1
|
Sambo D, Kinstler E, Lin Y, Goldman D. Differential effects of prenatal alcohol exposure on brain growth reveals early upregulation of cell cycle and apoptosis and delayed downregulation of metabolism in affected offspring. PLoS One 2024; 19:e0311683. [PMID: 39602444 PMCID: PMC11602053 DOI: 10.1371/journal.pone.0311683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) encompasses the deleterious consequences of Prenatal Alcohol Exposure (PAE), including developmental delay, microcephaly, dysmorphologies, and cognitive and behavioral issues. The dose and timing of alcohol exposure, maternal and environmental factors, and genetics all impact FASD outcomes, but differential susceptibility and resiliency to PAE remains poorly understood. In this study, we examined the differential effects of PAE during early mouse development on brain growth and gene expression. Brains were weighed and collected either 24 hours or five days after treatment. We then performed transcriptomics to determine whether offspring differentially affected by PAE, by brain weight, also differ in gene expression, despite having the same genetic background, alcohol exposure, and maternal factors. We found within litter variation in brain weights after PAE, and classified offspring as having normal, middle, and low-weight brains relative to saline-treated controls. The normal-weight brains showed no significant differences in gene expression, suggesting these offspring were both phenotypically and transcriptionally unaffected by PAE. While both middle- and low-weight brains showed changes in gene expression, the middle-weight brains showed the most robust transcriptome differences. Twenty-four hours after PAE, we saw an upregulation of cell cycle and apoptosis in affected offspring, whereas at roughly a week later, we saw a downregulation of metabolic processes. Overall, these findings highlight variability in response to PAE and demonstrate the molecular processes involved in offspring phenotypically affected by alcohol.
Collapse
Affiliation(s)
- Danielle Sambo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ethan Kinstler
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
2
|
Hwang HM, Yamashita S, Matsumoto Y, Ito M, Edwards A, Sasaki J, Dutta DJ, Mohammad S, Yamashita C, Wetherill L, Schwantes-An TH, Abreu M, Mahnke AH, Mattson SN, Foroud T, Miranda RC, Chambers C, Torii M, Hashimoto-Torii K. Reduction of APOE accounts for neurobehavioral deficits in fetal alcohol spectrum disorders. Mol Psychiatry 2024; 29:3364-3380. [PMID: 38734844 PMCID: PMC11541007 DOI: 10.1038/s41380-024-02586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
A hallmark of fetal alcohol spectrum disorders (FASD) is neurobehavioral deficits that still do not have effective treatment. Here, we present that reduction of Apolipoprotein E (APOE) is critically involved in neurobehavioral deficits in FASD. We show that prenatal alcohol exposure (PAE) changes chromatin accessibility of Apoe locus, and causes reduction of APOE levels in both the brain and peripheral blood in postnatal mice. Of note, postnatal administration of an APOE receptor agonist (APOE-RA) mitigates motor learning deficits and anxiety in those mice. Several molecular and electrophysiological properties essential for learning, which are altered by PAE, are restored by APOE-RA. Our human genome-wide association study further reveals that the interaction of PAE and a single nucleotide polymorphism in the APOE enhancer which chromatin is closed by PAE in mice is associated with lower scores in the delayed matching-to-sample task in children. APOE in the plasma is also reduced in PAE children, and the reduced level is associated with their lower cognitive performance. These findings suggest that controlling the APOE level can serve as an effective treatment for neurobehavioral deficits in FASD.
Collapse
Grants
- F31AA027693 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AA021886 NIAAA NIH HHS
- R01 AA026272 NIAAA NIH HHS
- U01 AA014834 NIAAA NIH HHS
- U01AA014834 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U24AA030169 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AA014835 NIAAA NIH HHS
- P50HD105328 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01AA014835 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 AA025215 NIAAA NIH HHS
- R01AA026272 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AA026103 NIAAA NIH HHS
- R01AA025215 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01AA014809 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01AA025103 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P50 HD105328 NICHD NIH HHS
- U24 AA030169 NIAAA NIH HHS
- U01 AA014809 NIAAA NIH HHS
- F31 AA027693 NIAAA NIH HHS
- District of Columbia Intellectual and Developmental Disabilities Research Center (DC-IDDRC) Award program
- Lilly Endowment
- Texas A&M University’s Accountability, Climate, Equity, and Scholarship (ACES) Faculty Fellows Program
Collapse
Affiliation(s)
- Hye M Hwang
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Yu Matsumoto
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Mariko Ito
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo, Japan
| | - Alex Edwards
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Junko Sasaki
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo, Japan
| | - Dipankar J Dutta
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Shahid Mohammad
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Chiho Yamashita
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marco Abreu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Christina Chambers
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Masaaki Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
4
|
Basel A, Bhadsavle SS, Scaturro KZ, Parkey GK, Gaytan MN, Patel JJ, Thomas KN, Golding MC. Parental Alcohol Exposures Associate with Lasting Mitochondrial Dysfunction and Accelerated Aging in a Mouse Model. Aging Dis 2024:AD.2024.0722. [PMID: 39122451 DOI: 10.14336/ad.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Although detrimental changes in mitochondrial morphology and function are widely described symptoms of fetal alcohol exposure, no studies have followed these mitochondrial deficits into adult life or determined if they predispose individuals with fetal alcohol spectrum disorders (FASDs) to accelerated biological aging. Here, we used a multiplex preclinical mouse model to compare markers of cellular senescence and age-related outcomes induced by maternal, paternal, and dual-parental alcohol exposures. We find that even in middle life (postnatal day 300), the adult offspring of alcohol-exposed parents exhibited significant increases in markers of stress-induced premature cellular senescence in the brain and liver, including an upregulation of cell cycle inhibitory proteins and increased senescence-associated β-galactosidase activity. Strikingly, in the male offspring, we observe an interaction between maternal and paternal alcohol use, with histological indicators of accelerated age-related liver disease in the dual-parental offspring exceeding those induced by either maternal or paternal alcohol use alone. Our studies indicate that chronic parental alcohol use causes enduring mitochondrial dysfunction in offspring, resulting in a reduced NAD+/NAHD ratio and altered expression of the NAD+-dependent deacetylases SIRT1 and SIRT3. These observations suggest that some aspects of FASDs may be linked to accelerated aging due to programmed changes in the regulation of mitochondrial function and cellular bioenergetics.
Collapse
|
5
|
Hilal FF, Jeanblanc J, Deschamps C, Naassila M, Pierrefiche O, Ben Hamida S. Epigenetic drugs and psychedelics as emerging therapies for alcohol use disorder: insights from preclinical studies. J Neural Transm (Vienna) 2024; 131:525-561. [PMID: 38554193 DOI: 10.1007/s00702-024-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.
Collapse
Affiliation(s)
- Fahd François Hilal
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Chloé Deschamps
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Mickael Naassila
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| | - Olivier Pierrefiche
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Sami Ben Hamida
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| |
Collapse
|
6
|
Shi C, Jiao P, Chen Z, Ma L, Yao S. Exploring the roles of noncoding RNAs in craniofacial abnormalities: A systematic review. Dev Biol 2024; 505:75-84. [PMID: 37923186 DOI: 10.1016/j.ydbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Congenital craniofacial abnormalities are congenital anomalies of variable expressivity and severity with a recognizable set of abnormalities, which are derived from five identifiable primordial structures. They can occur unilaterally or bilaterally and include various malformations such as cleft lip with/without palate, craniosynostosis, and craniofacial microsomia. To date, the molecular etiology of craniofacial abnormalities is largely unknown. Noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, circular RNAs and PIWI-interacting RNAs, function as major regulators of cellular epigenetic hallmarks via regulation of various molecular and cellular processes. Recently, aberrant expression of ncRNAs has been implicated in many diseases, including craniofacial abnormalities. Consequently, this review focuses on the role and mechanism of ncRNAs in regulating craniofacial development in the hope of providing clues to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Cheng Shi
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China; Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Pengfei Jiao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China
| | - Zhiyi Chen
- Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
| | - Siyue Yao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China.
| |
Collapse
|
7
|
Boschen KE, Dragicevich CJ, Fish EW, Hepperla AJ, Simon JM, Parnell SE. Gastrulation-stage alcohol exposure induces similar rates of craniofacial malformations in male and female C57BL/6J mice. Birth Defects Res 2024; 116:e2292. [PMID: 38116840 PMCID: PMC10872400 DOI: 10.1002/bdr2.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Prenatal alcohol exposure during gastrulation (embryonic day [E] 7 in mice, ~3rd week of human pregnancy) impairs eye, facial, and cortical development, recapitulating birth defects characteristic of Fetal Alcohol Syndrome (FAS). However, it is not known whether the prevalence or severity of craniofacial features associated with FAS is affected by biological sex. METHODS The current study administered either alcohol (2.9 g/kg, two i.p. doses, 4 hr apart) or vehicle to pregnant C57BL/6J females on E7, prior to gonadal sex differentiation, and assessed fetal morphology at E17. RESULTS Whereas sex did not affect fetal size in controls, alcohol-exposed females were smaller than both control females and alcohol-treated males. Alcohol exposure increased the incidence of eye defects to a similar degree in males and females. Together, these data suggest that females might be more sensitive to the general developmental effects of alcohol, but not effects specific to the craniofacies. Whole transcriptomic analysis of untreated E7 embryos found 214 differentially expressed genes in females vs. males, including those in pathways related to cilia and mitochondria, histone demethylase activity, and pluripotency. CONCLUSION Gastrulation-stage alcohol induces craniofacial malformations in male and female mouse fetuses at similar rates and severity, though growth deficits are more prevalent females. These findings support the investigation of biological sex as a contributing factor in prenatal alcohol studies.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Constance J. Dragicevich
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W. Fish
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Austin J. Hepperla
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Miller GM, Brant TS, Goodrich JA, Kugel JF. Short-term exposure to ethanol induces transcriptional changes in nontumorigenic breast cells. FEBS Open Bio 2023; 13:1941-1952. [PMID: 37572351 PMCID: PMC10549231 DOI: 10.1002/2211-5463.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/15/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths in women. Many genetic and behavioral risk factors can contribute to the initiation and progression of breast cancer, one being alcohol consumption. Numerous epidemiological studies have established a positive correlation between alcohol consumption and breast cancer; however, the molecular basis for this link remains ill defined. Elucidating ethanol-induced changes to global transcriptional programming in breast cells is important to ultimately understand how alcohol and breast cancer are connected mechanistically. We investigated induced transcriptional changes in response to a short cellular exposure to moderate levels of alcohol. We treated the nontumorigenic breast cell line MCF10A and the tumorigenic breast cell lines MDA-MB-231 and MCF7, with ethanol for 6 h, and then captured the changes to ongoing transcription using 4-thiouridine metabolic labeling followed by deep sequencing. Only the MCF10A cell line exhibited statistically significant changes in newly transcribed RNA in response to ethanol treatment. Further experiments revealed that some ethanol-upregulated genes are sensitive to the dose of alcohol treatment, while others are not. Gene Ontology and biochemical pathway analyses revealed that ethanol-upregulated genes in MCF10A cells are enriched in biological functions that could contribute to cancer development.
Collapse
Affiliation(s)
| | - Tyler S. Brant
- Department of BiochemistryUniversity of Colorado BoulderCOUSA
| | | | | |
Collapse
|
9
|
Epigenetics in fetal alcohol spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:211-239. [PMID: 37019593 DOI: 10.1016/bs.pmbts.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During pregnancy, alcohol abuse and its detrimental effects on developing offspring are major public health, economic and social challenges. The prominent characteristic attributes of alcohol (ethanol) abuse during pregnancy in humans are neurobehavioral impairments in offspring due to damage to the central nervous system (CNS), causing structural and behavioral impairments that are together named fetal alcohol spectrum disorder (FASD). Development-specific alcohol exposure paradigms were established to recapitulate the human FASD phenotypes and establish the underlying mechanisms. These animal studies have offered some critical molecular and cellular underpinnings likely to account for the neurobehavioral impairments associated with prenatal ethanol exposure. Although the pathogenesis of FASD remains unclear, emerging literature proposes that the various genomic and epigenetic components that cause the imbalance in gene expression can significantly contribute to the development of this disease. These studies acknowledged numerous immediate and enduring epigenetic modifications, such as methylation of DNA, post-translational modifications (PTMs) of histone proteins, and regulatory networks related to RNA, using many molecular approaches. Methylated DNA profiles, PTMs of histone proteins, and RNA-regulated expression of genes are essential for synaptic and cognitive behavior. Thus, offering a solution to many neuronal and behavioral impairments reported in FASD. In the current chapter, we review the recent advances in different epigenetic modifications that cause the pathogenesis of FASD. The information discussed can help better explain the pathogenesis of FASD and thereby might provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
|
10
|
Kim HB, Lu Y, Oh SC, Morris J, Miyashiro K, Kim J, Eberwine J, Sul JY. Astrocyte ethanol exposure reveals persistent and defined calcium response subtypes and associated gene signatures. J Biol Chem 2022; 298:102147. [PMID: 35716779 PMCID: PMC9293641 DOI: 10.1016/j.jbc.2022.102147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022] Open
Abstract
Astrocytes play a critical role in brain function, but their contribution during ethanol (EtOH) consumption remains largely understudied. In light of recent findings on the heterogeneity of astrocyte physiology and gene expression, an approach with the ability to identify subtypes and capture this heterogeneity is necessary. Here, we combined measurements of calcium signaling and gene expression to define EtOH-induced astrocyte subtypes. In the absence of a demonstrated EtOH receptor, EtOH is believed to have effects on the function of many receptors and downstream biological cascades that underlie calcium responsiveness. This mechanism of EtOH-induced calcium signaling is unknown and this study provides the first step in understanding the characteristics of cells displaying these observed responses. To characterize underlying astrocyte subtypes, we assessed the correlation between calcium signaling and astrocyte gene expression signature in response to EtOH. We found that various EtOH doses increased intracellular calcium levels in a subset of astrocytes, distinguishing three cellular response types and one nonresponsive subtype as categorized by response waveform properties. Furthermore, single-cell RNA-seq analysis of astrocytes from the different response types identified type-enriched discriminatory gene expression signatures. Combining single-cell calcium responses and gene expression analysis identified specific astrocyte subgroups among astrocyte populations defined by their response to EtOH. This result provides a basis for identifying the relationship between astrocyte susceptibility to EtOH and corresponding measurable markers of calcium signaling and gene expression, which will be useful to investigate potential subgroup-specific influences of astrocytes on the physiology and pathology of EtOH exposure in the brain.
Collapse
Affiliation(s)
- Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seonkyung C Oh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacqueline Morris
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Miyashiro
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jai-Yoon Sul
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Bedi YS, Wang H, Thomas KN, Basel A, Prunier J, Robert C, Golding MC. Alcohol induced increases in sperm Histone H3 lysine 4 trimethylation correlate with increased placental CTCF occupancy and altered developmental programming. Sci Rep 2022; 12:8839. [PMID: 35614060 PMCID: PMC9130987 DOI: 10.1038/s41598-022-12188-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Using a mouse model, studies by our group reveal that paternal preconception alcohol intake affects offspring fetal-placental growth, with long-lasting consequences on adult metabolism. Here, we tested the hypothesis that chronic preconception male alcohol exposure impacts histone enrichment in sperm and that these changes are associated with altered developmental programming in the placenta. Using chromatin immunoprecipitation, we find alcohol-induced increases in sperm histone H3 lysine 4 trimethylation (H3K4me3) that map to promoters and presumptive enhancer regions enriched in genes driving neurogenesis and craniofacial development. Given the colocalization of H3K4me3 with the chromatin binding factor CTCF across both sperm and embryos, we next examined CTCF localization in the placenta. We find global changes in CTCF binding within placentae derived from the male offspring of alcohol-exposed sires. Furthermore, altered CTCF localization correlates with dysregulated gene expression across multiple gene clusters; however, these transcriptional changes only occur in male offspring. Finally, we identified a correlation between genomic regions exhibiting alcohol-induced increases in sperm H3K4me3 and increased CTCF binding in male placentae. Collectively, our analysis demonstrates that the chromatin landscape of sperm is sensitive to chronic alcohol exposure and that a subset of these affected regions exhibits increased placental CTCF enrichment.
Collapse
Affiliation(s)
- Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Haiqing Wang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Julien Prunier
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Harvey DC, Baer RJ, Bandoli G, Chambers CD, Jelliffe-Pawlowski LL, Kumar SR. Association of Alcohol Use Diagnostic Codes in Pregnancy and Offspring Conotruncal and Endocardial Cushion Heart Defects. J Am Heart Assoc 2022; 11:e022175. [PMID: 35014860 PMCID: PMC9238516 DOI: 10.1161/jaha.121.022175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The pathogenesis of congenital heart disease (CHD) remains largely unknown, with only a small percentage explained solely by genetic causes. Modifiable environmental risk factors, such as alcohol, are suggested to play an important role in CHD pathogenesis. We sought to evaluate the association between prenatal alcohol exposure and CHD to gain insight into which components of cardiac development may be most vulnerable to the teratogenic effects of alcohol. Methods and Results This was a retrospective analysis of hospital discharge records from the California Office of Statewide Health Planning and Development and linked birth certificate records restricted to singleton, live‐born infants from 2005 to 2017. Of the 5 820 961 births included, 16 953 had an alcohol‐related International Classification of Diseases, Ninth and Tenth Revisions (ICD‐9; ICD‐10) code during pregnancy. Log linear regression was used to calculate risk ratios (RR) for CHD among individuals with an alcohol‐related ICD‐9 and ICD10 code during pregnancy versus those without. Three models were created: (1) unadjusted, (2) adjusted for maternal demographic factors, and (3) adjusted for maternal demographic factors and comorbidities. Maternal alcohol‐related code was associated with an increased risk for CHD in all models (RR, 1.33 to 1.84); conotruncal (RR, 1.62 to 2.11) and endocardial cushion (RR, 2.71 to 3.59) defects were individually associated with elevated risk in all models. Conclusions Alcohol‐related diagnostic codes in pregnancy were associated with an increased risk of an offspring with a CHD, with a particular risk for endocardial cushion and conotruncal defects. The mechanistic basis for this phenotypic enrichment requires further investigation.
Collapse
Affiliation(s)
- Drayton C Harvey
- Department of Surgery Keck School of Medicine of University of Southern California Los Angeles CA
| | - Rebecca J Baer
- Department of Pediatrics and Herbert Wertheim School of Public Health and Longevity Science University of California San Diego La Jolla CA.,The California Preterm Birth Initiative University of California San Francisco San Francisco CA.,Department of Obstetrics, Gynecology and Reproductive Sciences University of California San Francisco San Francisco CA
| | - Gretchen Bandoli
- Department of Pediatrics and Herbert Wertheim School of Public Health and Longevity Science University of California San Diego La Jolla CA
| | - Christina D Chambers
- Department of Pediatrics and Herbert Wertheim School of Public Health and Longevity Science University of California San Diego La Jolla CA
| | - Laura L Jelliffe-Pawlowski
- The California Preterm Birth Initiative University of California San Francisco San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco San Francisco CA
| | - S Ram Kumar
- Department of Surgery Keck School of Medicine of University of Southern California Los Angeles CA.,Department of Pediatrics Keck School of Medicine of University of Southern California Los Angeles CA.,Heart Institute, Children's Hospital Los Angeles Los Angeles CA
| |
Collapse
|
13
|
Pinson MR, Chung DD, Adams AM, Scopice C, Payne EA, Sivakumar M, Miranda RC. Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. Aging Dis 2021; 12:1516-1535. [PMID: 34527425 PMCID: PMC8407878 DOI: 10.14336/ad.2021.0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm that links prenatal and early life exposures that occur during crucial periods of development to health outcome and risk of disease later in life. Maternal exposures to stress, some psychoactive drugs and alcohol, and environmental chemicals, among others, may result in functional changes in developing fetal tissues, creating a predisposition for disease in the individual as they age. Extracellular vesicles (EVs) may be mediators of both the immediate effects of exposure during development and early childhood as well as the long-term consequences of exposure that lead to increased risk and disease severity later in life. Given the prevalence of diseases with developmental origins, such as cardiovascular disease, neurodegenerative disorders, osteoporosis, metabolic dysfunction, and cancer, it is important to identify persistent mediators of disease risk. In this review, we take this approach, viewing diseases typically associated with aging in light of early life exposures and discuss the potential role of EVs as mediators of lasting consequences.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amy M Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Chiara Scopice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Monisha Sivakumar
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
14
|
Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari AC. Embryonic Exposure to Ethanol Increases Anxiety-Like Behavior in Fry Zebrafish. Alcohol Alcohol 2021; 55:581-590. [PMID: 32886092 DOI: 10.1093/alcalc/agaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol (Eth) exposure during embryonic development, including several conditions from malformation to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain disorders and drug screening studies due to its genetic and physiology homology to humans added to its transparent eggs and fast development. In this study, we investigated how early ethanol exposure affects zebrafish behavior during the initial growth phase. METHODS Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization. Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance protocol to inquire about morphology and behavioral alterations. RESULTS Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morphological malformations and did not impair associative learning but increased anxiety-like behavior responses and lower exploratory behavior when compared to the control. CONCLUSION Our results demonstrate that one can detect behavioral abnormalities in the zebrafish induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases anxious behavior during young development in zebrafish.
Collapse
Affiliation(s)
| | - Thais Agues-Barbosa
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| |
Collapse
|
15
|
Chung DD, Pinson MR, Bhenderu LS, Lai MS, Patel RA, Miranda RC. Toxic and Teratogenic Effects of Prenatal Alcohol Exposure on Fetal Development, Adolescence, and Adulthood. Int J Mol Sci 2021; 22:ijms22168785. [PMID: 34445488 PMCID: PMC8395909 DOI: 10.3390/ijms22168785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can have immediate and long-lasting toxic and teratogenic effects on an individual’s development and health. As a toxicant, alcohol can lead to a variety of physical and neurological anomalies in the fetus that can lead to behavioral and other impairments which may last a lifetime. Recent studies have focused on identifying mechanisms that mediate the immediate teratogenic effects of alcohol on fetal development and mechanisms that facilitate the persistent toxic effects of alcohol on health and predisposition to disease later in life. This review focuses on the contribution of epigenetic modifications and intercellular transporters like extracellular vesicles to the toxicity of PAE and to immediate and long-term consequences on an individual’s health and risk of disease.
Collapse
|
16
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
17
|
Wallén E, Auvinen P, Kaminen-Ahola N. The Effects of Early Prenatal Alcohol Exposure on Epigenome and Embryonic Development. Genes (Basel) 2021; 12:genes12071095. [PMID: 34356111 PMCID: PMC8303887 DOI: 10.3390/genes12071095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is one of the most significant causes of developmental disability in the Western world. Maternal alcohol consumption during pregnancy leads to an increased risk of neurological deficits and developmental abnormalities in the fetus. Over the past decade, several human and animal studies have demonstrated that alcohol causes alterations in epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. There is an increasing amount of evidence that early pregnancy is a sensitive period for environmental-induced epigenetic changes. It is a dynamic period of epigenetic reprogramming, cell divisions, and DNA replication and, therefore, a particularly interesting period to study the molecular changes caused by alcohol exposure as well as the etiology of alcohol-induced developmental disorders. This article will review the current knowledge about the in vivo and in vitro effects of alcohol exposure on the epigenome, gene regulation, and the phenotype during the first weeks of pregnancy.
Collapse
|
18
|
Programmed suppression of oxidative phosphorylation and mitochondrial function by gestational alcohol exposure correlate with widespread increases in H3K9me2 that do not suppress transcription. Epigenetics Chromatin 2021; 14:27. [PMID: 34130715 PMCID: PMC8207718 DOI: 10.1186/s13072-021-00403-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background A critical question emerging in the field of developmental toxicology is whether alterations in chromatin structure induced by toxicant exposure control patterns of gene expression or, instead, are structural changes that are part of a nuclear stress response. Previously, we used a mouse model to conduct a three-way comparison between control offspring, alcohol-exposed but phenotypically normal animals, and alcohol-exposed offspring exhibiting craniofacial and central nervous system structural defects. In the cerebral cortex of animals exhibiting alcohol-induced dysgenesis, we identified a dramatic increase in the enrichment of dimethylated histone H3, lysine 9 (H3K9me2) within the regulatory regions of key developmental factors driving histogenesis in the brain. However, whether this change in chromatin structure is causally involved in the development of structural defects remains unknown. Results Deep-sequencing analysis of the cortex transcriptome reveals that the emergence of alcohol-induced structural defects correlates with disruptions in the genetic pathways controlling oxidative phosphorylation and mitochondrial function. The majority of the affected pathways are downstream targets of the mammalian target of rapamycin complex 2 (mTORC2), indicating that this stress-responsive complex plays a role in propagating the epigenetic memory of alcohol exposure through gestation. Importantly, transcriptional disruptions of the pathways regulating oxidative homeostasis correlate with the emergence of increased H3K9me2 across genic, repetitive, and non-transcribed regions of the genome. However, although associated with gene silencing, none of the candidate genes displaying increased H3K9me2 become transcriptionally repressed, nor do they exhibit increased markers of canonical heterochromatin. Similar to studies in C. elegans, disruptions in oxidative homeostasis induce the chromatin looping factor SATB2, but in mammals, this protein does not appear to drive increased H3K9me2 or altered patterns of gene expression. Conclusions Our studies demonstrate that changes in H3K9me2 associate with alcohol-induced congenital defects, but that this epigenetic change does not correlate with transcriptional suppression. We speculate that the mobilization of SATB2 and increased enrichment of H3K9me2 may be components of a nuclear stress response that preserve chromatin integrity and interactions under prolonged oxidative stress. Further, we postulate that while this response may stabilize chromatin structure, it compromises the nuclear plasticity required for normal differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00403-w.
Collapse
|
19
|
Genetic and epigenetic modifications of F1 offspring's sperm cells following in utero and lactational combined exposure to nicotine and ethanol. Sci Rep 2021; 11:12311. [PMID: 34112894 PMCID: PMC8192516 DOI: 10.1038/s41598-021-91739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that maternal lifestyle during pregnancy and lactation affects the intrauterine programming of F1 offspring. However, despite the co-use of alcohol and nicotine is a common habit, the effects of exposure to both substances on the reproductive system of F1 male offspring and the underlying mechanisms of developmental programming have not been investigated. The present study aimed to examine pre- and postnatal concurrent exposure to these substances on genetic and epigenetic alterations of sperm cells as well as testis properties of F1 offspring compared with exposure to each substance alone. Pregnant dams in the F0 generation randomly received normal saline, nicotine, ethanol, and combinations throughout full gestation and lactation periods. Sperm cells and testes of F1 male offspring were collected at postnatal day 90 for further experiments. High levels of sperm DNA fragmentation were observed in all exposed offspring. Regarding epigenetic alterations, there was a significant increase in the relative transcript abundance of histone deacetylase 1 and 2 in all exposed sperm cells. Moreover, despite a decrease in the expression level of DNA methyltransferase (DNMT) 3A, no marked differences were found in the expression levels of DNMT1 and 3B in any of the exposed sperm cells compared to non-exposed ones. Interestingly, combined exposure had less prominent effects relative to exposure to each substance alone. The changes in the testicular and sperm parameters were compatible with genetic and epigenetic alterations. However, MDA level as an oxidative stress indicator increased in all exposed pups, which may be responsible for such outputs. In conclusion, maternal co-exposure to these substances exhibited epigenotoxicity effects on germline cells of F1 male offspring, although these effects were less marked relative to exposure to each substance alone. These counteracting effects may be explained by cross-tolerance and probably less impairment of the antioxidant defense system.
Collapse
|
20
|
Alberry B, Laufer BI, Chater-Diehl E, Singh SM. Epigenetic Impacts of Early Life Stress in Fetal Alcohol Spectrum Disorders Shape the Neurodevelopmental Continuum. Front Mol Neurosci 2021; 14:671891. [PMID: 34149355 PMCID: PMC8209299 DOI: 10.3389/fnmol.2021.671891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shiva M Singh
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Histone Methylation Regulation in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094654. [PMID: 33925016 PMCID: PMC8125694 DOI: 10.3390/ijms22094654] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders.
Collapse
|
22
|
Salem NA, Mahnke AH, Konganti K, Hillhouse AE, Miranda RC. Cell-type and fetal-sex-specific targets of prenatal alcohol exposure in developing mouse cerebral cortex. iScience 2021; 24:102439. [PMID: 33997709 PMCID: PMC8105653 DOI: 10.1016/j.isci.2021.102439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure (PAE) results in cerebral cortical dysgenesis. Single-cell RNA sequencing was performed on murine fetal cerebral cortical cells from six timed pregnancies, to decipher persistent cell- and sex-specific effects of an episode of PAE during early neurogenesis. We found, in an analysis of 38 distinct neural subpopulations across 8 lineage subtypes, that PAE altered neural maturation and cell cycle and disrupted gene co-expression networks. Whereas most differentially regulated genes were inhibited, particularly in females, PAE also induced sex-independent neural expression of fetal hemoglobin, a presumptive epigenetic stress adaptation. PAE inhibited Bcl11a, Htt, Ctnnb1, and other upstream regulators of differentially expressed genes and inhibited several autism-linked genes, suggesting that neurodevelopmental disorders share underlying mechanisms. PAE females exhibited neural loss of X-inactivation, with correlated activation of autosomal genes and evidence for spliceosome dysfunction. Thus, episodic PAE persistently alters the developing neural transcriptome, contributing to sex- and cell-type-specific teratology. The neurogenic murine fetal cortex contains about 33 distinct cell subtypes Prenatal Alcohol Exposure (PAE) resulted in sex-specific alterations in developmental trajectory and cell cycle PAE females exhibited neural loss of X-inactivation and spliceosomal dysfunction PAE induced sex-independent neural expression of fetal hemoglobin gene transcripts
Collapse
Affiliation(s)
- Nihal A. Salem
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
- Corresponding author
| |
Collapse
|
23
|
Salem NA, Mahnke AH, Tseng AM, Garcia CR, Jahromi HK, Geoffroy CG, Miranda RC. A novel Oct4/Pou5f1-like non-coding RNA controls neural maturation and mediates developmental effects of ethanol. Neurotoxicol Teratol 2021; 83:106943. [PMID: 33221301 PMCID: PMC7856281 DOI: 10.1016/j.ntt.2020.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
Prenatal ethanol exposure can result in loss of neural stem cells (NSCs) and decreased brain growth. Here, we assessed whether a noncoding RNA (ncRNA) related to the NSC self-renewal factor Oct4/Pou5f1, and transcribed from a processed pseudogene locus on mouse chromosome 9 (mOct4pg9), contributed to the loss of NSCs due to ethanol. Mouse fetal cortical-derived NSCs, cultured ex vivo to mimic the early neurogenic environment of the fetal telencephalon, expressed mOct4pg9 ncRNA at significantly higher levels than the parent Oct4/Pou5f1 mRNA. Ethanol exposure increased expression of mOct4pg9 ncRNA, but decreased expression of Oct4/Pou5f1. Gain- and loss-of-function analyses indicated that mOct4pg9 overexpression generally mimicked effects of ethanol exposure, resulting in increased proliferation and expression of transcripts associated with neural maturation. Moreover, mOct4pg9 associated with Ago2 and with miRNAs, including the anti-proliferative miR-328-3p, whose levels were reduced following mOct4pg9 overexpression. Finally, mOct4pg9 inhibited Oct4/Pou5f1-3'UTR-dependent protein translation. Consistent with these observations, data from single-cell transcriptome analysis showed that mOct4pg9-expressing progenitors lack Oct4/Pou5f1, but instead overexpress transcripts for increased mitosis, suggesting initiation of transit amplification. Collectively, these data suggest that the inhibitory effects of ethanol on brain development are explained, in part, by a novel ncRNA which promotes loss of NSC identity and maturation.
Collapse
Affiliation(s)
- Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cadianna R Garcia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hooman K Jahromi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
24
|
Markouli M, Strepkos D, Chlamydas S, Piperi C. Histone lysine methyltransferase SETDB1 as a novel target for central nervous system diseases. Prog Neurobiol 2020; 200:101968. [PMID: 33279625 DOI: 10.1016/j.pneurobio.2020.101968] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/31/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic changes that regulate chromatin structure have a major impact in genome stabilization and maintenance of cellular homeostasis, been recently implicated in the pathophysiology of central nervous system (CNS). Aberrant expression and dysregulation of histone modification enzymes has been associated with the development of several CNS disorders, revealing these enzymes as putative targets for drug development and novel therapeutic approaches. SETDB1 is a histone lysine methyltransferase responsible for the di- and tri-methylation of histone 3 (H3) at lysine (K) 9 in euchromatic regions further promoting gene silencing through heterochromatin formation. By this way, SETDB1 has been shown to regulate gene expression and influence normal cellular homeostasis required for nervous system function while it is also implicated in the pathogenesis of CNS disorders. Among them, brain tumors, schizophrenia, Huntington's disease, autism spectrum disorders along with alcohol-induced fetal neurobehavioral deficits and Prader-Willi syndrome are representative examples, indicating the aberrant expression and function of SETDB1 as a common pathogenic factor. In this review, we focus on SETDB1-associated molecular mechanisms implicated in CNS physiology and disease while we further discuss current pharmacological approaches targeting SETDB1 enzymatic activity with beneficial effects.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
25
|
Bohnsack JP, Pandey SC. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:1-62. [PMID: 33461661 DOI: 10.1016/bs.irn.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of morbidity and mortality. Despite AUD's substantial contributions to lost economic productivity and quality of life, there are only a limited number of approved drugs for treatment of AUD in the United States. This chapter will update progress made on the epigenetic basis of AUD, with particular focus on histone post-translational modifications and DNA methylation and how these two epigenetic mechanisms interact to contribute to neuroadaptive processes leading to initiation, maintenance and progression of AUD pathophysiology. We will also evaluate epigenetic therapeutic strategies that have arisen from preclinical models of AUD and epigenetic biomarkers that have been discovered in human populations with AUD.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
26
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
27
|
Zhu T, Brown AP, Ji H. The Emerging Role of Ten-Eleven Translocation 1 in Epigenetic Responses to Environmental Exposures. Epigenet Insights 2020; 13:2516865720910155. [PMID: 32166220 PMCID: PMC7054729 DOI: 10.1177/2516865720910155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Mounting evidence from epidemiological studies and animal models has linked exposures to environmental factors to changes in epigenetic markers, especially in DNA methylation. These epigenetic changes may lead to dysregulation of molecular processes and functions and mediate the impact of environmental exposures in complex diseases. However, detailed molecular events that result in epigenetic changes following exposures remain unclear. Here, we review the emerging evidence supporting a critical role of ten-eleven translocation 1 (TET1) in mediating these processes. Targeting TET1 and its associated pathways may have therapeutic potential in alleviating negative impacts of environmental exposures, preventing and treating exposure-related diseases.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Anthony P Brown
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Hong Ji
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
- Department of Anatomy, Physiology &
Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,
USA
| |
Collapse
|
28
|
Alberry BL, Singh SM. Hippocampal DNA Methylation in a Mouse Model of Fetal Alcohol Spectrum Disorder That Includes Maternal Separation Stress Only Partially Explains Changes in Gene Expression. Front Genet 2020; 11:70. [PMID: 32174962 PMCID: PMC7056727 DOI: 10.3389/fgene.2020.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is characterized by developmental and behavioral deficits caused by maternal drinking during pregnancy. Children born with FASD often face additional stresses, including maternal separation, that add yet additional deficits. The mechanism associated with this interaction is not known. We have used a mouse model for prenatal ethanol exposure and maternal separation to demonstrate that the combination of the two treatments results in more than additive deficits. Furthermore, the behavioral deficits are associated with changes in hippocampal gene expression that persist into adulthood. What initiates and maintains these changes remains to be established and forms the focus of this report. Specifically, MeDIP-Seq was used to assess if changes in promoter DNA methylation are affected by exposure to prenatal ethanol and maternal separation including its relationship to gene expression. The novel results show that different sets of genes implicated by promoter DNA methylation are affected by both treatments independently, and a relatively unique set of genes are affected by the combination of the two treatments. Prenatal ethanol exposure leads to altered promoter DNA methylation at genes important for transcriptional regulation. Maternal separation leads to changes at genes important for histone methylation and immune response, and the combination of two treatments results in DNA methylation changes at genes important for neuronal migration and immune response. Our dual results from the same hippocampal samples suggest there is minimal complementarity between changes in promoter DNA methylation and gene expression, although genes involved tend to be critical for brain development and function. While remaining to be validated, such results argue that mechanisms beyond promoter DNA methylation must be involved in lasting gene expression alterations leading to behavioral deficits implicated in FASD. They may facilitate early and reliable diagnosis, as well as novel strategies for the amelioration of FASD-related deficits.
Collapse
Affiliation(s)
| | - Shiva M. Singh
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
29
|
Schaffner SL, Lussier AA, Baker JA, Goldowitz D, Hamre KM, Kobor MS. Neonatal Alcohol Exposure in Mice Induces Select Differentiation- and Apoptosis-Related Chromatin Changes Both Independent of and Dependent on Sex. Front Genet 2020; 11:35. [PMID: 32117449 PMCID: PMC7026456 DOI: 10.3389/fgene.2020.00035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023] Open
Abstract
Prenatal alcohol exposure (PAE) affects many aspects of physiology and behavior, including brain development. Specifically, ethanol can influence expression of genes important for brain growth, including chromatin modifiers. Ethanol can also increase apoptotic cell death in the brain and alter epigenetic profiles such as modifications to histones and DNA methylation. Although differential sex outcomes and disruptions to the function of multiple brain regions have been reported in fetal alcohol spectrum disorder (FASD), the majority of our knowledge on molecular epigenetic and apoptotic dysregulation in PAE is based on data from males and is sometimes limited to assessments of the whole brain or one brain region. Here, we examined histone modifications, DNA methylation, and expression of genes involved in differentiation and proliferation related-chromatin modifications and apoptosis in the cerebral cortex and cerebellum of C57BL/6J mice exposed to an acute alcohol challenge on postnatal day 7, with a focus on differential outcomes between sexes and brain regions. We found that neonatal alcohol exposure altered histone modifications, and impacted expression of a select few chromatin modifier and apoptotic genes in both the cortex and cerebellum. The results were observed primarily in a sex-independent manner, although some additional trends toward sexual dimorphisms were observed. Alcohol exposure induced trends toward increased bulk H3K4me3 levels, increased Kmt2e expression, and elevated levels of Casp6 mRNA and bulk γH2A.X. Additional trends indicated that ethanol may impact Kdm4a promoter DNA methylation levels and bulk levels of the histone variant H2A.Z, although further studies are needed. We comprehensively examined effects of ethanol exposure across different sexes and brain regions, and our results suggest that major impacts of ethanol on bulk chromatin modifications underlying differentiation and apoptosis may be broadly applicable across the rodent cortex and cerebellum in both sexes.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alexandre A. Lussier
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dan Goldowitz
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute – Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Human Early Learning Partnership, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Amiri S, Davie JR, Rastegar M. Chronic Ethanol Exposure Alters DNA Methylation in Neural Stem Cells: Role of Mouse Strain and Sex. Mol Neurobiol 2020; 57:650-667. [PMID: 31414368 DOI: 10.1007/s12035-019-01728-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) is considered as a risk factor for the development of fetal alcohol spectrum disorders (FASD). Evidence indicates that PAE affects epigenetic mechanisms (such as DNA methylation) and alters the normal differentiation and development of neural stem cells (NSC) in the fetal brain. However, PAE effects depend on several factors such as sex and strain of the studied subjects. Here, we investigated whether murine sex and strain contribute to the effects of chronic ethanol exposure on DNA methylation machinery of differentiating NSC. Further, the effects of PAE on glial lineage (including both astrocytes and oligodendrocytes) in a sex- and strain-dependent manner have not been studied yet. To examine the effects of chronic ethanol exposure on gliogenesis, we exposed differentiating NSC to glio-inductive culture conditions. Applying a standard in vitro model system, we treated male and female differentiating NSC (obtained from the forebrain of CD1 and C57BL/6 embryos at embryonic day 14.5) with chronic ethanol exposure (70 mM) for 8 days. We show that ethanol induces global DNA hypomethylation, while altering the expression of DNA methylation-related genes in a sex- and strain-specific manner. The observed change in cellular DNA methylation levels was associated with altered expression of glial markers CNPASE, GFAP, and OLIG2 in CD1 (but not C57BL/6) cells. We conclude that the impact of ethanol effect on DNA methylation is dependent on cellular sex and strain. Also, ethanol impact on neural stem cell fate commitment was only detected in cells isolated from CD1 mouse strain, but not in C57BL/6 cells. The results of the current study provide evidence that sex and strain of rodents (C57BL/6 and CD1) during gestation are important factors, which affect alcohol effects on NSC differentiation and DNA methylation. Results of this study may also help in interpreting data on the developmental toxicity of many compounds during the gestational period.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
31
|
Abstract
Emerging evidence suggests that epigenetic regulation is dependent on metabolic state, and implicates specific metabolic factors in neural functions that drive behaviour1. In neurons, acetylation of histones relies on the metabolite acetyl-CoA, which is produced from acetate by chromatin-bound acetyl-CoA synthetase 2 (ACSS2)2. Notably, the breakdown of alcohol in the liver leads to a rapid increase in levels of blood acetate3, and alcohol is therefore a major source of acetate in the body. Histone acetylation in neurons may thus be under the influence of acetate that is derived from alcohol4, with potential effects on alcohol-induced gene expression in the brain, and on behaviour5. Here, using in vivo stable-isotope labelling in mice, we show that the metabolism of alcohol contributes to rapid acetylation of histones in the brain, and that this occurs in part through the direct deposition of acetyl groups that are derived from alcohol onto histones in an ACSS2-dependent manner. A similar direct deposition was observed when mice were injected with heavy-labelled acetate in vivo. In a pregnant mouse, exposure to labelled alcohol resulted in the incorporation of labelled acetyl groups into gestating fetal brains. In isolated primary hippocampal neurons ex vivo, extracellular acetate induced transcriptional programs related to learning and memory, which were sensitive to ACSS2 inhibition. We show that alcohol-related associative learning requires ACSS2 in vivo. These findings suggest that there is a direct link between alcohol metabolism and gene regulation, through the ACSS2-dependent acetylation of histones in the brain.
Collapse
|
32
|
Chang RC, Thomas KN, Bedi YS, Golding MC. Programmed increases in LXRα induced by paternal alcohol use enhance offspring metabolic adaptation to high-fat diet induced obesity. Mol Metab 2019; 30:161-172. [PMID: 31767168 PMCID: PMC6807343 DOI: 10.1016/j.molmet.2019.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives Paternally inherited alterations in epigenetic programming are emerging as relevant factors in numerous disease states, including the growth and metabolic defects observed in fetal alcohol spectrum disorders. In rodents, chronic paternal alcohol use induces fetal growth restriction, as well as sex-specific alterations in insulin signaling and lipid homeostasis in the offspring. Based on previous studies, we hypothesized that the observed metabolic irregularities are the consequence of paternally inherited alterations liver x receptor (LXR) activity. Methods Male offspring of alcohol-exposed sires were challenged with a high-fat diet and the molecular pathways controlling glucose and lipid homeostasis assayed for LXR-induced alterations. Results Similar to findings in studies employing LXR agonists we found that the male offspring of alcohol-exposed sires display resistance to diet-induced obesity and improved glucose homeostasis when challenged with a high-fat diet. This improved metabolic adaptation is mediated by LXRα trans-repression of inflammatory cytokines, releasing IKKβ inhibition of the insulin signaling pathway. Interestingly, paternally programmed increases in LXRα expression are liver-specific and do not manifest in the pancreas or visceral fat. Conclusions These studies identify LXRα as a key mediator of the long-term metabolic alterations induced by preconception paternal alcohol use. Chronic paternal alcohol use induces up-regulation of LXRα in the male offspring. Male offspring of alcohol-exposed fathers are protected from diet-induced obesity. Paternally-inherited up-regulation of LXRα only manifests in the liver. Improved metabolic adaptation is linked to LXRα suppression of cytokine production. Male offspring exhibit the same phenotypes observed in studies of LXR agonists.
Collapse
Affiliation(s)
- Richard C Chang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
33
|
Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology 2019; 44:1579-1588. [PMID: 30737481 PMCID: PMC6785096 DOI: 10.1038/s41386-019-0326-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
Growing evidence has shown that developmental alcohol exposure induces central nervous system inflammation and microglia activation, which may contribute to long-term health conditions, such as fetal alcohol spectrum disorders. These studies sought to investigate whether neonatal alcohol exposure during postnatal days (PND) 2-6 in rats (third trimester human equivalent) leads to long-term disruption of the neuroimmune response by microglia. Exposure to neonatal alcohol resulted in acute increases in activation and inflammatory gene expression in hypothalamic microglia including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Adults with neonatal alcohol pre-exposure (alcohol fed; AF) animals showed an exaggerated peripheral stress hormonal response to an immune challenge (lipopolysaccharides; LPS). In addition, there were significantly more microglia present in the hypothalamus of adult AF animals, and their hypothalamic microglia showed more cluster of differentiation molecule 11b (Cd11b) activation, TNF-α expression, and IL-6 expression in response to LPS. Interestingly, blocking microglia activation with minocycline treatment during PND 2-6 alcohol exposure ameliorated the hormonal and microglial hypersensitivity to LPS in AF adult animals. Investigation of possible epigenetic programming mechanisms by alcohol revealed neonatal alcohol decreased several repressive regulators of transcription in hypothalamic microglia, while concomitantly increasing histone H3 acetyl lysine 9 (H3K9ac) enrichment at TNF-α and IL-6 promoter regions. Importantly, adult hypothalamic microglia from AF animals showed enduring increases in H3K9ac enrichment of TNF-α and IL-6 promoters both at baseline and after LPS exposure, suggesting a possible epigenetic mechanism for the long-term immune disruption due to hypothalamic microglial priming.
Collapse
|
34
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
35
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Lussier AA, Bodnar TS, Mingay M, Morin AM, Hirst M, Kobor MS, Weinberg J. Prenatal Alcohol Exposure: Profiling Developmental DNA Methylation Patterns in Central and Peripheral Tissues. Front Genet 2018; 9:610. [PMID: 30568673 PMCID: PMC6290329 DOI: 10.3389/fgene.2018.00610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Prenatal alcohol exposure (PAE) can alter the development of neurobiological systems, leading to lasting neuroendocrine, neuroimmune, and neurobehavioral deficits. Although the etiology of this reprogramming remains unknown, emerging evidence suggests DNA methylation as a potential mediator and biomarker for the effects of PAE due to its responsiveness to environmental cues and relative stability over time. Here, we utilized a rat model of PAE to examine the DNA methylation profiles of rat hypothalami and leukocytes at four time points during early development to assess the genome-wide impact of PAE on the epigenome and identify potential biomarkers of PAE. Our model of PAE resulted in blood alcohol levels of ~80-150 mg/dl throughout the equivalent of the first two trimesters of human pregnancy. Hypothalami were analyzed on postnatal days (P) 1, 8, 15, 22 and leukocytes at P22 to compare central and peripheral markers. Genome-wide DNA methylation analysis was performed by methylated DNA immunoprecipitation followed by next-generation sequencing. Results: PAE resulted in lasting changes to DNA methylation profiles across all four ages, with 118 differentially methylated regions (DMRs) displaying persistent alterations across the developmental period at a false-discovery rate (FDR) < 0.05. In addition, 299 DMRs showed the same direction of change in the hypothalamus and leukocytes of P22 pups at an FDR < 0.05, with some genes overlapping with the developmental profile findings. The majority of these DMRs were located in intergenic regions, which contained several computationally-predicted transcription factor binding sites. Differentially methylated genes were generally involved in immune function, epigenetic remodeling, metabolism, and hormonal signaling, as determined by gene ontology analyses. Conclusions: Persistent DNA methylation changes in the hypothalamus may be associated with the long-term physiological and neurobehavioral alterations in observed in PAE. Furthermore, correlations between epigenetic alterations in peripheral tissues and those in the brain will provide a foundation for the development of biomarkers of fetal alcohol spectrum disorder (FASD). Finally, findings from studies of PAE provide important insight into the etiology of neurodevelopmental and mental health disorders, as they share numerous phenotypes and comorbidities.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tamara S Bodnar
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Mingay
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Alexandre M Morin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency Research Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Human Early Learning Partnership, University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Chater-Diehl E, Sokolowski D, Alberry B, Singh SM. Coordinated Tcf7l2 regulation in a mouse model implicates Wnt signaling in fetal alcohol spectrum disorders. Biochem Cell Biol 2018; 97:375-379. [PMID: 30398926 DOI: 10.1139/bcb-2018-0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse models of fetal alcohol spectrum disorders (FASD) have repeatedly identified genes with long-term changes in expression, DNA methylation, noncoding RNA, and histone modifications in response to neurodevelopmental alcohol exposure. Articulation of FASD is achieved via alcohol's effect on gene expression, likely involving epigenetic regulation. The list of genes affected is large and heterogeneous, depending on experimental protocol. We present reanalysis and synthesis of results highlighting the Wnt transcription factor 7 like 2 (Tcf7l2) gene as uniquely compatible with hippocampal DNA methylation, histone modifications, and gene expression changes in a coordinated response to neurodevelopmental alcohol exposure. We data-mined the literature for Tcf7l2 alterations in response to prenatal alcohol exposure. Four studies identified changes in brain Tcf7l2 expression in different FASD models. Further, we performed an in silico TCF7L2 binding site analysis for FASD mouse model data sets. Seven of these published gene lists were significantly enriched for TCF7L2 binding, indicating potential functional relationships. Finally, TCF7L2 is involved in regulation of hundreds of genes, with a role in brain development, myelination, and neuronal function. Tcf7l2 may be involved in neurological defects associated with alcohol exposure via dysregulation of many genes through Wnt signaling. Further functional work is warranted to validate this model for FASD.
Collapse
Affiliation(s)
- Eric Chater-Diehl
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Dustin Sokolowski
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bonnie Alberry
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
38
|
Boschen KE, Gong H, Murdaugh LB, Parnell SE. Knockdown of Mns1 Increases Susceptibility to Craniofacial Defects Following Gastrulation-Stage Alcohol Exposure in Mice. Alcohol Clin Exp Res 2018; 42:2136-2143. [PMID: 30129265 PMCID: PMC6214710 DOI: 10.1111/acer.13876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND MNS1 (meiosis-specific nuclear structural protein 1) is necessary for motile cilia function, such as sperm flagella or those found in the embryonic primitive node. While little is known regarding the function or expression pattern of MNS1 in the embryo, co-immunoprecipitation experiments in sperm have determined that MNS1 interacts with ciliary proteins, which are also important during development. Establishment of morphogenic gradients is dependent on normal ciliary motion in the primitive node beginning during gastrulation (gestational day [GD] 7 in the mouse, second-third week of pregnancy in humans), a critical window for face, eye, and brain development and particularly susceptible to perturbations of developmental signals. The current study investigates the role of Mns1 in craniofacial defects associated with gastrulation-stage alcohol exposure. METHODS On GD7, pregnant Mns1+/- dams were administered 2 doses of ethanol (5.8 g/kg total) or vehicle 4 hours apart to target gastrulation. On GD17, fetuses were examined for ocular defects by scoring each eye on a scale from 1 to 7 (1 = normal, 2 to 7 = defects escalating in severity). Craniofacial and brain abnormalities were also assessed. RESULTS Prenatal alcohol exposure (PAE) significantly increased the rate of defects in wild-type fetuses, as PAE fetuses had an incidence rate of 41.18% compared to a 10% incidence rate in controls. Furthermore, PAE interacted with genotype to significantly increase the defect rate and severity in Mns1+/- (64.29%) and Mns1-/- mice (92.31%). PAE Mns1-/- fetuses with severe eye defects also presented with craniofacial dysmorphologies characteristic of fetal alcohol syndrome and midline tissue loss in the brain, palate, and nasal septum. CONCLUSIONS These data demonstrate that a partial or complete knockdown of Mns1 interacts with PAE to increase the susceptibility to ocular defects and correlating craniofacial and brain anomalies, likely though interaction of alcohol with motile cilia function. These results further our understanding of genetic risk factors that may underlie susceptibility to teratogenic exposures.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Henry Gong
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Laura B. Murdaugh
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
39
|
Jabbar S, Reuhl K, Sarkar DK. Prenatal alcohol exposure increases the susceptibility to develop aggressive prolactinomas in the pituitary gland. Sci Rep 2018; 8:7720. [PMID: 29769550 PMCID: PMC5955957 DOI: 10.1038/s41598-018-25785-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Excess alcohol use is known to promote development of aggressive tumors in various tissues in human patients, but the cause of alcohol promotion of tumor aggressiveness is not clearly understood. We used an animals model of fetal alcohol exposure that is known to promote tumor development and determined if alcohol programs the pituitary to acquire aggressive prolactin-secreting tumors. Our results show that pituitaries of fetal alcohol-exposed rats produced increased levels of intra-pituitary aromatase protein and plasma estrogen, enhanced pituitary tissue growth, and upon estrogen challenge developed prolactin-secreting tumors (prolactinomas) that were hemorrhagic and often penetrated into the surrounding tissue. Pituitary tumors of fetal alcohol-exposed rats produced higher levels of hemorrhage-associated genes and proteins and multipotency genes and proteins. Cells of pituitary tumor of fetal alcohol exposed rat grew into tumor spheres in ultra-low attachment plate, expressed multipotency genes, formed an increased number of colonies, showed enhanced cell migration, and induced solid tumors following inoculation in immunodeficient mice. These data suggest that fetal alcohol exposure programs the pituitary to develop aggressive prolactinoma after estrogen treatment possibly due to increase in stem cell niche within the tumor microenvironment.
Collapse
Affiliation(s)
- Shaima Jabbar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ, 08901, USA.,Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Kenneth Reuhl
- The Environmental and Occupational Health Sciences Institute, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 140, Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Dipak K Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ, 08901, USA. .,The Environmental and Occupational Health Sciences Institute, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 140, Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
40
|
Legault LM, Bertrand-Lehouillier V, McGraw S. Pre-implantation alcohol exposure and developmental programming of FASD: an epigenetic perspective. Biochem Cell Biol 2018; 96:117-130. [DOI: 10.1139/bcb-2017-0141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to alcohol during in-utero development can permanently change the developmental programming of physiological responses, thereby increasing the risk of neurological illnesses during childhood and later adverse health outcomes associated with fetal alcohol spectrum disorder (FASD). There is an increasing body of evidence indicating that exposure to alcohol during gestation triggers lasting epigenetic alterations in offspring, long after the initial insult; together, these studies support the role of epigenetics in FASD etiology. However, we still have little information about how ethanol interferes with the fundamental epigenetic reprogramming wave (e.g., erasure and re-establishment of DNA methylation marks) that characterizes pre-implantation embryo development. This review examines key epigenetic processes that occur during pre-implantation development and especially focus on the current knowledge regarding how prenatal exposure to alcohol during this period could affect the developmental programming of the early stage pre-implantation embryo. We will also outline the current limitations of studies examining the in-vivo and in-vitro effects of alcohol exposure on embryos and underline the next critical steps to be taken if we want to better understand the implicated mechanisms to strengthen the translational potential for epigenetic markers for non-invasive early detection, and the treatment of newborns that have higher risk of developing FASD.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
- Obstetrics and Gynecology, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, Canada
| |
Collapse
|
41
|
Skiles WM, Kester A, Pryor JH, Westhusin ME, Golding MC, Long CR. Oxygen-induced alterations in the expression of chromatin modifying enzymes and the transcriptional regulation of imprinted genes. Gene Expr Patterns 2018; 28:1-11. [PMID: 29339137 PMCID: PMC6094953 DOI: 10.1016/j.gep.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/03/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Embryo culture and assisted reproductive technologies have been associated with a disproportionately high number of epigenetic abnormalities in the resulting offspring. However, the mechanisms by which these techniques influence the epigenome remain poorly defined. In this study, we evaluated the capacity of oxygen concentration to influence the transcriptional control of a selection of key enzymes regulating chromatin structure. In mouse embryonic stem cells, oxygen concentrations modulated the transcriptional regulation of the TET family of enzymes, as well as the de novo methyltransferase Dnmt3a. These transcriptional changes were associated with alterations in the control of multiple imprinted genes, including H19, Igf2, Igf2r, and Peg3. Similarly, exposure of in vitro produced bovine embryos to atmospheric oxygen concentrations was associated with disruptions in the transcriptional regulation of TET1, TET3, and DNMT3a, along with the DNA methyltransferase co-factor HELLS. In addition, exposure to high oxygen was associated with alterations in the abundance of transcripts encoding members of the Polycomb repressor complex (EED and EZH2), the histone methyltransferase SETDB1 and multiple histone demethylases (KDM1A, KDM4B, and KDM4C). These disruptions were accompanied by a reduction in embryo viability and suppression of the pluripotency genes NANOG and SOX2. These experiments demonstrate that oxygen has the capacity to modulate the transcriptional control of chromatin modifying genes involved in the establishment and maintenance of both pluripotency and genomic imprinting.
Collapse
Affiliation(s)
- William M Skiles
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Avery Kester
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Jane H Pryor
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Mark E Westhusin
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA.
| | - Charles R Long
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| |
Collapse
|
42
|
Boschen KE, Keller SM, Roth TL, Klintsova AY. Epigenetic mechanisms in alcohol- and adversity-induced developmental origins of neurobehavioral functioning. Neurotoxicol Teratol 2018; 66:63-79. [PMID: 29305195 DOI: 10.1016/j.ntt.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
The long-term effects of developmental alcohol and stress exposure are well documented in both humans and non-human animal models. Damage to the brain and attendant life-long impairments in cognition and increased risk for psychiatric disorders are debilitating consequences of developmental exposure to alcohol and/or psychological stress. Here we discuss evidence for a role of epigenetic mechanisms in mediating these consequences. While we highlight some of the common ways in which stress or alcohol impact the epigenome, we point out that little is understood of the epigenome's response to experiencing both stress and alcohol exposure, though stress is a contributing factor as to why women drink during pregnancy. Advancing our understanding of this relationship is of critical concern not just for the health and well-being of individuals directly exposed to these teratogens, but for generations to come.
Collapse
Affiliation(s)
- K E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, United States
| | - S M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
43
|
Mandal C, Halder D, Jung KH, Chai YG. In Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking. Int J Biol Sci 2017; 13:1100-1108. [PMID: 29104501 PMCID: PMC5666325 DOI: 10.7150/ijbs.21047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Ethanol is well known for its teratogenic effects during fetal development. Maternal alcohol consumption allows the developing fetus to experience the detrimental effects of alcohol exposure. Alcohol-mediated teratogenic effects can vary based on the dosage and the length of exposure. The specific mechanism of action behind this teratogenic effect is still unknown. Previous reports demonstrated that alcohol participates in epigenetic alterations, especially histone modifications during fetal development. Additional research is necessary to understand the correlation between major epigenetic events and alcohol-mediated teratogenesis such as that observed in fetal alcohol spectrum disorder (FASD). Here, we attempted to collect all the available information concerning alcohol-mediated histone modifications during gestational fetal development. We hope that this review will aid researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Banik A, Kandilya D, Ramya S, Stünkel W, Chong YS, Dheen ST. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes (Basel) 2017; 8:E150. [PMID: 28538662 PMCID: PMC5485514 DOI: 10.3390/genes8060150] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is well established that the regulation of epigenetic factors, including chromatic reorganization, histone modifications, DNA methylation, and miRNA regulation, is critical for the normal development and functioning of the human brain. There are a number of maternal factors influencing epigenetic pathways such as lifestyle, including diet, alcohol consumption, and smoking, as well as age and infections (viral or bacterial). Genetic and metabolic alterations such as obesity, gestational diabetes mellitus (GDM), and thyroidism alter epigenetic mechanisms, thereby contributing to neurodevelopmental disorders (NDs) such as embryonic neural tube defects (NTDs), autism, Down's syndrome, Rett syndrome, and later onset of neuropsychological deficits. This review comprehensively describes the recent findings in the epigenetic landscape contributing to altered molecular profiles resulting in NDs. Furthermore, we will discuss potential avenues for future research to identify diagnostic markers and therapeutic epi-drugs to reverse these abnormalities in the brain as epigenetic marks are plastic and reversible in nature.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Walter Stünkel
- Singapore Institute of Clinical Sciences, A*STAR, Singapore 117609, Singapore.
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
45
|
Gavin DP, Grayson DR, Varghese SP, Guizzetti M. Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes (Basel) 2017; 8:E137. [PMID: 28492482 PMCID: PMC5448011 DOI: 10.3390/genes8050137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure causes persistent neuropsychiatric deficits included under the term fetal alcohol spectrum disorders (FASD). Cellular identity emerges from a cascade of intrinsic and extrinsic (involving cell-cell interactions and signaling) processes that are partially initiated and maintained through changes in chromatin structure. Prenatal alcohol exposure influences neuronal and astrocyte development, permanently altering brain connectivity. Prenatal alcohol exposure also alters chromatin structure through histone and DNA modifications. However, the data linking alcohol-induced differentiation changes with developmental alterations in chromatin structure remain to be elucidated. In the first part of this review, we discuss the sequence of chromatin structural changes involved in neural cell differentiation during normal development. We then discuss the effects of prenatal alcohol on developmental histone modifications and DNA methylation in the context of neurogenesis and astrogliogenesis. We attempt to synthesize the developmental literature with the FASD literature, proposing that alcohol-induced changes to chromatin structure account for altered neurogenesis and astrogliogenesis as well as altered neuron and astrocyte differentiation. Together these changes may contribute to the cognitive and behavioral abnormalities in FASD. Future studies using standardized alcohol exposure paradigms at specific developmental stages will advance the understanding of how chromatin structural changes impact neural cell fate and maturation in FASD.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Sajoy P Varghese
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Tulisiak CT, Harris RA, Ponomarev I. DNA modifications in models of alcohol use disorders. Alcohol 2017; 60:19-30. [PMID: 27865607 DOI: 10.1016/j.alcohol.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023]
Abstract
Chronic alcohol use and abuse result in widespread changes to gene expression, some of which contribute to the development of alcohol-use disorders (AUD). Gene expression is controlled, in part, by a group of regulatory systems often referred to as epigenetic factors, which includes, among other mechanisms, chemical marks made on the histone proteins around which genomic DNA is wound to form chromatin, and on nucleotides of the DNA itself. In particular, alcohol has been shown to perturb the epigenetic machinery, leading to changes in gene expression and cellular functions characteristic of AUD and, ultimately, to altered behavior. DNA modifications in particular are seeing increasing research in the context of alcohol use and abuse. To date, studies of DNA modifications in AUD have primarily looked at global methylation profiles in human brain and blood, gene-specific methylation profiles in animal models, methylation changes associated with prenatal ethanol exposure, and the potential therapeutic abilities of DNA methyltransferase inhibitors. Future studies may be aimed at identifying changes to more recently discovered DNA modifications, utilizing new methods to discriminate methylation profiles between cell types, thus clarifying how alcohol influences the methylomes of cell-type populations and how this may affect downstream processes. These studies and more in-depth probing of DNA methylation will be key to determining whether DNA-level epigenetic regulation plays a causative role in AUD and can thus be targeted for treatment of the disorder.
Collapse
Affiliation(s)
- Christopher T Tulisiak
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA; The College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1900, Austin, TX 78712, USA
| | - Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA; The College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1900, Austin, TX 78712, USA.
| |
Collapse
|
47
|
Burrowes SG, Salem NA, Tseng AM, Balaraman S, Pinson MR, Garcia C, Miranda RC. The BAF (BRG1/BRM-Associated Factor) chromatin-remodeling complex exhibits ethanol sensitivity in fetal neural progenitor cells and regulates transcription at the miR-9-2 encoding gene locus. Alcohol 2017; 60:149-158. [PMID: 28438527 DOI: 10.1016/j.alcohol.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022]
Abstract
Fetal alcohol spectrum disorders are a leading cause of intellectual disability worldwide. Previous studies have shown that developmental ethanol exposure results in loss of microRNAs (miRNAs), including miR-9, and loss of these miRNAs, in turn, mediates some of ethanol's teratogenic effects in the developing brain. We previously found that ethanol increased methylation at the miR-9-2 encoding gene locus in mouse fetal neural stem cells (NSC), advancing a mechanism for epigenetic silencing of this locus and consequently, miR-9 loss in NSCs. Therefore, we assessed the role of the BAF (BRG1/BRM-Associated Factor) complex, which disassembles nucleosomes to facilitate access to chromatin, as an epigenetic mediator of ethanol's effects on miR-9. Chromatin immunoprecipitation and DNAse I-hypersensitivity analyses showed that the BAF complex was associated with both transcriptionally accessible and heterochromatic regions of the miR-9-2 locus, and that disintegration of the BAF complex by combined knockdown of BAF170 and BAF155 resulted in a significant decrease in miR-9. We hypothesized that ethanol exposure would result in loss of BAF-complex function at the miR-9-2 locus. However, ethanol exposure significantly increased mRNA transcripts for maturation-associated BAF-complex members BAF170, SS18, ARID2, BAF60a, BRM/BAF190b, and BAF53b. Ethanol also significantly increased BAF-complex binding within an intron containing a CpG island and in the terminal exon encoding precursor (pre)-miR-9-2. These data suggest that the BAF complex may adaptively respond to ethanol exposure to protect against a complete loss of miR-9-2 in fetal NSCs. Chromatin remodeling factors may adapt to the presence of a teratogen, to maintain transcription of critical miRNA regulatory pathways.
Collapse
|
48
|
Mahnke AH, Miranda RC, Homanics GE. Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol 2017; 60:1-6. [PMID: 28395929 PMCID: PMC5439216 DOI: 10.1016/j.alcohol.2017.02.357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Disconnect between alcohol-induced alterations in chromatin structure and gene transcription in a mouse embryonic stem cell model of exposure. Alcohol 2017; 60:121-133. [PMID: 28433419 DOI: 10.1016/j.alcohol.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/21/2022]
Abstract
Alterations to chromatin structure induced by environmental insults have become an attractive explanation for the persistence of exposure effects into subsequent life stages. However, a growing body of work examining the epigenetic impact that alcohol and other drugs of abuse exert consistently notes a disconnection between induced changes in chromatin structure and patterns of gene transcription. Thus, an important question is whether perturbations in the 'histone code' induced by prenatal exposures to alcohol implicitly subvert gene expression, or whether the hierarchy of cellular signaling networks driving development is such that they retain control over the transcriptional program. To address this question, we examined the impact of ethanol exposure in mouse embryonic stem cells cultured under 2i conditions, where the transcriptional program is rigidly enforced through the use of small molecule inhibitors. We find that ethanol-induced changes in post-translational histone modifications are dose-dependent, unique to the chromatin modification under investigation, and that the extent and direction of the change differ between the period of exposure and the recovery phase. Similar to in vivo models, we find post-translational modifications affecting histone 3 lysine 9 are the most profoundly impacted, with the signature of exposure persisting long after alcohol has been removed. These changes in chromatin structure associate with dose-dependent alterations in the levels of transcripts encoding Dnmt1, Uhrf1, Tet1, Tet2, Tet3, and Polycomb complex members Eed and Ezh2. However, in this model, ethanol-induced changes to the chromatin template do not consistently associate with changes in gene transcription, impede the process of differentiation, or affect the acquisition of monoallelic patterns of expression for the imprinted gene Igf2R. These findings question the inferred universal relevance of epigenetic changes induced by drugs of abuse and suggest that changes in chromatin structure cannot unequivocally explain dysgenesis in isolation.
Collapse
|
50
|
Changes to histone modifications following prenatal alcohol exposure: An emerging picture. Alcohol 2017; 60:41-52. [PMID: 28431792 DOI: 10.1016/j.alcohol.2017.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms are important for facilitating gene-environment interactions in many disease etiologies, including Fetal Alcohol Spectrum Disorders (FASD). Extensive research into the role of DNA methylation and miRNAs in animal models has illuminated the complex role of these mechanisms in FASD. In contrast, histone modifications have not been as well researched, due in part to being less stable than DNA methylation and less well-characterized in disease. It is now apparent that even changes in transient marks can have profound effects if they alter developmental trajectories. In addition, many histone methylations are now known to be relatively stable and can propagate themselves. As technologies and knowledge have advanced, a small group has investigated the role of histone modifications in FASD. Here, we synthesize the data on the effects of prenatal alcohol exposure (PAE) on histone modifications. Several key points are evident. AS with most alcohol-induced outcomes, timing and dosage differences yield variable effects. Nevertheless, these studies consistently find enrichment of H3K9ac, H3K27me2,3, and H3K9me2, and increased expression of histone acetyltransferases and methyltransferases. The consistency of these alterations may implicate them as key mechanisms underlying FASD. Histone modification changes do not often correlate with gene expression changes, though some important examples exist. Encouragingly, attempts to reproduce specific histone modification changes are very often successful. We comment on possible directions for future studies, focusing on further exploration of current trends, expansion of time-point and dosage regimes, and evaluation of biomarker potential.
Collapse
|