the Russian Far East. The mitochondrial genome of Ae. sibiricus is presented for the first time. The mitochondrial genome of Ae. albopictus was obtained for the C6/36 cell line. We selected three primer sets, for each mosquito species, that amplify the entire mitochondrial genome except for the control region and sequenced the genomes using the Sanger method. All three new genomes have an identical gene order. We identified 13 canonical protein-coding genes, 2 ribosomal RNA genes, and 22 transport RNA genes. Protein-coding genes have canonical start and stop codons with two exceptions. The canonical stop codon "TAA" is incomplete in the cox1 and cox2 genes. The cox1 gene lacks the canonical start codon for methionine. Nucleotide variability is mainly represented by point nucleotide substitutions. A phylogenetic analysis of the nucleotide sequences of complete mitochondrial genomes of all known mosquitoes species in the subgenus Stegomyia of the genus Aedes was performed. The data obtained made it possible to measure the ratio of synonymous to non-synonymous substitutions (Ka/Ks) in specific protein-coding genes.
Collapse
Affiliation(s)
- A G Bega
- Federal State University of Education, Mytishchi, Moscow Region, Russia Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - I I Goryacheva
- Federal State University of Education, Mytishchi, Moscow Region, Russia Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - A V Moskaev
- Federal State University of Education, Mytishchi, Moscow Region, Russia Vernadsky Russian State University of National Economy, Balashikha, Moscow Region, Russia
| | - B V Andrianov
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Zhou G, Zhang H, Chen W, Li Z, Zhang X, Fu Y. Morphological observation, molecular identification and evolutionary analysis of Hydatigera kamiyai found in Neodon fuscus from the Qinghai-Tibetan plateau. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105629. [PMID: 38936527 DOI: 10.1016/j.meegid.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Hydatigera kamiyai (H. kamiyai) is a new species within Hydatigera that has recently been resurrected. Voles and cats are hosts of H. kamiyai and have a certain impact on its health and economy. Moreover, the Qinghai-Tibetan plateau (QTP) is a research hotspot representing Earth's biodiversity, as its unique geographical environment and climatic conditions support the growth of a variety of mammals and provide favorable conditions for various parasites to complete their life history. The aim of this study was to reveal the phylogenetic relationships and divergence times of H. kamiyai strains isolated from Neodon fuscus on the QTP using morphological and molecular methods. In this study, we morphologically observed H. kamiyai and sequenced the whole mitochondrial genome. Then, we constructed phylogenetic trees with the maximum likelihood (ML) and Bayesian inference (BI) methods. The GTR alternative model was selected for divergence time analysis. These data demonstrated that the results were consistent with the general morphological characteristics of Hydatigera. The whole genome of H. kamiyai was 13,822 bp in size, and the A + T content (73%) was greater than the G + C content (27%). The Ka/Ks values were all <1, indicating that all 13 protein-coding genes (13 PCGs) underwent purifying selection during the process of evolution. The phylogenetic tree generated based on the 13 PCGs, cytochrom oxidase subunit I (COI), 18S rRNA and 28S rRNA revealed close phylogenetic relationships between H. kamiyai and Hydatigera, with high node support for the relationship. The divergence time based on 13 PCGs indicated that H. kamiyai diverged approximately 11.3 million years ago (Mya) in the Miocene. Interestingly, it diverged later than the period of rapid uplift in the QTP. We also speculated that H. kamiyai differentiation was caused by host differentiation due to the favorable living conditions brought about by the uplift of the QTP. As there have been relatively few investigations on the mitochondrial genome of H. kamiyai, our study could provide factual support for further studies of H. kamiyai on the QTP. We also emphasized the importance of further studies of its hosts, Neodon fuscus and cats, which will be important for further understanding the life cycle of H. kamiyai.
Collapse
Affiliation(s)
- Guoyan Zhou
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Haining Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Wangkai Chen
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Zhi Li
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Xueyong Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Yong Fu
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
| |
Collapse
|
4
|
Chen DH, He SL, Fu WB, Yan ZT, Hu YJ, Yuan H, Wang MB, Chen B. Mitogenome-based phylogeny of mosquitoes (Diptera: Culicidae). INSECT SCIENCE 2024; 31:599-612. [PMID: 37489338 DOI: 10.1111/1744-7917.13251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023]
Abstract
Mosquitoes are of great medical significance as vectors of many deadly diseases. Mitogenomes have been widely used in phylogenetic studies, but mitogenome knowledge within the family Culicidae is limited, and Culicidae phylogeny is far from resolved. In this study, we surveyed the mitogenomes of 149 Culicidae species, including 7 newly sequenced species. Comparative analysis of 149 mosquito mitogenomes shows gene composition and order to be identical to that of an ancestral insect, and the AT bias, length variation, and codon usage are all consistent with that of other reported Dipteran mitogenomes. Phylogenetic analyses based on the DNA sequences of the 13 protein-coding genes from the 149 species robustly support the monophyly of the subfamily Anophelinae and the tribes Aedini, Culicini, Mansoniini, Sabethini, and Toxorhynchitini. To resolve ambiguous relationships between clades within the subfamily Culicinae, we performed topological tests and show that Aedini is a sister to Culicini and that Uranotaeniini is a sister to (Mansoniini + (Toxorhynchitini + Sabethini)). In addition, we estimated divergence times using a Bayesian relaxation clock based on the sequence data and 3 fossil calibration points. The results show mosquitoes diverged during the Early Jurassic with massive Culicinae radiations during the Cretaceous, coincident with the emergence of angiosperms and the burst of mammals and birds. Overall, this study, which uses the largest number of Culicidae mitogenomes sequenced to date, comprehensively reveals the mitogenome characteristics and mitogenome-based phylogeny and divergence times of Culicidae, providing information for further studies on the mitogenome, phylogeny, evolution, and taxonomic revision of Culicidae.
Collapse
Affiliation(s)
- De-Hong Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Shu-Lin He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Wen-Bo Fu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yun-Jian Hu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Huan Yuan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Ming-Bin Wang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
5
|
Xiao ML, Yuan H, Li TJ, Chen B. Two New Mitogenomes of Bibionidae and Their Comparison within the Infraorder Bibionomorpha (Diptera). Genes (Basel) 2023; 14:1485. [PMID: 37510389 PMCID: PMC10378959 DOI: 10.3390/genes14071485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the worldwide distribution and rich diversity of the infraorder Bibionomorpha in Diptera, the characteristics of mitochondrial genomes (mitogenomes) are still little-known, and the phylogenetics and evolution of the infraorder remains controversial. In the present study, we report complete and annotated mitogenome sequences of Penthetria simplioipes and Plecia hardyi representing Bibionidae. This is the first report of the complete mitogenomes for the superfamily Bibionoidea. There are 37 genes in each of the complete mitogenomes of all 20 studied species from eight families of four superfamilies within infraorder Bibionomorpha. The Ka/Ks analysis suggests that all 13 PCGs have undergone purifying selection. The gene rearrangement events exist in some families (Keroplatidae, Sciaridae, and Cecidomyiidae) but not in Mycetophilidae in Sciaroidea and also in Scatopsoidea, Anisopodoidea, and Bibionoidea, which suggests that these rearrangement events are derived in the late period in the evolution of the Bibionomorpha. The phylogenetic analysis suggests the phylogenetic relationships of Scatopsoidea + (Anisopodoidea + (Bibionoidea + Sciaroidea)) in Bibionomorpha. The divergence time analysis suggests that Bibionomorpha originated in the Triassic, Scatopsoidea and Anisopodoidea in the late Triassic, Bibionoidea in the Jurassic, and Sciaroidea in the Jurassic to the Cretaceous. The work lays a base for the study of mitogenomes in Bibionomorpha but further work and broader taxon sampling are necessary for a better understanding of the phylogenetics and evolution of the infraorder.
Collapse
Affiliation(s)
- Mei-Ling Xiao
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Huan Yuan
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Ting-Jing Li
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Bin Chen
- Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
6
|
Dong H, Yuan H, Yang X, Shan W, Zhou Q, Tao F, Zhao C, Bai J, Li X, Ma Y, Peng H. Phylogenetic Analysis of Some Species of the Anopheles hyrcanus Group (Diptera: Culicidae) in China Based on Complete Mitochondrial Genomes. Genes (Basel) 2023; 14:1453. [PMID: 37510357 PMCID: PMC10379722 DOI: 10.3390/genes14071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Some species of the Hyrcanus group are vectors of malaria in China. However, the member species are difficult to identify accurately by morphology. The development of sequencing technologies offers the possibility of further studies based on the complete mitochondrial genome. In this study, samples of mosquitoes of the Hyrcanus group were collected in China between 1997 and 2015. The mitochondrial genomes of ten species of the Hyrcanus group were analyzed, including the structure and base composition, codon usage, secondary structure of tRNA, and base difference sites in protein coding regions. Phylogenetic analyses using maximum-likelihood and Bayesian inference were performed based on mitochondrial genes and complete mitochondrial genomes The mitochondrial genome of 10 Hyrcanus group members ranged from 15,403 bp to 15,475 bp, with an average 78.23% (A + T) content, comprising of 13 PCGs (protein coding genes), 22 tRNAs, and 2 rRNAs. Site differences between some closely related species in the PCGs were small. There were only 36 variable sites between Anopheles sinensis and Anopheles belenrae for a variation ratio of 0.32% in all PCGs. The pairwise interspecies distance based on 13 PCGs was low, with an average of 0.04. A phylogenetic tree constructed with the 13 PCGs was consistent with the known evolutionary relationships. Some phylogenetic trees constructed by single coding regions (such as COI or ND4) or combined coding regions (COI + ND2 + ND4 + ND5 or ND2 + ND4) were consistent with the phylogenetic tree constructed using the 13 PCGs. The phylogenetic trees constructed using some coding genes (COII, ND5, tRNAs, 12S rRNA, and 16S rRNA) differed from the phylogenetic tree constructed using PCGs. The difference in mitochondrial genome sequences between An. sinensis and An. belenrae was very small, corresponding to intraspecies difference, suggesting that the species was in the process of differentiation. The combination of all 13 PCG sequences was demonstrated to be optimal for phylogenetic analysis in closely related species.
Collapse
Affiliation(s)
- Haowei Dong
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Hao Yuan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xusong Yang
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Wenqi Shan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qiuming Zhou
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Feng Tao
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Chunyan Zhao
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Jie Bai
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Xiangyu Li
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Yajun Ma
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Heng Peng
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
7
|
Yuan Y, Zhang L, Li K, Hong Y, Storey KB, Zhang J, Yu D. Nine Mitochondrial Genomes of Phasmatodea with Two Novel Mitochondrial Gene Rearrangements and Phylogeny. INSECTS 2023; 14:insects14050485. [PMID: 37233113 DOI: 10.3390/insects14050485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The classification of stick and leaf insects (Order Phasmatodea) is flawed at various taxonomic ranks due to a lack of robust phylogenetic relationships and convergent morphological characteristics. In this study, we sequenced nine new mitogenomes that ranged from 15,011 bp to 17,761 bp in length. In the mitogenome of Carausis sp., we found a translocation of trnR and trnA, which can be explained by the tandem duplication/random loss (TDRL) model. In the Stheneboea repudiosa Brunner von Wattenwyl, 1907, a novel mitochondrial structure of 12S rRNA-CR1-trnI-CR2-trnQ-trnM was found for the first time in Phasmatodea. Due to the low homology of CR1 and CR2, we hypothesized that trnI was inverted through recombination and then translocated into the middle of the control region. Control region repeats were frequently detected in the newly sequenced mitogenomes. To explore phylogenetic relationships in Phasmatodea, mtPCGs from 56 Phasmatodean species (composed of 9 stick insects from this study, 31 GenBank data, and 16 data derived from transcriptome splicing) were used for Bayesian inference (BI), and maximum likelihood (ML) analyses. Both analyses supported the monophyly of Lonchodinae and Necrosciinae, but Lonchodidae was polyphyletic. Phasmatidae was monophyletic, and Clitumninae was paraphyletic. Phyllidae was located at the base of Neophasmatodea and formed a sister group with the remaining Neophasmatodea. Bacillidae and Pseudophasmatidae were recovered as a sister group. Heteroptergidae was monophyletic, and the Heteropteryginae sister to the clade (Obriminae + Dataminae) was supported by BI analysis and ML analysis.
Collapse
Affiliation(s)
- Yani Yuan
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lihua Zhang
- Taishun County Forestry Bureau, Wenzhou 325500, China
| | - Ke Li
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yuehuan Hong
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiayong Zhang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
8
|
Campos M, Patel N, Marshall C, Gripkey H, Ditter RE, Crepeau MW, Toilibou A, Amina Y, Cornel AJ, Lee Y, Lanzaro GC. Population Genetics of Anopheles pretoriensis in Grande Comore Island. INSECTS 2022; 14:14. [PMID: 36661943 PMCID: PMC9866569 DOI: 10.3390/insects14010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anopheles pretoriensis is widely distributed across Africa, including on oceanic islands such as Grande Comore in the Comoros. This species is known to be mostly zoophylic and therefore considered to have low impact on the transmission of human malaria. However, A. pretoriensis has been found infected with Plasmodium, suggesting that it may be epidemiologically important. In the present study, we sequenced and assembled the complete mitogenome of A. pretoriensis and inferred its phylogenetic relationship among other species in the subgenus Cellia. We also investigated the genetic structure of A. pretoriensis populations on Grande Comore Island, and between this island population and sites in continental Africa, using partial sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Seven haplotypes were found on the island, one of which was ubiquitous. There was no clear divergence between island haplotypes and those found on the continent. The present work contributes knowledge on this understudied, yet abundant, Anopheles species.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Nikita Patel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Carly Marshall
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Hans Gripkey
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Robert E. Ditter
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | - Marc W. Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| | | | | | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
- Mosquito Control Research Laboratory, Kearney Research and Extension Center, Department of Entomology and Nematology, University of California, Parlier, CA 93648, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, 200 9th St SE, Vero Beach, FL 32962, USA
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Harrison TMR, Rudar J, Ogden N, Steeves R, Lapen DR, Baird D, Gagné N, Lung O. In silico identification of multiple conserved motifs within the control region of Culicidae mitogenomes. Sci Rep 2022; 12:21920. [PMID: 36536037 PMCID: PMC9763401 DOI: 10.1038/s41598-022-26236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Mosquitoes are important vectors for human and animal diseases. Genetic markers, like the mitochondrial COI gene, can facilitate the taxonomic classification of disease vectors, vector-borne disease surveillance, and prevention. Within the control region (CR) of the mitochondrial genome, there exists a highly variable and poorly studied non-coding AT-rich area that contains the origin of replication. Although the CR hypervariable region has been used for species differentiation of some animals, few studies have investigated the mosquito CR. In this study, we analyze the mosquito mitogenome CR sequences from 125 species and 17 genera. We discovered four conserved motifs located 80 to 230 bp upstream of the 12S rRNA gene. Two of these motifs were found within all 392 Anopheles (An.) CR sequences while the other two motifs were identified in all 37 Culex (Cx.) CR sequences. However, only 3 of the 304 non-Culicidae Dipteran mitogenome CR sequences contained these motifs. Interestingly, the short motif found in all 37 Culex sequences had poly-A and poly-T stretch of similar length that is predicted to form a stable hairpin. We show that supervised learning using the frequency chaos game representation of the CR can be used to differentiate mosquito genera from their dipteran relatives.
Collapse
Affiliation(s)
- Thomas M R Harrison
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington St. Winnipeg, Manitoba, R3M 3E4, Canada
| | - Josip Rudar
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington St. Winnipeg, Manitoba, R3M 3E4, Canada
| | - Nicholas Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Royce Steeves
- Gulf Fisheries Centre, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - David R Lapen
- Ottawa Research Development Centre, Agriculture & Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Donald Baird
- Environment and Climate Change Canada, Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Nellie Gagné
- Gulf Fisheries Centre, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - Oliver Lung
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington St. Winnipeg, Manitoba, R3M 3E4, Canada.
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Xing ZP, Liang X, Wang X, Hu HY, Huang YX. Novel gene rearrangement pattern in mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994: new gene order in Encyrtidae (Hymenoptera, Chalcidoidea). Zookeys 2022; 1124:1-21. [PMID: 36762364 PMCID: PMC9836654 DOI: 10.3897/zookeys.1124.83811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022] Open
Abstract
Studies of mitochondrial genomes have a wide range of applications in phylogeny, population genetics, and evolutionary biology. In this study, we sequenced and analyzed the mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994 (Hymenoptera, Encyrtidae). The nearly complete mitogenome of O.plautus was 15,730 bp in size, including 13 PCGs (protein-coding genes), 22 tRNAs, 2 rRNAs, and a nearly complete control region. The nucleotide composition was significantly biased toward adenine and thymine, with an A + T content of 84.6%. We used the reference sequence of Chouioiacunea and calculated the Ka/Ks ratio for each set of PCGs. The highest value of the Ka/Ks ratio within 13 PCGs was found in nad2 with 1.1, suggesting that they were subjected to positive selection. This phenomenon was first discovered in Encyrtidae. Compared with other encyrtid mitogenomes, a translocation of trnW was found in O.plautus, which was the first of its kind to be reported in Encyrtidae. Comparing with ancestral arrangement pattern, wasps reflect extensive gene rearrangements. Although these insects have a high frequency of gene rearrangement, species from the same family and genus tend to have similar gene sequences. As the number of sequenced mitochondrial genomes in Chalcidoidea increases, we summarize some of the rules of gene rearrangement in Chalcidoidea, that is four gene clusters with frequent gene rearrangements. Ten mitogenomes were included to reconstruct the phylogenetic trees of Encyrtidae based on both 13 PCGs (nucleotides of protein coding genes) and AA matrix (amino acids of protein coding genes) using the maximum likelihood and Bayesian inference methods. The phylogenetic tree reconstructed by Bayesian inference based on AA data set showed that Aenasiusarizonensis and Metaphycuseriococci formed a clade representing Tetracneminae. The remaining six species formed a monophyletic clade representing Encyrtinae. In Encyrtinae, Encyrtus forms a monophyletic clade as a sister group to the clade formed by O.plautus and Diaphorencyrtusaligarhensis. Encyrtussasakii and Encyrtusrhodooccisiae were most closely related species in this monophyletic clade. In addition, gene rearrangements can provide a valuable information for molecular phylogenetic reconstruction. These results enhance our understanding of phylogenetic relationships among Encyrtidae.
Collapse
Affiliation(s)
- Zhi-Ping Xing
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xin Liang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xu Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Hao-Yuan Hu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yi-Xin Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
11
|
da Silva e Silva LH, da Silva FS, Medeiros DBDA, Cruz ACR, da Silva SP, Aragão ADO, Dias DD, Sena do Nascimento BL, Júnior JWR, Vieira DBR, Monteiro HADO, Neto JPN. Description of the mitogenome and phylogeny of Aedes spp. (Diptera: Culicidae) from the Amazon region. Acta Trop 2022; 232:106500. [PMID: 35584780 DOI: 10.1016/j.actatropica.2022.106500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/01/2022]
Abstract
The genus Aedes (Diptera: Culicidae) includes species of great epidemiological relevance, particularly involved in transmission cycles of leading arboviruses in the Brazilian Amazon region, such as the Zika virus (ZIKV), Dengue virus (DENV), Yellow fever virus (YFV), and Chikungunya virus (CHIKV). We report here the first putatively complete sequencing of the mitochondrial genomes of Brazilian populations of the species Aedes albopictus, Aedes scapularis and Aedes serratus. The sequences obtained showed an average length of 14,947 bp, comprising 37 functional subunits, typical in animal mitochondria (13 PCGs, 22 tRNA, and 2 rRNA). The phylogeny reconstructed by Maximum likelihood method, based on the concatenated sequences of all 13 PCGs produced at least two non-directly related groupings, composed of representatives of the subgenus Ochlerotatus and Stegomyia of the genus Aedes. The data and information produced here may be useful for future taxonomic and evolutionary studies of the genus Aedes, as well as the Culicidae family.
Collapse
|