1
|
Bates BA, Bates KE, Boris SA, Wessman C, Stone D, Bryan J, Davis MF, Bailey MH. Intersection of rare pathogenic variants from TCGA in the All of Us Research Program v6. HGG ADVANCES 2025; 6:100405. [PMID: 39799398 PMCID: PMC11830373 DOI: 10.1016/j.xhgg.2025.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
Using rare cancer predisposition alleles derived from The Cancer Genome Atlas (TCGA) and high cancer prevalence (14% of participants) in All of Us (version 6), we assessed the impact of these rare alleles on cancer occurrence in six broad groups of genetic similarity provided by All of Us: African/African American (AFR), Admixed American/Latino (AMR), East Asian (EAS), European (EUR), Middle Eastern (MID), or South Asian (SAS). We observed that germline susceptibility to cancer consistently replicates in EUR-like participants but less so in other participants. We found that All of Us participants from the EUR (p = 1.8 × 10-7), AFR (p = 0.018), and MID (p = 0.0083) genetic similarity groups who carry a rare pathogenic mutation are more likely to have cancer than those without a rare pathogenic mutation. With the advent of combining medical records and genetic mutations, we also performed a phenome-wide association study (PheWAS) to assess the effect of pathogenic variants on additional phenotypes. This analysis again showed several associations between predisposition variants and cancer in EUR-like participants, but fewer in those of the other genetic similarity groups. As All of Us grows to 1 million participants, our projections suggest sufficient power (>99%) to detect cancer-associated variants that are common, but limited power (∼28%) to detect rare mutations when using the entire cohort. This study provides preliminary insights into genetic predispositions to cancer across a diverse cohort and demonstrates the value of All of Us as a resource for cancer research.
Collapse
Affiliation(s)
- Blaine A Bates
- Department of Biology, Brigham Young University, Provo, UT 84061, USA; Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Kylee E Bates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Spencer A Boris
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - Colin Wessman
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - David Stone
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - Justin Bryan
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - Mary F Davis
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
| | - Matthew H Bailey
- Department of Biology, Brigham Young University, Provo, UT 84061, USA; Simmons Center for Cancer Research, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
2
|
Chi SY, Hsu YC, Cheng SP. Effect of Genetic Ancestry on Phenotypes and Genotypes in Papillary Thyroid Cancer. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:117-124. [PMID: 40051400 DOI: 10.1089/omi.2024.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Thyroid cancer (THCA) is a prevalent health burden, and unpacking its biological and social determinants is a public health priority. Previous studies have reported inconsistent findings regarding the effects of race and ethnicity on the incidence and presentation of THCA. It remains unclear whether racial differences manifest at the molecular level. By harnessing the Cancer Genome Atlas papillary THCA dataset, this study derived genetic ancestry estimates from single nucleotide polymorphism array genotyping and exome sequencing data. Five ancestral groups (Europeans, East Asians, Africans, Native/Latin Americans, and South Asians) were included for analysis. We found a good agreement between genetic ancestry and reported race (Cramer's V = 0.730). Although differences in tumor size and patient age were observed, overall survival, progression-free interval, and disease-free interval were similar across the ancestral groups. Furthermore, the distribution of oncogenic drivers did not significantly differ among these groups. Weighted gene co-expression network analysis identified several ancestry-associated signatures. In conclusion, this study suggests that hereditary ancestral traits likely have little biological significance in papillary THCA. Instead, racial disparities in this type of cancer may be attributed to lifestyle factors, environmental exposures, and social and political power asymmetries in society and healthcare infrastructure.
Collapse
Affiliation(s)
- Shun-Yu Chi
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan City, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Ndou L, Chambuso R, Algar U, Boutall A, Goldberg P, Ramesar R. Genomic Medicine in the Developing World: Cancer Spectrum, Cumulative Risk and Survival Outcomes for Lynch Syndrome Variant Heterozygotes with Germline Pathogenic Variants in the MLH1 and MSH2 Genes. Biomedicines 2024; 12:2906. [PMID: 39767815 PMCID: PMC11672899 DOI: 10.3390/biomedicines12122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Although genetic testing has improved our ability to diagnose Lynch syndrome (LS), there is still limited information on the extent of variations in the clinical and genetic landscape among LS variant heterozygotes (LSVH) in Africa. We sought to investigate the cancer spectrum, cumulative risk, and survival outcomes of LSVH with pathogenic/likely pathogenic variants (P/LPVs) in the MLH1 and MSH2 genes using a LS registry in South Africa over the last 30 years. Methods: A retrospective study was conducted to retrieve demographic, clinical, and genetic data of all LSVH with P/LPVs in the MLH1 and MSH2 genes from our LS registry. Genetic data were analyzed according to cancer spectrum, cumulative risk, and crude survival. We used the Chi-squared and t-test to assess differences between groups, and Kaplan-Meier survival analyses were used to analyze the cumulative risk and crude survival outcomes. A p-value < 0.05 at a 95% confidence interval was considered statistically significant. Results: We analyzed a total of 577 LSVH from 109 families. About 450 (78%) and 127 (22%) LSVH harbored a disease-causing mutation in MLH1 and MSH2, respectively. A South African founder PV (MLH1:c.1528C>T) accounted for 74% (n = 426) of all LSVH. CRC was the most common diagnosed cancer in both MLH1 and MSH2 LSVH. MLH1 LSVH had a younger age at cancer diagnosis than MSH2 LSVH (43 vs. 47 years, respectively, p = 0.015). Extracolonic cancers were predominantly higher in female LSVH (n = 33, 35%) than in male LSVH (n = 8, 7%) with the MLH1:c.1528C>T founder PV. The cumulative risk of any cancer and CRC at any age was higher in MLH1 LSVH than in MSH2 LSVH (p = 0.020 and p = 0.036, respectively). LSVH with the MLH1:c.1528C>T PV had a better 10-year overall survival after the first cancer diagnosis, particularly for CRC. Conclusions: LSVH with P/LPVs in the MLH1 and MSH2 genes exhibited significant gene- and sex-specific differences in cancer spectrum, cumulative risk and survival outcomes. Cancer risk and survival estimates described in this study can be used to guide surveillance and genetic counselling for LSVH in our population.
Collapse
Affiliation(s)
- Lutricia Ndou
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| | - Ramadhani Chambuso
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| | - Ursula Algar
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Adam Boutall
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Paul Goldberg
- The Colorectal Unit, Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Raj Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, and Affiliated Hospitals, Cape Town 7704, South Africa; (L.N.); (R.C.)
| |
Collapse
|
4
|
Lee NY, Hum M, Wong M, Ong PY, Lee SC, Lee ASG. Alleviating misclassified germline variants in underrepresented populations: A strategy using popmax. Genet Med 2024; 26:101124. [PMID: 38522067 DOI: 10.1016/j.gim.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
PURPOSE Germline variant interpretation often depends on population-matched control cohorts. This is not feasible for population groups that are underrepresented in current population reference databases. METHODS We classify germline variants with population-matched controls for 2 ancestrally diverse cohorts of patients: 132 early-onset or familial colorectal carcinoma patients from Singapore and 100 early-onset colorectal carcinoma patients from the United States. The effects of using a population-mismatched control cohort are simulated by swapping the control cohorts used for each patient cohort, with or without the popmax computational strategy. RESULTS Population-matched classifications revealed a combined 62 pathogenic or likely pathogenic (P/LP) variants in 34 genes across both cohorts. Using a population-mismatched control cohort resulted in misclassification of non-P/LP variants as P/LP, driven by the absence of ancestry-specific rare variants in the control cohort. Popmax was more effective in alleviating misclassifications for the Singapore cohort than the US cohort. CONCLUSION Underrepresented population groups can suffer from higher rates of false-positive P/LP results. Popmax can partially alleviate these misclassifications, but its efficacy still depends on the degree with which the population groups are represented in the control cohort.
Collapse
Affiliation(s)
- Ning Yuan Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Matthew Wong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Pei-Yi Ong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute, Singapore (CSI), National University of Singapore, Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Kamaraju S, Conroy M, Harris A, Georgen M, Min H, Powell M, Kurzrock R. Challenges to genetic testing for germline mutations associated with breast cancer among African Americans. Cancer Treat Rev 2024; 124:102695. [PMID: 38325071 DOI: 10.1016/j.ctrv.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Inequities in preventive cancer screening, diagnosis, treatment, and inferior cancer outcomes continue to pose challenges across the cancer continuum. While the exact reasons for these inferior outcomes are unknown, multiple barriers to various domains of social determinants of health (SDOH) play a vital role, leading to inequities in cancer care. These include barriers to transportation, housing, and food insecurities, contributing to delays in preventive screening and treatment. Furthermore, aggressive biologies also exist across various racial profiles with accompanying germline mutations. For example, African Americans (AAs) have a higher incidence of triple-negative breast cancer subtype and a high prevalence of BRCA1/2 gene mutations, increasing the risk of multiple cancers, warranting high-risk screening for these populations. Unfortunately, other barriers, such as financial insecurities, low health literacy rates, and lack of awareness, lead to delays in cancer screening and genetic testing, even with available high-risk screening and risk reduction procedures. In addition, physicians receive minimal interdisciplinary training to address genetic assessment, interpretation of the results, and almost no additional training in addressing the unique needs of racial minorities, leading to suboptimal delivery of genetic assessment provision resources among AAs. In this review, we discuss the confluence of factors and barriers limiting genetic testing among AAs and highlight the prevalence of germline mutations associated with increased risk of breast cancer among AAs, reflecting the need for multi-panel germline testing as well as education regarding hereditary cancer risks in underserved minorities.
Collapse
Affiliation(s)
- S Kamaraju
- Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA.
| | - M Conroy
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - A Harris
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - M Georgen
- Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - H Min
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - M Powell
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - R Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| |
Collapse
|
6
|
Dalfovo D, Scandino R, Paoli M, Valentini S, Romanel A. Germline determinants of aberrant signaling pathways in cancer. NPJ Precis Oncol 2024; 8:57. [PMID: 38429380 PMCID: PMC10907629 DOI: 10.1038/s41698-024-00546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a complex disease influenced by a heterogeneous landscape of both germline genetic variants and somatic aberrations. While there is growing evidence suggesting an interplay between germline and somatic variants, and a substantial number of somatic aberrations in specific pathways are now recognized as hallmarks in many well-known forms of cancer, the interaction landscape between germline variants and the aberration of those pathways in cancer remains largely unexplored. Utilizing over 8500 human samples across 33 cancer types characterized by TCGA and considering binary traits defined using a large collection of somatic aberration profiles across ten well-known oncogenic signaling pathways, we conducted a series of GWAS and identified genome-wide and suggestive associations involving 276 SNPs. Among these, 94 SNPs revealed cis-eQTL links with cancer-related genes or with genes functionally correlated with the corresponding traits' oncogenic pathways. GWAS summary statistics for all tested traits were then used to construct a set of polygenic scores employing a customized computational strategy. Polygenic scores for 24 traits demonstrated significant performance and were validated using data from PCAWG and CCLE datasets. These scores showed prognostic value for clinical variables and exhibited significant effectiveness in classifying patients into specific cancer subtypes or stratifying patients with cancer-specific aggressive phenotypes. Overall, we demonstrate that germline genetics can describe patients' genetic liability to develop specific cancer molecular and clinical profiles.
Collapse
Affiliation(s)
- Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Riccardo Scandino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Marta Paoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Samuel Valentini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy.
| |
Collapse
|
7
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
8
|
Hong JY, Han JH, Jeong SH, Kwak C, Kim HH, Jeong CW. Polygenic risk score model for renal cell carcinoma in the Korean population and relationship with lifestyle-associated factors. BMC Genomics 2024; 25:46. [PMID: 38200428 PMCID: PMC10777500 DOI: 10.1186/s12864-024-09974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The polygenic risk score (PRS) is used to predict the risk of developing common complex diseases or cancers using genetic markers. Although PRS is used in clinical practice to predict breast cancer risk, it is more accurate for Europeans than for non-Europeans because of the sample size of training genome-wide association studies (GWAS). To address this disparity, we constructed a PRS model for predicting the risk of renal cell carcinoma (RCC) in the Korean population. RESULTS Using GWAS analysis, we identified 43 Korean-specific variants and calculated the PRS. Subsequent to plotting receiver operating characteristic (ROC) curves, we selected the 31 best-performing variants to construct an optimal PRS model. The resultant PRS model with 31 variants demonstrated a prediction rate of 77.4%. The pathway analysis indicated that the identified non-coding variants are involved in regulating the expression of genes related to cancer initiation and progression. Notably, favorable lifestyle habits, such as avoiding tobacco and alcohol, mitigated the risk of RCC across PRS strata expressing genetic risk. CONCLUSION A Korean-specific PRS model was established to predict the risk of RCC in the underrepresented Korean population. Our findings suggest that lifestyle-associated factors influencing RCC risk are associated with acquired risk factors indirectly through epigenetic modification, even among individuals in the higher PRS category.
Collapse
Affiliation(s)
- Joo Young Hong
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Urology, Myongji Hospital, Gyeonggi-do, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Chen C, Lin CJ, Pei YC, Ma D, Liao L, Li SY, Fan L, Di GH, Wu SY, Liu XY, Wang YJ, Hong Q, Zhang GL, Xu LL, Li BB, Huang W, Shi JX, Jiang YZ, Hu X, Shao ZM. Comprehensive genomic profiling of breast cancers characterizes germline-somatic mutation interactions mediating therapeutic vulnerabilities. Cell Discov 2023; 9:125. [PMID: 38114467 PMCID: PMC10730692 DOI: 10.1038/s41421-023-00614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/08/2023] [Indexed: 12/21/2023] Open
Abstract
Germline-somatic mutation interactions are universal and associated with tumorigenesis, but their role in breast cancer, especially in non-Caucasians, remains poorly characterized. We performed large-scale prospective targeted sequencing of matched tumor-blood samples from 4079 Chinese females, coupled with detailed clinical annotation, to map interactions between germline and somatic alterations. We discovered 368 pathogenic germline variants and identified 5 breast cancer DNA repair-associated genes (BCDGs; BRCA1/BRCA2/CHEK2/PALB2/TP53). BCDG mutation carriers, especially those with two-hit inactivation, demonstrated younger onset, higher tumor mutation burden, and greater clinical benefits from platinum drugs, PARP inhibitors, and immune checkpoint inhibitors. Furthermore, we leveraged a multiomics cohort to reveal that clinical benefits derived from two-hit events are associated with increased genome instability and an immune-activated tumor microenvironment. We also established an ethnicity-specific tool to predict BCDG mutation and two-hit status for genetic evaluation and therapeutic decisions. Overall, this study leveraged the large sequencing cohort of Chinese breast cancers, optimizing genomics-guided selection of DNA damaging-targeted therapy and immunotherapy within a broader population.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Chen Pei
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Liao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Yuan Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Fan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song-Yang Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun-Jin Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Hong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guo-Liang Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin-Lin Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bei-Bei Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Huang
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jin-Xiu Shi
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
10
|
Sharma R, Oak N, Chen W, Gogal R, Kirschner M, Beier F, Schnieders MJ, Spies M, Nichols KE, Wlodarski M. Germline landscape of RPA1, RPA2 and RPA3 variants in pediatric malignancies: identification of RPA1 as a novel cancer predisposition candidate gene. Front Oncol 2023; 13:1229507. [PMID: 37869077 PMCID: PMC10588448 DOI: 10.3389/fonc.2023.1229507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Replication Protein A (RPA) is single-strand DNA binding protein that plays a key role in the replication and repair of DNA. RPA is a heterotrimer made of 3 subunits - RPA1, RPA2, and RPA3. Germline pathogenic variants affecting RPA1 were recently described in patients with Telomere Biology Disorders (TBD), also known as dyskeratosis congenita or short telomere syndrome. Premature telomere shortening is a hallmark of TBD and results in bone marrow failure and predisposition to hematologic malignancies. Building on the finding that somatic mutations in RPA subunit genes occur in ~1% of cancers, we hypothesized that germline RPA alterations might be enriched in human cancers. Because germline RPA1 mutations are linked to early onset TBD with predisposition to myelodysplastic syndromes, we interrogated pediatric cancer cohorts to define the prevalence and spectrum of rare/novel and putative damaging germline RPA1, RPA2, and RPA3 variants. In this study of 5,993 children with cancer, 75 (1.25%) harbored heterozygous rare (non-cancer population allele frequency (AF) < 0.1%) variants in the RPA heterotrimer genes, of which 51 cases (0.85%) had ultra-rare (AF < 0.005%) or novel variants. Compared with Genome Aggregation Database (gnomAD) non-cancer controls, there was significant enrichment of ultra-rare and novel RPA1, but not RPA2 or RPA3, germline variants in our cohort (adjusted p-value < 0.05). Taken together, these findings suggest that germline putative damaging variants affecting RPA1 are found in excess in children with cancer, warranting further investigation into the functional role of these variants in oncogenesis.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St. Jude Children´s Research Hospital, Memphis, TN, United States
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rose Gogal
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Bonn, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Bonn, Germany
| | - Michael J. Schnieders
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Marcin Wlodarski
- Department of Hematology, St. Jude Children´s Research Hospital, Memphis, TN, United States
| |
Collapse
|
11
|
Gao Y, Sharma T, Cui Y. Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective. Annu Rev Biomed Data Sci 2023; 6:153-171. [PMID: 37104653 PMCID: PMC10529864 DOI: 10.1146/annurev-biodatasci-020722-020704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Artificial intelligence (AI) and other data-driven technologies hold great promise to transform healthcare and confer the predictive power essential to precision medicine. However, the existing biomedical data, which are a vital resource and foundation for developing medical AI models, do not reflect the diversity of the human population. The low representation in biomedical data has become a significant health risk for non-European populations, and the growing application of AI opens a new pathway for this health risk to manifest and amplify. Here we review the current status of biomedical data inequality and present a conceptual framework for understanding its impacts on machine learning. We also discuss the recent advances in algorithmic interventions for mitigating health disparities arising from biomedical data inequality. Finally, we briefly discuss the newly identified disparity in data quality among ethnic groups and its potential impacts on machine learning.
Collapse
Affiliation(s)
- Yan Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Teena Sharma
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| |
Collapse
|
12
|
James BA, Williams JL, Nemesure B. A systematic review of genetic ancestry as a risk factor for incidence of non-small cell lung cancer in the US. Front Genet 2023; 14:1141058. [PMID: 37082203 PMCID: PMC10110850 DOI: 10.3389/fgene.2023.1141058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Background: Non-Small Cell Lung Cancer (NSCLC), the leading cause of cancer-related death in the United States, is the most diagnosed form of lung cancer. While lung cancer incidence has steadily declined over the last decade, disparities in incidence and mortality rates persist among African American (AA), Caucasian American (CA), and Hispanic American (HA) populations. Researchers continue to explore how genetic ancestry may influence differential outcomes in lung cancer risk and development. The purpose of this evaluation is to highlight experimental research that investigates the differential impact of genetic mutations and ancestry on NSCLC incidence. Methods: This systematic review was conducted using PubMed and Google Scholar search engines. The following key search terms were used to select articles published between 2011 and 2022: "African/European/Latin American Ancestry NSCLC"; "Racial Disparities NSCLC"; "Genetic Mutations NSCLC"; "NSCLC Biomarkers"; "African Americans/Hispanic Americans/Caucasian Americans NSCLC incidence." Systematic reviews, meta-analyses, and studies outside of the US were excluded. A total of 195 articles were initially identified and after excluding 156 which did not meet eligibility criteria, 38 were included in this investigation. Results: Studies included in this analysis focused on racial/ethnic disparities in the following common genetic mutations observed in NSCLC: KRAS, EGFR, TP53, PIK3CA, ALK Translocations, ROS-1 Rearrangements, STK11, MET, and BRAF. Results across studies varied with respect to absolute differential expression. No significant differences in frequencies of specific genetic mutational profiles were noted between racial/ethnic groups. However, for HAs, lower mutational frequencies in KRAS and STK11 genes were observed. In genetic ancestry level analyses, multiple studies suggest that African ancestry is associated with a higher frequency of EGFR mutations. Conversely, Latin ancestry is associated with TP53 mutations. At the genomic level, several novel predisposing variants associated with African ancestry and increased risk of NSCLC were discovered. Family history among all racial/ethnic groups was also considered a risk factor for NSCLC. Conclusion: Results from racially and ethnically diverse studies can elucidate driving factors that may increase susceptibility and subsequent lung cancer risk across different racial/ethnic groups. Identification of biomarkers that can be used as diagnostic, prognostic, and therapeutic tools may help improve lung cancer survival among high-risk populations.
Collapse
Affiliation(s)
| | - Jennie L. Williams
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, United States
| | - Barbara Nemesure
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, United States
| |
Collapse
|
13
|
Cioffi A, De Cobelli O, Veronesi P, La Vecchia C, Maisonneuve P, Corso G. Prevalence of Germline BRCA1/2 Variants in Ashkenazi and Non-Ashkenazi Prostate Cancer Populations: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15010306. [PMID: 36612302 PMCID: PMC9818251 DOI: 10.3390/cancers15010306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIMS International guidelines recommend testing BRCA2 in men with prostate cancer, due to the presence of a strong association with this gene. Some ethnicities present disparities in genetic distribution for the relation with specific founder variants. Ashkenazi Jewish people are, importantly, at high risk of breast cancer for their inherited cluster with germline BRCA1/2 variants. However, in Ashkenazi men with prostate cancer, the prevalence of BRCA1 and/or BRCA2 is not well defined. We assessed the frequency of these variants in Ashkenazi vs. non-Ashkenazi men with prostate cancer. Materials and Methods: In accord with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, we revised all germline BRCA variants reported in MEDLINE from 1996 to 2021 in Ashkenazi and non-Ashkenazi men with prostate cancer. Results: Thirty-five original studies were selected for the analysis. Among populations from Israel and North America, Ashkenazi Jewish men presented higher prevalence of BRCA1 variants [0.9% (0.4-1.5) vs. 0.5% (0.2-1.1), p = 0.09] and a lower prevalence of BRCA2 variants [1.5% (1.1-2.0) vs. 3.5% (1.7-5.9), p = 0.08] in comparison to the non-Ashkenazi population. Conclusions: Since germline BRCA1 variants are more prevalent and BRCA2 variants are less prevalent in PCa patients of Ashkenazi Jewish ethnicity in comparison to non-Ashkenazi patients, prostate cancer genetic screening in Ashkenazi men should not be restricted to the BRCA2 gene.
Collapse
Affiliation(s)
- Antonio Cioffi
- Division of Urology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | - Ottavio De Cobelli
- Division of Urology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Paolo Veronesi
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- European Cancer Prevention Organization (ECP), 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-9437-5161
| |
Collapse
|
14
|
Chapman-Davis E, Webster EM, Balogun OD, Frey MK, Holcomb K. Landmark Series on Disparities: Uterine Cancer and Strategies for Mitigation. Ann Surg Oncol 2023; 30:48-57. [PMID: 36376567 DOI: 10.1245/s10434-022-12765-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Longstanding racial disparities exist in uterine cancer. There is a growing body of literature documenting differences in the prevalence, diagnosis, treatment, and tumor characteristics of uterine cancer in Black women compared with White women that significantly contribute to the outcome disparity seen between the groups. This article seeks to provide an overview of racial disparities present in uterine cancer, with attention on Black women in the USA, as well as offer a review on the multifactorial etiology of the disparities described.
Collapse
Affiliation(s)
- Eloise Chapman-Davis
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| | - Emily M Webster
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Onyinye D Balogun
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.,NewYork-Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| | - Melissa K Frey
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Holcomb
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Rey-Vargas L, Bejarano-Rivera LM, Mejia-Henao JC, Sua LF, Bastidas-Andrade JF, Ossa CA, Gutiérrez-Castañeda LD, Fejerman L, Sanabria-Salas MC, Serrano-Gómez SJ. Association of genetic ancestry with HER2, GRB7 AND estrogen receptor expression among Colombian women with breast cancer. Front Oncol 2022; 12:989761. [PMID: 36620598 PMCID: PMC9815522 DOI: 10.3389/fonc.2022.989761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Our previous study reported higher mRNA levels of the human epidermal growth factor receptor 2 (HER2)-amplicon genes ERBB2 and GRB7 in estrogen receptor (ER)-positive breast cancer patients with relatively high Indigenous American (IA) ancestry from Colombia. Even though the protein expression of HER2 and GRB7 is highly correlated, they may also express independently, an event that could change the patients' prognosis. In this study, we aimed to explore the differences in ER, HER2 and GRB7 protein expression according to genetic ancestry, to further assess the clinical implications of this association. Methods We estimated genetic ancestry from non-tumoral breast tissue DNA and assessed tumoral protein expression of ER, HER2, and GRB7 by immunohistochemistry in a cohort of Colombian patients from different health institutions. We used binomial and multinomial logistic regression models to test the association between genetic ancestry and protein expression. Kaplan-Meier and log-rank tests were used to evaluate the effect of HER2/GRB7 co-expression on patients' survival. Results Our results show that patients with higher IA ancestry have higher odds of having HER2+/GRB7- breast tumors, compared to the HER2-/GRB7- subtype, and this association seems to be stronger among ER-positive tumors (ER+/HER2+/GRB7-: OR=3.04, 95% CI, 1.47-6.37, p<0.05). However, in the multivariate model this association was attenuated (OR=1.80, 95% CI, 0.72-4.44, p=0.19). On the other hand, it was observed that having a higher European ancestry patients presented lower odds of ER+/HER2+/GRB7- breast tumors, this association remained significant in the multivariate model (OR=0.36, 95% CI, 0.13 - 0.93, p= 0.0395). The survival analysis according to HER2/GRB7 co-expression did not show statistically significant differences in the overall survival and recurrence-free survival. Conclusions Our results suggest that Colombian patients with higher IA ancestry and a lower European fraction have higher odds of ER+/HER2+/GRB7- tumors compared to ER+/HER2-/GRB7- disease. However, this association does not seem to be associated with patients' overall or recurrence-free survival.
Collapse
Affiliation(s)
- Laura Rey-Vargas
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia,Doctoral Program in Biological Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Juan Carlos Mejia-Henao
- Oncological Pathology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | - Luz F. Sua
- Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, and Faculty of Health Sciences, Universidad ICESI, Cali, Colombia
| | | | | | - Luz Dary Gutiérrez-Castañeda
- Research Institute, Group of Basic Sciences in Health (CBS), Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Laura Fejerman
- Department of Public Health Sciences and Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | | | - Silvia J. Serrano-Gómez
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia,Research support and follow-up group, National Cancer Institute of Colombia, Bogotá, Colombia,*Correspondence: Silvia J. Serrano-Gómez,
| |
Collapse
|
16
|
de Assumpção PB, de Assumpção PP, Moreira FC, Ribeiro-dos-Santos Â, Vidal AF, Magalhães L, Khayat AS, Ribeiro-dos-Santos AM, Cavalcante GC, Pereira AL, Medeiros I, de Souza SJ, Burbano RMR, de Souza JES, Dos Santos SEB. Incidence of Hereditary Gastric Cancer May Be Much Higher than Reported. Cancers (Basel) 2022; 14:cancers14246125. [PMID: 36551612 PMCID: PMC9776697 DOI: 10.3390/cancers14246125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Hereditary gastric cancers (HGCs) are supposed to be rare and difficult to identify. Nonetheless, many cases of young patients with gastric cancer (GC) fulfill the clinical criteria for considering this diagnosis but do not present the defined pathogenic mutations necessary to meet a formal diagnosis of HGC. Moreover, GC in young people is a challenging medical situation due to the usual aggressiveness of such cases and the potential risk for their relatives when related to a germline variant. Aiming to identify additional germline alterations that might contribute to the early onset of GC, a complete exome sequence of blood samples from 95 GC patients under 50 and 94 blood samples from non-cancer patients was performed and compared in this study. The number of identified germline mutations in GC patients was found to be much higher than that from individuals without a cancer diagnosis. Specifically, the number of high functional impact mutations, including those affecting genes involved in medical diseases, cancer hallmark genes, and DNA replication and repair processes, was much higher, strengthening the hypothesis of the potential causal role of such mutations in hereditary cancers. Conversely, classically related HGC mutations were not found and the number of mutations in genes in the CDH1 pathway was not found to be relevant among the young GC patients, reinforcing the hypothesis that existing alternative germline contributions favor the early onset of GC. The LILRB1 gene variants, absent in the world's cancer datasets but present in high frequencies among the studied GC patients, may represent essential cancer variants specific to the Amerindian ancestry's contributions. Identifying non-reported GC variants, potentially originating from under-studied populations, may pave the way for additional discoveries and translations to clinical interventions for GC management. The newly proposed approaches may reduce the discrepancy between clinically suspected and molecularly proven hereditary GC and shed light on similar inconsistencies among other cancer types. Additionally, the results of this study may support the development of new blood tests for evaluating cancer risk that can be used in clinical practice, helping physicians make decisions about strategies for surveillance and risk-reduction interventions.
Collapse
Affiliation(s)
| | - Paulo Pimentel de Assumpção
- Oncology Research Center, Federal University of Pará, Belém 66073-005, Pará, Brazil
- Correspondence: (P.P.d.A.); (S.E.B.D.S.)
| | | | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém 66073-005, Pará, Brazil
| | - André Maurício Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Giovanna C. Cavalcante
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Adenilson Leão Pereira
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Inácio Medeiros
- Bioinformatics Department, Federal University of Rio Grande do Norte, Natal 59078-400, Rio Grande do Norte, Brazil
| | - Sandro José de Souza
- Bioinformatics Department, Federal University of Rio Grande do Norte, Natal 59078-400, Rio Grande do Norte, Brazil
| | | | | | | |
Collapse
|
17
|
Liu YL, Maio A, Kemel Y, Salo-Mullen EE, Sheehan M, Tejada PR, Trottier M, Arnold AG, Fleischut MH, Latham A, Carlo MI, Murciano-Goroff YR, Walsh MF, Mandelker D, Mehta N, Bandlamudi C, Arora K, Zehir A, Berger MF, Solit DB, Aghajanian C, Diaz LA, Robson ME, Brown CL, Offit K, Hamilton JG, Stadler ZK. Disparities in cancer genetics care by race/ethnicity among pan-cancer patients with pathogenic germline variants. Cancer 2022; 128:3870-3879. [PMID: 36041233 PMCID: PMC10335605 DOI: 10.1002/cncr.34434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Germline risk assessment is increasing as part of cancer care; however, disparities in subsequent genetic counseling are unknown. METHODS Pan-cancer patients were prospectively consented to tumor-normal sequencing via custom next generation sequencing panel (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets) inclusive of germline analysis of ≥76 genes from January 2015 through December 2019 (97.5% research nonbillable) with protocol for genetics referral. Rates of pathogenic/likely pathogenic germline variants (PVs) and downstream counseling were compared across ancestry groups (mutually exclusive groups based on self-reported race/ethnicity and Ashkenazi Jewish [AJ] heritage) using nonparametric tests and multivariable logistic regression models. RESULTS Among 15,775 patients (59.6%, non-Hispanic [NH]-White; 15.7%, AJ; 20.5%, non-White [6.9%, Asian; 6.8%, Black/African American (AA); 6.7%, Hispanic; 0.1%, Other], and 4.2%, unknown), 2663 (17%) had a PV. Non-White patients had a lower PV rate (n = 433, 13.4%) compared to NH-Whites (n = 1451, 15.4%) and AJ patients (n = 683, 27.6%), p < .01, with differences in mostly moderate and low/recessive/uncertain penetrance variants. Among 2239 patients with new PV, 1652 (73.8%) completed recommended genetic counseling. Non-White patients had lower rates of genetic counseling (67.7%) than NH-White (73.7%) and AJ patients (78.8%), p < .01, with lower rates occurring in Black/AA (63%) compared to NH-White patients, even after adjustment for confounders (odds ratio, 0.60; 95% confidence interval, 0.37-0.97; p = .036). Non-White, particularly Black/AA and Asian, probands had a trend toward lower rates and numbers of at-risk family members being seen for counseling/genetic testing. CONCLUSIONS Despite minimizing barriers to genetic testing, non-White patients were less likely to receive recommended cancer genetics follow-up, with potential implications for oncologic care, cancer risk reduction, and at-risk family members. LAY SUMMARY Genetic testing is becoming an important part of cancer care, and we wanted to see if genetics care was different between individuals of different backgrounds. We studied 15,775 diverse patients with cancer who had genetic testing using a test called MSK-IMPACT that was covered by research funding. Clinically important genetic findings were high in all groups. However, Black patients were less likely to get recommended counseling compared to White patients. Even after removing many roadblocks, non-White and especially Black patients were less likely to get recommended genetics care, which may affect their cancer treatments and families.
Collapse
Affiliation(s)
- Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Anna Maio
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Erin E Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Prince Ray Tejada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Magan Trottier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Angela G Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yonina R Murciano-Goroff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Michael F Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nikita Mehta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chaitanya Bandlamudi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kanika Arora
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ahmet Zehir
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- AstraZeneca, New York, New York, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Carol L Brown
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jada G Hamilton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Psychiatry, Weill Cornell Medical College, New York, New York, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
18
|
White JA, Kaninjing ET, Adeniji KA, Jibrin P, Obafunwa JO, Ogo CN, Mohammed F, Popoola A, Fatiregun OA, Oluwole OP, Karanam B, Elhussin I, Ambs S, Tang W, Davis M, Polak P, Campbell MJ, Brignole KR, Rotimi SO, Dean-Colomb W, Odedina FT, Martin DN, Yates C. Whole-exome Sequencing of Nigerian Prostate Tumors from the Prostate Cancer Transatlantic Consortium (CaPTC) Reveals DNA Repair Genes Associated with African Ancestry. CANCER RESEARCH COMMUNICATIONS 2022; 2:1005-1016. [PMID: 36922933 PMCID: PMC10010347 DOI: 10.1158/2767-9764.crc-22-0136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
In this study, we used whole-exome sequencing of a cohort of 45 advanced-stage, treatment-naïve Nigerian (NG) primary prostate cancer tumors and 11 unmatched nontumor tissues to compare genomic mutations with African American (AA) and European American (EA) The Cancer Genome Atlas (TCGA) prostate cancer. NG samples were collected from six sites in central and southwest Nigeria. After whole-exome sequencing, samples were processed using GATK best practices. BRCA1 (100%), BARD1 (45%), BRCA2 (27%), and PMS2(18%) had germline alterations in at least two NG nontumor samples. Across 111 germline variants, the AA cohort reflected a pattern [BRCA1 (68%), BARD1 (34%), BRCA2 (28%), and PMS2 (16%)] similar to NG samples. Of the most frequently mutated genes, BRCA1 showed a statistically (P ≤ 0.05) higher germline mutation frequency in men of African ancestry (MAA) and increasing variant frequency with increased African ancestry. Disaggregating gene-level mutation frequencies by variants revealed both ancestry-linked and NG-specific germline variant patterns. Driven by rs799917 (T>C), BRCA1 showed an increasing mutation frequency as African ancestry increased. BRCA2_rs11571831 was present only in MAA, and BRCA2_rs766173 was elevated in NG men. A total of 133 somatic variants were present in 26 prostate cancer-associated genes within the NG tumor cohort. BRCA2 (27%), APC (20%), ATM (20%), BRCA1 (13%), DNAJC6 (13%), EGFR (13%), MAD1L1 (13%), MLH1 (11%), and PMS2 (11%) showed mutation frequencies >10%. Compared with TCGA cohorts, NG tumors showed statistically significant elevated frequencies of BRCA2, APC, and BRCA1. The NG cohort variant pattern shared similarities (cosign similarities ≥0.734) with Catalogue of Somatic Mutations in Cancer signatures 5 and 6, and mutated genes showed significant (q < 0.001) gene ontology (GO) and functional enrichment in mismatch repair and non-homologous repair deficiency pathways. Here, we showed that mutations in DNA damage response genes were higher in NG prostate cancer samples and that a portion of those mutations correlate with African ancestry. Moreover, we identified variants of unknown significance that may contribute to population-specific routes of tumorigenesis and treatment. These results present the most comprehensive characterization of the NG prostate cancer exome to date and highlight the need to increase diversity of study populations. Significance MAA have higher rates of prostate cancer incidence and mortality, however, are severely underrepresented in genomic studies. This is the first study utilizing whole-exome sequencing in NG men to identify West African ancestry-linked variant patterns that impact DNA damage repair pathways.
Collapse
Affiliation(s)
- Jason A White
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama
| | | | | | | | - John O Obafunwa
- Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | | | | | | | | | | | | | - Isra Elhussin
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Melissa Davis
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, New York
| | | | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | | | - Windy Dean-Colomb
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama.,Piedmont Medical Oncology - Newnan, Newnan, Georgia
| | - Folake T Odedina
- Center for Health Equity and Community Engagement Research, Mayo Clinic, Jacksonville, Florida
| | - Damali N Martin
- Division of Cancer Control and Population Sciences, NCI, Rockville, Maryland
| | - Clayton Yates
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama
| |
Collapse
|
19
|
Paixão D, Torrezan GT, Santiago KM, Formiga MN, Ahuno ST, Dias-Neto E, Tojal da Silva I, Foulkes WD, Polak P, Carraro DM. Characterization of genetic predisposition to molecular subtypes of breast cancer in Brazilian patients. Front Oncol 2022; 12:976959. [PMID: 36119527 PMCID: PMC9472814 DOI: 10.3389/fonc.2022.976959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction BRCA1 and BRCA2 germline pathogenic variants (GPVs) account for most of the 5-10% of breast cancer (BC) that is attributable to inherited genetic variants. BRCA1 GPVs are associated with the triple negative subtype, whereas BRCA2 GPVs are likely to result in higher grade, estrogen-receptor positive BCs. The contribution of other genes of high and moderate risk for BC has not been well defined and risk estimates to specific BC subtypes is lacking, especially for an admixed population like Brazilian. Objective The aim of this study is to evaluate the value of a multigene panel in detecting germline mutations in cancer-predisposing genes for Brazilian BC patients and its relation with molecular subtypes and the predominant molecular ancestry. Patients and methods A total of 321 unrelated BC patients who fulfilled NCCN criteria for BRCA1/2 testing between 2016-2018 were investigated with a 94-genes panel. Molecular subtypes were retrieved from medical records and ancestry-specific variants were obtained from off-target reads obtained from the sequencing data. Results We detected 83 GPVs in 81 patients (positivity rate of 25.2%). Among GPVs, 47% (39/83) were identified in high-risk BC genes (BRCA1/2, PALB2 and TP53) and 18% (15/83) in moderate-penetrance genes (ATM, CHEK2 and RAD51C). The remainder of the GPVs (35% - 29/83), were identified in lower-risk genes. As for the molecular subtypes, triple negative BC had a mutation frequency of 31.6% (25/79), with predominance in BRCA1 (12.6%; 10/79). Among the luminal subtypes, except Luminal B HER2-positive, 18.7% (29/155) had GPV with BRCA1/2 genes contributing 7.1% (11/155) and non-BRCA1/2 genes, 12.9% (20/155). For Luminal B HER2-positive subtype, 40% (16/40) had GPVs, with a predominance of ATM gene (15% - 6/40) and BRCA2 with only 2.5% (1/40). Finally, HER2-enriched subtype presented a mutation rate of 30.8% (4/13) with contribution of BRCA2 of 7.5% (1/13) and non-BRCA1/2 of 23% (3/13). Variants of uncertain significance (VUS) were identified in 77.6% (249/321) of the patients and the number of VUS was increased in patients with Asian and Native American ancestry. Conclusion The multigene panel contributed to identify GPVs in genes other than BRCA1/2, increasing the positivity of the genetic test from 9.6% (BRCA1/2) to 25.2% and, considering only the most clinically relevant BC predisposing genes, to 16.2%. These results indicate that women with clinical criteria for hereditary BC may benefit from a multigene panel testing, as it allows identifying GPVs in genes that directly impact the clinical management of these patients and family members.
Collapse
Affiliation(s)
- Daniele Paixão
- Oncogenetics Department, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
| | - Karina Miranda Santiago
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Samuel Terkper Ahuno
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Emmanuel Dias-Neto
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
- Genomic Medicine Group, - International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Israel Tojal da Silva
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
- Bioinformatics and Computational Biology Group, - International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - William D. Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| | - Paz Polak
- Computational Biology, C2i Genomics, New York, NY, United States
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, SP, Brazil
| |
Collapse
|
20
|
Adib E, Nassar AH, Abou Alaiwi S, Groha S, Akl EW, Sholl LM, Michael KS, Awad MM, Jӓnne PA, Gusev A, Kwiatkowski DJ. Variation in targetable genomic alterations in non-small cell lung cancer by genetic ancestry, sex, smoking history, and histology. Genome Med 2022; 14:39. [PMID: 35428358 PMCID: PMC9013075 DOI: 10.1186/s13073-022-01041-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Genomic alterations in 8 genes are now the targets of FDA-approved therapeutics in non-small cell lung cancer (NSCLC), but their distribution according to genetic ancestry, sex, histology, and smoking is not well established. Methods Using multi-institutional genetic testing data from GENIE, we characterize the distribution of targetable genomic alterations in 8 genes among 8675 patients with NSCLC (discovery cohort: DFCI, N = 3115; validation cohort: Duke, Memorial Sloan Kettering Cancer Center, Vanderbilt, N = 5560). For the discovery cohort, we impute genetic ancestry from tumor-only sequencing and identify differences in the frequency of targetable alterations across ancestral groups, smoking pack-years, and histologic subtypes. Results We identified variation in the prevalence of KRASG12C, sensitizing EGFR mutations, MET alterations, ALK, and ROS1 fusions according to the number of smoking pack-years. A novel method for computing continental (African, Asian, European) and Ashkenazi Jewish ancestries from panel sequencing enables quantitative analysis of the correlation between ancestry and mutation rates. This analysis identifies a correlation between Asian ancestry and EGFR mutations and an anti-correlation between Asian ancestry and KRASG12C mutation. It uncovers 2.7-fold enrichment for MET exon 14 skipping mutations and amplifications in patients of Ashkenazi Jewish ancestry. Among never/light smokers, targetable alterations in LUAD are significantly enriched in those with Asian (80%) versus African (49%) and European (55%) ancestry. Finally, we show that 5% of patients with squamous cell carcinoma (LUSC) and 17% of patients with large cell carcinoma (LCLC) harbor targetable alterations. Conclusions Among patients with NSCLC, there was significant variability in the prevalence of targetable genomic alterations according to genetic ancestry, histology, and smoking. Patients with LUSC and LCLC have 5% rates of targetable alterations supporting consideration for sequencing in those subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01041-x.
Collapse
|
21
|
Nyberg T, Tischkowitz M, Antoniou AC. BRCA1 and BRCA2 pathogenic variants and prostate cancer risk: systematic review and meta-analysis. Br J Cancer 2022; 126:1067-1081. [PMID: 34963702 PMCID: PMC8979955 DOI: 10.1038/s41416-021-01675-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND BRCA1 and BRCA2 pathogenic variants (PVs) are associated with prostate cancer (PCa) risk, but a wide range of relative risks (RRs) has been reported. METHODS We systematically searched PubMed, Embase, MEDLINE and Cochrane Library in June 2021 for studies that estimated PCa RRs for male BRCA1/2 carriers, with no time or language restrictions. The literature search identified 27 studies (BRCA1: n = 20, BRCA2: n = 21). RESULTS The heterogeneity between the published estimates was high (BRCA1: I2 = 30%, BRCA2: I2 = 83%); this could partly be explained by selection for age, family history or aggressive disease, and study-level differences in ethnicity composition, use of historical controls, and location of PVs within BRCA2. The pooled RRs were 2.08 (95% CI 1.38-3.12) for Ashkenazi Jewish BRCA2 carriers, 4.35 (95% CI 3.50-5.41) for non-Ashkenazi European ancestry BRCA2 carriers, and 1.18 (95% CI 0.95-1.47) for BRCA1 carriers. At ages <65 years, the RRs were 7.14 (95% CI 5.33-9.56) for non-Ashkenazi European ancestry BRCA2 and 1.78 (95% CI 1.09-2.91) for BRCA1 carriers. CONCLUSIONS These PCa risk estimates will assist in guiding clinical management. The study-level subgroup analyses indicate that risks may be modified by age and ethnicity, and for BRCA2 carriers by PV location within the gene, which may guide future risk-estimation studies.
Collapse
Affiliation(s)
- Tommy Nyberg
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Halmai NB, Carvajal-Carmona LG. Diversifying preclinical research tools: expanding patient-derived models to address cancer health disparities. Trends Cancer 2022; 8:291-294. [PMID: 35125330 PMCID: PMC11586084 DOI: 10.1016/j.trecan.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Cancer health disparities define a critical healthcare issue for racial/ethnic minorities in the USA. Key findings have led to cancer treatment improvements tailored to minority patients, but such successes have been rare. Here, we highlight how the use of patient-derived xenograft (PDX) and organoid models could resolve current blocks toward precision cancer health equity.
Collapse
Affiliation(s)
- Nicole B Halmai
- Genome Center, University of California, Davis. Davis, CA 95616, USA
| | - Luis G Carvajal-Carmona
- Genome Center, University of California, Davis. Davis, CA 95616, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis. Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center. Sacramento, CA 95817, USA.
| |
Collapse
|
23
|
Lee W, Wang Z, Saffern M, Jun T, Huang KL. Genomic and molecular features distinguish young adult cancer from later-onset cancer. Cell Rep 2021; 37:110005. [PMID: 34788626 PMCID: PMC8631509 DOI: 10.1016/j.celrep.2021.110005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Young adult cancer has increased in incidence worldwide, but its molecular etiologies remain unclear. We systematically characterize genomic profiles of young adult tumors with ages of onset ≤50 years and compare them to later-onset tumors using over 6,000 cases across 14 cancer types. While young adult tumors generally show lower mutation burdens and comparable copy-number variation rates compared to later-onset cases, they are enriched for multiple driver mutations and copy-number alterations in subtype-specific contexts. Characterization of tumor immune microenvironments reveals pan-cancer patterns of elevated TGF-β response/dendritic cells and lower IFN-γ response/macrophages relative to later-onset tumors, corresponding to age-related responses to immunotherapy in several cancer types. Finally, we identify prevalent clinically actionable events that disproportionally affect young adult or later-onset cases. The resulting catalog of age-related molecular drivers can guide precision diagnostics and treatments for young adult cancer.
Collapse
Affiliation(s)
- William Lee
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zishan Wang
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Saffern
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tomi Jun
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kuan-Lin Huang
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
24
|
Guan Z, Shen R, Begg CB. Exome-Wide Pan-Cancer Analysis of Germline Variants in 8,719 Individuals Finds Little Evidence of Rare Variant Associations. Hum Hered 2021; 86:34-44. [PMID: 34718237 DOI: 10.1159/000519355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many cancer types show considerable heritability, and extensive research has been done to identify germline susceptibility variants. Linkage studies have discovered many rare high-risk variants, and genome-wide association studies (GWAS) have discovered many common low-risk variants. However, it is believed that a considerable proportion of the heritability of cancer remains unexplained by known susceptibility variants. The "rare variant hypothesis" proposes that much of the missing heritability lies in rare variants that cannot reliably be detected by linkage analysis or GWAS. Until recently, high sequencing costs have precluded extensive surveys of rare variants, but technological advances have now made it possible to analyze rare variants on a much greater scale. OBJECTIVES In this study, we investigated associations between rare variants and 14 cancer types. METHODS We ran association tests using whole-exome sequencing data from The Cancer Genome Atlas (TCGA) and validated the findings using data from the Pan-Cancer Analysis of Whole Genomes Consortium (PCAWG). RESULTS We identified four significant associations in TCGA, only one of which was replicated in PCAWG (BRCA1 and ovarian cancer). CONCLUSIONS Our results provide little evidence in favor of the rare variant hypothesis. Much larger sample sizes may be needed to detect undiscovered rare cancer variants.
Collapse
Affiliation(s)
- Zoe Guan
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
25
|
Wang Z, Fan X, Shen Y, Pagadala MS, Signer R, Cygan KJ, Fairbrother WG, Carter H, Chung WK, Huang KL. Non-cancer-related pathogenic germline variants and expression consequences in ten-thousand cancer genomes. Genome Med 2021; 13:147. [PMID: 34503567 PMCID: PMC8431938 DOI: 10.1186/s13073-021-00964-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND DNA sequencing is increasingly incorporated into the routine care of cancer patients, many of whom also carry inherited, moderate/high-penetrance variants associated with other diseases. Yet, the prevalence and consequence of such variants remain unclear. METHODS We analyzed the germline genomes of 10,389 adult cancer cases in the TCGA cohort, identifying pathogenic/likely pathogenic variants in autosomal-dominant genes, autosomal-recessive genes, and 59 medically actionable genes curated by the American College of Molecular Genetics (i.e., the ACMG 59 genes). We also analyzed variant- and gene-level expression consequences in carriers. RESULTS The affected genes exhibited varying pan-ancestry and population-specific patterns, and overall, the European population showed the highest frequency of pathogenic/likely pathogenic variants. We further identified genes showing expression consequence supporting variant functionality, including altered gene expression, allelic specific expression, and mis-splicing determined by a massively parallel splicing assay. CONCLUSIONS Our results demonstrate that expression-altering variants are found in a substantial fraction of cases and illustrate the yield of genomic risk assessments for a wide range of diseases across diverse populations.
Collapse
Affiliation(s)
- Zishan Wang
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiao Fan
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yufeng Shen
- Departments of Systems Biology and DBMI, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meghana S Pagadala
- Department of Medicine, University of California San Diego, 9500 Gilman, San Diego, CA, 92093, USA
| | - Rebecca Signer
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kamil J Cygan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Hannah Carter
- Department of Medicine, University of California San Diego, 9500 Gilman, San Diego, CA, 92093, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Kuan-Lin Huang
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
26
|
Ménard T, Rolo D, Koneswarakantha B. Clinical Quality in Cancer Research: Strategy to Assess Data Integrity of Germline Variants Inferred from Tumor-Only Testing Sequencing Data. Pharmaceut Med 2021; 35:225-233. [PMID: 34436760 DOI: 10.1007/s40290-021-00399-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
In the majority of cancers, pathogenic variants are only found at the level of the tumor; however, an unusual number of cancers and/or diagnoses at an early age in a single family may suggest a genetic predisposition. Predisposition plays a major role in about 5-10% of adult cancers and in certain childhood tumors. As access to genomic testing for cancer patients continues to expand, the identification of potential germline pathogenic variants (PGPVs) through tumor-DNA sequencing is also increasing. Statistical methods have been developed to infer the presence of a PGPV without the need of a matched normal sample. These methods are mainly used for exploratory research, for example in real-world clinico-genomic databases/platforms (CGDB). These databases are being developed to support many applications, such as targeted drug development, clinical trial optimization, and postmarketing studies. To ensure the integrity of data used for research, a quality management system should be established, and quality oversight activities should be conducted to assess and mitigate clinical quality risks (for patient safety and data integrity). As opposed to well-defined 'good practice' quality guidelines (GxP) areas such as good clinical practice, there are no comprehensive instructions on how to assess the clinical quality of statistically derived variables from sequencing data such as PGPVs. In this article, we aim to share our strategy and propose a possible set of tactics to assess the PGPV quality and to ensure data integrity in exploratory research.
Collapse
|
27
|
Xu X, Tassone B, Ostano P, Katarkar A, Proust T, Joseph J, Riganti C, Chiorino G, Kutalik Z, Lefort K, Dotto GP. HSD17B7 gene in self-renewal and oncogenicity of keratinocytes from Black versus White populations. EMBO Mol Med 2021; 13:e14133. [PMID: 34185380 PMCID: PMC8261506 DOI: 10.15252/emmm.202114133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Human populations of Black African ancestry have a relatively high risk of aggressive cancer types, including keratinocyte-derived squamous cell carcinomas (SCCs). We show that primary keratinocytes (HKCs) from Black African (Black) versus White Caucasian (White) individuals have on average higher oncogenic and self-renewal potential, which are inversely related to mitochondrial electron transfer chain activity and ATP and ROS production. HSD17B7 is the top-ranked differentially expressed gene in HKCs and Head/Neck SCCs from individuals of Black African versus Caucasian ancestries, with several ancestry-specific eQTLs linked to its expression. Mirroring the differences between Black and White HKCs, modulation of the gene, coding for an enzyme involved in sex steroid and cholesterol biosynthesis, determines HKC and SCC cell proliferation and oncogenicity as well as mitochondrial OXPHOS activity. Overall, the findings point to a targetable determinant of cancer susceptibility among different human populations, amenable to prevention and management of the disease.
Collapse
Affiliation(s)
- Xiaoying Xu
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Beatrice Tassone
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Paola Ostano
- Cancer Genomics LaboratoryFondazione Edo ed Elvo TempiaBiellaItaly
| | - Atul Katarkar
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Tatiana Proust
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Jean‐Marc Joseph
- Division of Pediatric SurgeryWomen‐Mother‐Child DepartmentLausanne University Hospital (CHUV)LausanneSwitzerland
| | | | | | - Zoltan Kutalik
- University Center for Primary Care and Public HealthUniversity of LausanneLausanneSwitzerland
| | - Karine Lefort
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
- Present address:
Department of Laboratory Medicine and PathologyInstitute of PathologyLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Gian Paolo Dotto
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
- Cutaneous Biology Research CenterMassachusetts General HospitalCharlestownMAUSA
- International Cancer Prevention InstituteEpalingesSwitzerland
| |
Collapse
|
28
|
Gomez F, Griffith M, Griffith OL. Genetic Ancestry Correlations with Driver Mutations Suggest Complex Interactions between Somatic and Germline Variation in Cancer. Cancer Discov 2021; 11:534-536. [PMID: 33653917 DOI: 10.1158/2159-8290.cd-21-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carrot-Zhang and colleagues describe associations between Native American ancestry and the somatic mutational landscape in lung cancer, including tumor mutation burden and specific driver mutations in EGFR, KRAS, and STK11. Local ancestry analysis suggests that specific germline loci, and not environment, underlie these associations.See related article by Carrot-Zhang et al., p. 591.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri. .,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Obi L Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri. .,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
29
|
Abou Alaiwi S, Nassar AH, Adib E, Groha SM, Akl EW, McGregor BA, Esplin ED, Yang S, Hatchell K, Fusaro V, Nielsen S, Kwiatkowski DJ, Sonpavde GP, Pomerantz M, Garber JE, Freedman ML, Rana HQ, Gusev A, Choueiri TK. Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell Rep 2021; 34:108926. [PMID: 33789101 DOI: 10.1016/j.celrep.2021.108926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/27/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Prior studies of the renal cell carcinoma (RCC) germline landscape investigated predominantly patients of European ancestry. We examine the frequency of germline pathogenic and likely pathogenic (P/LP) variants in 1,829 patients with RCC from various ancestries. Overall, P/LP variants are found in 17% of patients, among whom 10.3% harbor one or more clinically actionable variants with potential preventive or therapeutic utility. Patients of African ancestry with RCC harbor significantly more P/LP variants in FH compared to patients of non-African ancestry with RCC and African controls from the Genome Aggregation Database (gnomAD). Patients of non-African ancestry have significantly more P/LP variants in CHEK2 compared to patients of African ancestry with RCC and non-Finnish Europeans controls. Non-Africans with RCC have more actionable variants compared to Africans with RCC. This work helps understand the underlying biological differences in RCC between Africans and non-Africans and paves the way to more comprehensive genomic characterization of underrepresented populations.
Collapse
Affiliation(s)
- Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amin H Nassar
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elio Adib
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan M Groha
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elie W Akl
- Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradley A McGregor
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Shan Yang
- Invitae Corporation, San Francisco, CA, USA
| | | | | | | | - David J Kwiatkowski
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guru P Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark Pomerantz
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Division of Population Sciences, Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Huma Q Rana
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Division of Population Sciences, Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Gusev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Minas TZ, Kiely M, Ajao A, Ambs S. An overview of cancer health disparities: new approaches and insights and why they matter. Carcinogenesis 2021; 42:2-13. [PMID: 33185680 PMCID: PMC7717137 DOI: 10.1093/carcin/bgaa121] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer health disparities remain stubbornly entrenched in the US health care system. The Affordable Care Act was legislation to target these disparities in health outcomes. Expanded access to health care, reduction in tobacco use, uptake of other preventive measures and cancer screening, and improved cancer therapies greatly reduced cancer mortality among women and men and underserved communities in this country. Yet, disparities in cancer outcomes remain. Underserved populations continue to experience an excessive cancer burden. This burden is largely explained by health care disparities, lifestyle factors, cultural barriers, and disparate exposures to carcinogens and pathogens, as exemplified by the COVID-19 epidemic. However, research also shows that comorbidities, social stress, ancestral and immunobiological factors, and the microbiome, may contribute to health disparities in cancer risk and survival. Recent studies revealed that comorbid conditions can induce an adverse tumor biology, leading to a more aggressive disease and decreased patient survival. In this review, we will discuss unanswered questions and new opportunities in cancer health disparity research related to comorbid chronic diseases, stress signaling, the immune response, and the microbiome, and what contribution these factors may have as causes of cancer health disparities.
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maeve Kiely
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anuoluwapo Ajao
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Prospective pan-cancer germline testing using MSK-IMPACT informs clinical translation in 751 patients with pediatric solid tumors. ACTA ACUST UNITED AC 2021; 2:357-365. [PMID: 34308366 DOI: 10.1038/s43018-021-00172-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The spectrum of germline predisposition in pediatric cancer continues to be realized. Here we report 751 solid tumor patients who underwent prospective matched tumor-normal DNA sequencing and downstream clinical use (clinicaltrials.gov NCT01775072). Germline pathogenic and likely pathogenic (P/LP) variants were reported. One or more P/LP variants were found in 18% (138/751) of individuals when including variants in low, moderate, and high penetrance dominant or recessive genes, or 13% (99/751) in moderate and high penetrance dominant genes. 34% of high or moderate penetrance variants were unexpected based on the patient's diagnosis and previous history. 76% of patients with positive results completed a clinical genetics visit, and 21% had at least one relative undergo cascade testing as a result of this testing. Clinical actionability additionally included screening, risk reduction in relatives, reproductive use, and use of targeted therapies. Germline testing should be considered for all children with cancer.
Collapse
|
32
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|