1
|
Nakabayashi Y, Seki M. A hypothesis for nucleosome evolution based on mutational analysis. Genes Genet Syst 2025; 100:n/a. [PMID: 39694494 DOI: 10.1266/ggs.24-00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Nucleosomes are complexes of DNA and histone proteins that form the basis of eukaryotic chromatin. Eukaryotic histones are descended from archaeal homologs; however, how this occurred remains unclear. Our previous genetic analysis of the budding yeast nucleosome identified 26 histone residues conserved between Saccharomyces cerevisiae and Trypanosoma brucei: 15 that are lethal when mutated and 11 that are synthetically lethal with deletion of the FEN1 nuclease. These residues are partially conserved in nucleosomes of a variety of giant viruses, allowing us to follow the route by which they were established in the LECA (last eukaryotic common ancestor). We analyzed yeast nucleosome genetic data to generate a model for the emergence of the eukaryotic nucleosome. In our model, histone H2B-H2A and H4-H3 doublets found in giant virus nucleosomes facilitated the formation of the acidic patch surface and nucleosome entry sites of the eukaryotic nucleosome, respectively. Splitting of the H2B-H2A doublet resulted in the H2A variant H2A.Z, and subsequent splitting of the H4-H3 doublet led to a eukaryote-specific domain required for chromatin binding of H2A.Z. We propose that the LECA emerged when the newly split H3 N-terminus horizontally acquired a common N-tail found in extinct pre-LECA lineages and some extant giant viruses. This hypothesis predicts that the emergence of the H3 variant CENP-A and the establishment of CENP-A-dependent chromosome segregation occurred after the emergence of the LECA, implying that the root of all eukaryotes is assigned within Euglenida.
Collapse
Affiliation(s)
- Yu Nakabayashi
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Masayuki Seki
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
2
|
Tee HS, Ku C. Host-Calibrated Time Tree Caps the Age of Giant Viruses. Mol Biol Evol 2025; 42:msaf033. [PMID: 39976376 PMCID: PMC11840718 DOI: 10.1093/molbev/msaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Viruses are widespread parasites with important impacts on public health, economy, and ecosystems. However, little is known about their origins, ages, and early evolutionary relationships with hosts. Here, we infer the maximum divergence times for eukaryotic giant DNA viruses (phylum Nucleocytoviricota) with dating analyses calibrated by host taxon ages of virus lineages with specific host ranges. The last common ancestor of Nucleocytoviricota existed after 1,000 million years ago, suggesting a much later origin than that of the eukaryotes. The early evolution of Nucleocytoviricota either coincided with or postdated a substantial increase in the oxygen levels on the Earth's surface during the Neoproterozoic Era. The lineage diversification of giant viruses was frequently associated with host shifts, including two major transitions from amoebozoan hosts to animal hosts that eventually led to the emergence of iridoviruses and African swine fever viruses within the last 450 million years. These results outline the evolutionary timescale of a major virus group and are pivotal for further understanding the virus-host interactions and their potential ecological roles in the Earth's history.
Collapse
Affiliation(s)
- Hwee Sze Tee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Toner CM, Hoitsma NM, Weerawarana S, Luger K. Characterization of Medusavirus encoded histones reveals nucleosome-like structures and a unique linker histone. Nat Commun 2024; 15:9138. [PMID: 39443461 PMCID: PMC11500106 DOI: 10.1038/s41467-024-53364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The organization of DNA into nucleosomes is a ubiquitous and ancestral feature that was once thought to be exclusive to the eukaryotic domain of life. Intriguingly, several representatives of the Nucleocytoplasmic Large DNA Viruses (NCLDV) encode histone-like proteins that in Melbournevirus were shown to form nucleosome-like particles. Medusavirus medusae (MM), a distantly related giant virus, encodes all four core histone proteins and, unique amongst most giant viruses, a putative acidic protein with two domains resembling eukaryotic linker histone H1. Here, we report the structure of nucleosomes assembled with MM histones and highlight similarities and differences with eukaryotic and Melbournevirus nucleosomes. Our structure provides insight into how variations in histone tail and loop lengths are accommodated within the context of the nucleosome. We show that MM-histones assemble into tri-nucleosome arrays, and that the putative linker histone H1 does not function in chromatin compaction. These findings expand our limited understanding of chromatin organization by virus-encoded histones.
Collapse
Affiliation(s)
- Chelsea M Toner
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
| | - Nicole M Hoitsma
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sashi Weerawarana
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Smith JR, Arellano AA, Avgousti DC. Viral imitation is the sincerest form of epigenetic flattery. Mol Biol Cell 2024; 35:pe3. [PMID: 39302431 PMCID: PMC11481696 DOI: 10.1091/mbc.e23-04-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Viruses use multiple strategies to successfully generate progeny and overcome host defenses. In recent years, it has become increasingly evident that epigenetic mechanisms of host gene regulation are vulnerable to viral manipulation. In the form of histone mimicry, viral invasion of host chromatin is a striking example of how viruses have evolved to invade every aspect of cellular function for viral benefit. In this perspective, we will review how three viruses-influenza A, SARS-CoV-2, and Cotesia plutellae bracovirus-use histone mimicry to promote viral success through immune evasion. These examples highlight the importance of this burgeoning field and point toward the wealth of knowledge we have yet to uncover.
Collapse
Affiliation(s)
- Julian R. Smith
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Angela A. Arellano
- Molecular, Cellular, and Developmental Biology at the University of California, Santa Barbara, Goleta, CA
| | | |
Collapse
|
5
|
Hu Y, Schwab S, Deiss S, Escudeiro P, van Heesch T, Joiner J, Vreede J, Hartmann M, Lupas A, Alvarez B, Alva V, Dame R. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Res 2024; 52:8193-8204. [PMID: 38864377 PMCID: PMC11317129 DOI: 10.1093/nar/gkae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.
Collapse
Affiliation(s)
- Yimin Hu
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Silvia Deiss
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Thor van Heesch
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Joe D Joiner
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jocelyne Vreede
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Irwin NAT, Richards TA. Self-assembling viral histones are evolutionary intermediates between archaeal and eukaryotic nucleosomes. Nat Microbiol 2024; 9:1713-1724. [PMID: 38806669 PMCID: PMC11222145 DOI: 10.1038/s41564-024-01707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Nucleosomes are DNA-protein complexes composed of histone proteins that form the basis of eukaryotic chromatin. The nucleosome was a key innovation during eukaryotic evolution, but its origin from histone homologues in Archaea remains unclear. Viral histone repeats, consisting of multiple histone paralogues within a single protein, may reflect an intermediate state. Here we examine the diversity of histones encoded by Nucleocytoviricota viruses. We identified 258 histones from 168 viral metagenomes with variable domain configurations including histone singlets, doublets, triplets and quadruplets, the latter comprising the four core histones arranged in series. Viral histone repeats branch phylogenetically between Archaea and eukaryotes and display intermediate functions in Escherichia coli, self-assembling into eukaryotic-like nucleosomes that stack into archaeal-like oligomers capable of impacting genomic activity and condensing DNA. Histone linkage also facilitates nucleosome formation, promoting eukaryotic histone assembly in E. coli. These data support the hypothesis that viral histone repeats originated in stem-eukaryotes and that nucleosome evolution proceeded through histone repeat intermediates.
Collapse
Affiliation(s)
- Nicholas A T Irwin
- Merton College, University of Oxford, Oxford, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | | |
Collapse
|
7
|
Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. mSystems 2024; 9:e0012424. [PMID: 38651902 PMCID: PMC11097642 DOI: 10.1128/msystems.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients. This study aims to (i) estimate virome compositions at the family level for the first time across the animal tree of life, including the first exploration of the virome in several phyla, (ii) quantify the diversity of invertebrate viromes and characterize the structure of invertebrate-virus infection networks, and (iii) investigate host phylum and habitat influence on virome differences. Results showed that a set of few viral families of eukaryotes, comprising Retroviridae, Flaviviridae, and several families of giant DNA viruses, were ubiquitous and highly abundant. Nevertheless, some differences emerged between phyla, revealing for instance a less diverse virome in Ctenophora compared to the other animal phyla. Compositional analysis of the viromes showed that the host phylum explained over five times more variance in composition than its habitat. Moreover, significant similarities were observed between the viromes of some phylogenetically related phyla, which could highlight the influence of co-evolution in shaping invertebrate viromes.IMPORTANCEThis study significantly enhances our understanding of the global animal virome by characterizing the viromes of previously unexamined invertebrate lineages from a large number of animal phyla. It showcases the great diversity of viromes within each phylum and investigates the role of habitat shaping animal viral communities. Furthermore, our research identifies dominant virus families in invertebrates and distinguishes phyla with analogous viromes. This study sets the road toward a deeper understanding of the virome across the animal tree of life.
Collapse
Affiliation(s)
- Pau Alfonso
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
| | - Anamarija Butković
- Institut Pasteur, Université Paris Cité, CNRS UMR6047 Archaeal Virology Unit, Paris, France
| | - Rosa Fernández
- Instituto de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ana Riesgo
- Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, United Kingdom
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
8
|
Hocher A, Warnecke T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol Evol 2024; 16:evae029. [PMID: 38366053 PMCID: PMC10919886 DOI: 10.1093/gbe/evae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque. Histone-fold proteins are also found in archaea, but the nucleosome we know-a hetero-octameric complex composed of histones with long, disordered tails-is a hallmark of eukaryotes. What were the properties of the earliest nucleosomes? Did ancestral histones inevitably assemble into nucleosomes? When and why did the four core histones evolve? This review will look at the evolution of the eukaryotic nucleosome from the vantage point of archaea, focusing on the key evolutionary transitions required to build a modern nucleosome. We will highlight recent work on the closest archaeal relatives of eukaryotes, the Asgardarchaea, and discuss what their histones can and cannot tell us about the early evolution of eukaryotic chromatin. We will also discuss how viruses have become an unexpected source of information about the evolutionary path toward the nucleosome. Finally, we highlight the properties of early nucleosomes as an area where new tools and data promise tangible progress in the not-too-distant future.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tobias Warnecke
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Trinity College, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Chen P, Wang Y, Chen F, Zhou B. Epigenetics in obesity: Mechanisms and advances in therapies based on natural products. Pharmacol Res Perspect 2024; 12:e1171. [PMID: 38293783 PMCID: PMC10828914 DOI: 10.1002/prp2.1171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central HospitalAffiliated Hospital of Hubei Polytechnic UniversityHuangshiHubeiP.R. China
| | - Fuchao Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubeiP.R. China
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
10
|
Talbert PB, Henikoff S, Armache KJ. Giant variations in giant virus genome packaging. Trends Biochem Sci 2023; 48:1071-1082. [PMID: 37777391 DOI: 10.1016/j.tibs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Giant viruses (Nucleocytoviricota) have a largely conserved lifecycle, yet how they cram their large genomes into viral capsids is mostly unknown. The major capsid protein and the packaging ATPase (pATPase) comprise a highly conserved morphogenesis module in giant viruses, yet some giant viruses dispense with an icosahedral capsid, and others encode multiple versions of pATPases, including conjoined ATPase doublets, or encode none. Some giant viruses have acquired DNA-condensing proteins to compact their genomes, including sheath-like structures encasing folded DNA or densely packed viral nucleosomes that show a resemblance to eukaryotic nucleosomes at the telomeres. Here, we review what is known and unknown about these ATPases and condensing proteins, and place these variations in the context of viral lifecycles.
Collapse
Affiliation(s)
- Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
11
|
Haltom J, Trovao NS, Guarnieri J, Vincent P, Singh U, Tsoy S, O'Leary CA, Bram Y, Widjaja GA, Cen Z, Meller R, Baylin SB, Moss WN, Nikolau BJ, Enguita FJ, Wallace DC, Beheshti A, Schwartz R, Wurtele ES. SARS-CoV-2 Orphan Gene ORF10 Contributes to More Severe COVID-19 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298847. [PMID: 38076862 PMCID: PMC10705665 DOI: 10.1101/2023.11.27.23298847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.
Collapse
Affiliation(s)
- Jeffrey Haltom
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Pan Vincent
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zimu Cen
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA , 30310-1495, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Walter N Moss
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104 USA
| | - Robert Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| |
Collapse
|
12
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
13
|
Gaïa M, Meng L, Pelletier E, Forterre P, Vanni C, Fernandez-Guerra A, Jaillon O, Wincker P, Ogata H, Krupovic M, Delmont TO. Mirusviruses link herpesviruses to giant viruses. Nature 2023; 616:783-789. [PMID: 37076623 PMCID: PMC10132985 DOI: 10.1038/s41586-023-05962-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, Gif sur Yvette, France
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
| |
Collapse
|
14
|
Du Q, Peng F, Xiong Q, Xu K, Yang KY, Wang M, Wu Z, Li S, Cheng X, Rao X, Wang Y, Tsui SKW, Zeng X. Genomic Analysis of Amphioxus Reveals a Wide Range of Fragments Homologous to Viral Sequences. Viruses 2023; 15:v15040909. [PMID: 37112889 PMCID: PMC10145014 DOI: 10.3390/v15040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/11/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Amphioxus species are considered living fossils and are important in the evolutionary study of chordates and vertebrates. To explore viral homologous sequences, a high-quality annotated genome of the Beihai amphioxus (Branchiostoma belcheri beihai) was examined using virus sequence queries. In this study, 347 homologous fragments (HFs) of viruses were identified in the genome of B. belcheri beihai, of which most were observed on 21 genome assembly scaffolds. HFs were preferentially located within protein-coding genes, particularly in their CDS regions and promoters. A range of amphioxus genes with a high frequency of HFs is proposed, including histone-related genes that are homologous to the Histone H4 or Histone H2B domains of viruses. Together, this comprehensive analysis of viral HFs provides insights into the neglected role of viral integration in the evolution of amphioxus.
Collapse
Affiliation(s)
- Qiao Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Peng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Kejin Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingqiang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhitian Wu
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanying Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaorui Cheng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinjie Rao
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyouye Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Machida S, Diogo Dias J, Benkirane M. Faithful to the Marseille tradition: Unique and intriguing-that's how Marseillevirus packs its DNA. Mol Cell 2022; 82:4401-4402. [PMID: 36459981 DOI: 10.1016/j.molcel.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Not only does Marseillevirus bear the name of the city where it was identified, it also encompasses its values and what makes Marseille a wonderful city. Marseillevirus is unique and intriguing. As such, Bryson et al. in this issue of Molecular Cell reveal how virion-associated Marseillevirus DNA is packed with nucleosomes.
Collapse
Affiliation(s)
- Shinichi Machida
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Joao Diogo Dias
- Institut de Génétique Humaine, Université de Montpellier, Laboratoire de Virologie Moléculaire CNRS-UMR9002, 34000 Montpellier, France
| | - Monsef Benkirane
- Institut de Génétique Humaine, Université de Montpellier, Laboratoire de Virologie Moléculaire CNRS-UMR9002, 34000 Montpellier, France.
| |
Collapse
|
16
|
A giant virus genome is densely packaged by stable nucleosomes within virions. Mol Cell 2022; 82:4458-4470.e5. [PMID: 36370708 DOI: 10.1016/j.molcel.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
The two doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap 121 base pairs of DNA to form remarkably similar nucleosomes. By permeabilizing Marseillevirus virions and performing genome-wide nuclease digestion, chemical cleavage, and mass spectrometry assays, we find that the higher-order organization of Marseillevirus chromatin fundamentally differs from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions as closely abutted 121-bp DNA-wrapped cores without linker DNA or phasing along genes. Likewise, we observed that nucleosomes reconstituted onto multi-copy tandem repeats of a nucleosome-positioning sequence are tightly packed. Dense promiscuous packing of fully wrapped nucleosomes rather than "beads on a string" with genic punctuation represents a distinct mode of DNA packaging by histones. We suggest that doublet histones have evolved for viral genome protection and may resemble an early stage of histone differentiation leading to the eukaryotic octameric nucleosome.
Collapse
|
17
|
Sato S, Dacher M, Kurumizaka H. Nucleosome Structures Built from Highly Divergent Histones: Parasites and Giant DNA Viruses. EPIGENOMES 2022; 6:22. [PMID: 35997368 PMCID: PMC9396995 DOI: 10.3390/epigenomes6030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
In eukaryotes, genomic DNA is bound with histone proteins and packaged into chromatin. The nucleosome, a fundamental unit of chromatin, regulates the accessibility of DNA to enzymes involved in gene regulation. During the past few years, structural analyses of chromatin architectures have been limited to evolutionarily related organisms. The amino acid sequences of histone proteins are highly conserved from humans to yeasts, but are divergent in the deeply branching protozoan groups, including human parasites that are directly related to human health. Certain large DNA viruses, as well as archaeal organisms, contain distant homologs of eukaryotic histone proteins. The divergent sequences give rise to unique and distinct nucleosome architectures, although the fundamental principles of histone folding and DNA contact are highly conserved. In this article, we review the structures and biophysical properties of nucleosomes containing histones from the human parasites Giardia lamblia and Leishmania major, and histone-like proteins from the Marseilleviridae amoeba virus family. The presented data confirm the sharing of the overall DNA compaction system among evolutionally distant species and clarify the deviations from the species-specific nature of the nucleosome.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; (S.S.); (M.D.)
| |
Collapse
|
18
|
Aylward FO, Moniruzzaman M. Viral Complexity. Biomolecules 2022; 12:1061. [PMID: 36008955 PMCID: PMC9405923 DOI: 10.3390/biom12081061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Although traditionally viewed as streamlined and simple, discoveries over the last century have revealed that viruses can exhibit surprisingly complex physical structures, genomic organization, ecological interactions, and evolutionary histories. Viruses can have physical dimensions and genome lengths that exceed many cellular lineages, and their infection strategies can involve a remarkable level of physiological remodeling of their host cells. Virus-virus communication and widespread forms of hyperparasitism have been shown to be common in the virosphere, demonstrating that dynamic ecological interactions often shape their success. And the evolutionary histories of viruses are often fraught with complexities, with chimeric genomes including genes derived from numerous distinct sources or evolved de novo. Here we will discuss many aspects of this viral complexity, with particular emphasis on large DNA viruses, and provide an outlook for future research.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mohammad Moniruzzaman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL 33149, USA;
| |
Collapse
|