1
|
Li L, Xu L, Liao W, Wang P, Xu M, Li B, Zhang M. circCEP70 encoded protein inhibits the progression of hepatocellular carcinoma. Cell Mol Life Sci 2025; 82:174. [PMID: 40272569 PMCID: PMC12022199 DOI: 10.1007/s00018-025-05651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Cirrhosis is closely related to hepatocellular carcinoma (HCC), however, the regulation of circular RNA (circRNA) in HCC with cirrhotic background has not yet been well illustrated. In this study, high throughput circRNA sequencing was applied to identified candidate circRNAs in HCC samples with cirrhotic background. The biological function of candidate circRNA was validated in both in vitro and in vivo settings. Additionally, Alphafold 3, mass spectrometry analysis and immunofluorescence were employed to investigate the underlying mechanisms involved. We found circCEP70 exhibited significantly higher expression levels in cirrhotic HCC samples and showed a positive correlation with improved prognosis. The RNA binding protein U2AF2 was found to suppress the expression of circCEP70 in cirrhosis patients. In vitro and in vivo experiments, including CCK-8, EdU, plate cloning, transwell, scratch, subcutaneous tumor formation, liver metastasis in situ, and lung metastasis assays confirmed the anti-carcinogenic effects. Mechanistically, circCEP70 encoded a novel protein named CEP70-160aa, which interacted with PKM2 and hindered its translocation into the nucleus. This interaction led to reduce STAT3 phosphorylation in the nucleus, thus inhibiting HCC proliferation and metastasis. In cirrhotic microenvironment, circCEP70 prevented HCC proliferation and metastasis through PKM2/STAT3 axis, and RNA binding protein U2AF2 could inhibit circCEP70 expression.
Collapse
Affiliation(s)
- Lian Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangliang Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenwei Liao
- Department of Thoracic Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Peng Wang
- Department of Burns, Sichuan Academy of Medical Science, Sichuan Provincial People'S Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mingqing Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hepato-Pancreato-Biliary Surgery, Meishan City People'S Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, 620010, China
| | - Bo Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Ning Q, Jin Q, Zhao L, Wang Y, Wang J, Yang L, Han Y, Zhi Q, Zheng J, Chen F, Dong D. Transcriptome-scale analysis of functional alternative back-splicing events in colorectal cancer. J Transl Med 2025; 23:468. [PMID: 40275292 PMCID: PMC12020325 DOI: 10.1186/s12967-025-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of non-polyadenylated RNAs generated from back-splicing of genes. Multiple circRNAs can be generated at a single gene locus through alternative back-splicing events (ABS), sharing the same 5' or 3' back-splice site. To date, how prevalent ABS events are and how they are participated in carcinogenesis of human colorectal cancer (CRC) remains unexplored. METHODS To explore the functional roles of ABS events in CRC carcinogenesis, we analyzed ribosomal RNA-depleted transcriptome sequencing data of 176 CRC samples and characterized the landscape of ABS events in CRC. CRC cancer-related ABS events were identified by comparing paired CRC tumor tissues and adjacent normal tissues. Then, univariate and multivariate Cox regression was used to find prognostic ABS events. Moreover, in vitro and in vivo assays were used to exploring the functional roles of circXPO1-1 and circXPO1-2 in CRC. RESULTS We totally identified 19,611 high confidence circRNAs in CRC, among which 17,874 (91·1%) of circRNAs were found recurrently. The number of ABS circRNAs accounted for 68.8% of all identified high confidence circRNAs, which suggested that ABS events are prevalent in CRC transcriptome. Particularly, 552 ABS circRNAs were found to be aberrantly expressed between paired CRC tumor tissues and adjacent normal tissues, and their parent genes are closely associated with cancer-related hallmarks. In addition, 13 differential ABS circRNAs were identified to be associated with CRC patient survival and could act as independent prognostic indicators. Furthermore, we identified two ABS circRNAs of XPO1 gene (circXPO1-1 and circXPO1-2). The result showed that overexpression of circXPO1-2 inhibited CRC cell proliferation, migration, and invasion in vitro and in vivo, whereas circXPO1-1 is not, indicating that the circularization isoforms of XPO1 gene have different functions in CRC. CONCLUSIONS In conclusion, our work provides the landscape of ABS events in CRC transcriptome and the close association of ABS circRNAs with tumorigenesis offers a new set of targets with potential clinical benefit.
Collapse
Affiliation(s)
- Qianqian Ning
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qian Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lei Zhao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yudi Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lili Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Feifei Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Dong Dong
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Zheng L, Tang R, Ahmad F, Shi L, Chen X, Li J. hsa_circ_0081343 interacts with Rbm8a to inhibit NLRP3-mediated pyroptosis via the PI3K/AKT/HIF-1α pathways. Placenta 2025; 165:136-147. [PMID: 40267529 DOI: 10.1016/j.placenta.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Pyroptosis at the maternal-fetal interface plays an important role in fetal growth restriction development. hsa_circ_0081343 can be an RNA-binding protein "sponge" regulating Rbm8a nuclear transportation through binding to Rbm8a. This study aimed to elucidate the regulatory mechanism underlying the interaction between hsa_circ_0081343 and Rbm8a in the FGR pyroptosis pathway. METHODS The expression levels of PI3K/AKT pathway-related components (PI3K, AKT, p-PI3K, and p-AKT), HIF-1α, NLRP3, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were measured using RT-qPCR, Western blot, and ELISA. RNA-seq and ChIP-seq were used to identify the downstream signaling pathways of hsa_circ_0081343 and Rbm8a in HTR8-SVneo. RNA pull-down assays, Western blot, and RT-qPCR were performed to investigate the interactions between hsa_circ_0081343 and Rbm8a. RESULT The placenta of FGR exhibited considerable upregulation of NLRP3 compared to normal controls. Overexpression of hsa_circ_0081343 inhibited pyroptosis and subsequent inflammatory responses in HTR-8/SVneo cells, and these effects were reversed by Rbm8a knockdown. The integration of RNA-seq and ChIP-seq showed that the PI3K/AKT and HIF-1α pathways were the targets of hsa_circ_0081343 and Rbm8a. hsa_circ_0081343 upregulation and Rbm8a downregulation was accompanied by the inhibition of the PI3K/AKT/HIF-1α signaling pathway, whereas hsa_circ_0081343 knockdown of and Rbm8a overexpression led to the opposite effect. Moreover, Rbm8a binds to hsa_circ_0081343, flanking the intron sequence. Rbm8a overexpression significantly decreased hsa_circ_0081343 expression. CONCLUSION These results indicated that the interaction between hsa_circ_0081343 and Rbm8a regulates NLRP3-mediated pyroptosis through the PI3K/AKT/HIF-1α signaling pathway. Furthermore, Rbm8a binds to hsa_circ_0081343, flanking the intron sequence and modulating hsa_circ_0081343 formation. Our results provide a new direction for further exploration of the regulatory mechanisms of circRNA-RBPs in the pathogenesis of FGR.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Tang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Fiaz Ahmad
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, Shaanxi, China
| | - Lei Shi
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Xiaoju Chen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Sun X, Jia D, Yu Y. Expression pattern, immune signature, and prognostic value of RBM10 in human cancers. Histol Histopathol 2025; 40:493-508. [PMID: 39056107 DOI: 10.14670/hh-18-790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
BACKGROUND RNA-binding motif protein 10 (RBM10) regulates the expression of genes involved in immune responses and is associated with a wide spectrum of cancers. Meanwhile, immunotherapy is the most promising cancer treatment of our time; nevertheless, the pan-cancer role of RBM10 remains to be elucidated. METHODS Data from multiple online databases, including ONCOMINE, UALCAN, GEPIA2, Kaplan-Meier Plotter, cBioPortal, STRING, and TIMER were analyzed. The protein expression levels of RBM10 in various tumor types were verified by immunohistochemistry (IHC). RESULTS RBM10 is upregulated in multiple tumors compared with the corresponding normal tissues. In addition, RBM10 is highly mutated in various cancers. We also compared the levels of phosphorylated RBM10 between normal and primary tumor tissues. We found that the expression of RBM10 was positively correlated with Programmed cell death 1 (PD-L1) and Cytotoxic lymphocyte antigen 4 (CTLA4) in most cancers, except Thyroid carcinoma (THCA). Moreover, the expression of RBM10 was significantly related to immune cell infiltration in many cancers, suggesting that it is a promising target for cancer immunotherapy. CONCLUSIONS RBM10 expression is closely related to tumor prognosis and the immune microenvironment. Our findings provide new insights into the role of RBM10 in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xi Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Wang J, Zhang C, Zhang Y, Guo J, Xie C, Liu Y, Chen L, Ma L. Circular RNA in liver cancer research: biogenesis, functions, and roles. Front Oncol 2025; 15:1523061. [PMID: 40224186 PMCID: PMC11985449 DOI: 10.3389/fonc.2025.1523061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Liver cancer, characterized by its insidious nature, aggressive invasiveness, and propensity for metastasis, has witnessed a sustained increase in both incidence and mortality rates in recent years, underscoring the urgent need for innovative diagnostic and therapeutic approaches. Emerging research indicates that CircRNAs (circular RNAs) are abundantly and stably present within cells, with their expression levels closely associated with the progression of various malignancies, including hepatocellular carcinoma. In the context of liver cancer progression, circRNAs exhibit promising potential as highly sensitive diagnostic biomarkers, offering novel avenues for early detection, and also function as pivotal regulatory factors within the carcinogenic process. This study endeavors to elucidate the biogenesis, functional roles, and underlying mechanisms of circRNAs in hepatocellular carcinoma, thereby providing a fresh perspective on the pathogenesis of liver cancer and laying a robust foundation for the development of more precise and effective early diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Jiayi Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yinghui Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiaojiao Guo
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chenyu Xie
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yulu Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lidian Chen
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Chen P, Zhang J, Wu S, Zhang X, Zhou W, Guan Z, Tang H. CircRNAs: a novel potential strategy to treat breast cancer. Front Immunol 2025; 16:1563655. [PMID: 40176810 PMCID: PMC11961433 DOI: 10.3389/fimmu.2025.1563655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 04/04/2025] Open
Abstract
Breast cancer is among the most prevalent malignant tumors worldwide, with triple-negative breast cancer (TNBC) being the most aggressive subtype and lacking effective treatment options. Circular RNAs (circRNAs) are noncoding RNAs that play crucial roles in the development of tumors, including breast cancer. This article examines the progress of research on circRNAs in breast cancer, focusing on four main areas: 1) breast cancer epidemiology, classification, and treatment; 2) the structure, discovery process, characteristics, formation, and functions of circRNAs; 3) the expression, mechanisms, clinical relevance, and recent advances in the study of circRNAs in breast cancer cells and the immune microenvironment, particularly in TNBC; and 4) the challenges and future prospects of the use of circRNAs in BC research.
Collapse
Affiliation(s)
- Pangzhou Chen
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Zhou
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Zhou L, Li J, Sun X, Xin Y, Yin S, Ning X. CircArid4b: A novel circular RNA regulating antibacterial response during hypoxic stress via apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110121. [PMID: 39788357 DOI: 10.1016/j.cbpc.2025.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress. Following HB stress, H&E and TUNEL staining identified heightened hepatocyte apoptosis, intracellular vacuolation, and inflammatory tissue damage. RT-qPCR elucidated that differentially expressed genes stimulated by HB synergistically enhanced apoptosis and inflammatory responses. Importantly, we systematically evaluated differentially expressed circRNAs (DEcirs) in yellow catfish under hypoxia with and without Aeromonas veronii infection and identified a novel HB-specific DEcir, designated as circArid4b, whose parental gene Arid4b is highly associated with apoptosis. Experiments confirmed the circular structure of circArid4b and revealed that under HB stimulation, specific knockdown of circArid4b inhibited the expression of Arid4b, while concurrent alterations in multiple apoptosis- and inflammation-related genes synergistically indicated the promotion of apoptotic and inflammatory pathways. Notably, the downregulation of circArid4b expression significantly reduced the susceptibility to bacterial infection in yellow catfish during hypoxia. These results suggest that HB-induced suppression of circArid4b promotes cell apoptosis and inflammation by inhibiting its parental gene and thereby facilitating resistance to bacterial infection during hypoxia. Our study enriches the understanding of fish circRNA mechanisms and offers novel preventive and control strategies for bacterial infections in fish under hypoxic environments.
Collapse
Affiliation(s)
- Linxin Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jiayi Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinxin Sun
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yingying Xin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shaowu Yin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Xianhui Ning
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
9
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The Role of the Dysregulation of circRNAs Expression in Glioblastoma Multiforme. J Mol Neurosci 2025; 75:9. [PMID: 39841303 DOI: 10.1007/s12031-024-02285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes. circRNA molecules are rich in miRNA binding sites. The discovery of more structurally diverse and GBM-related circRNAs has great promise for the use of GMB prognostic biomarkers and therapeutic targets, as well as for comprehending the molecular regulatory mechanisms of GBM. In this work, we present an overview of the circRNA expression patterns associated with GBM and offer a potential integrated electrochemical strategy for detecting circRNA with extreme sensitivity in the diagnosis of glioblastoma.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
10
|
Li Z, Sarker B, Zhao F, Zhou T, Zhang J, Xu C. COL: a method for identifying putatively functional circular RNAs. J Genet Genomics 2024; 51:1338-1341. [PMID: 39218058 PMCID: PMC11645182 DOI: 10.1016/j.jgg.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Zheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bandhan Sarker
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengyu Zhao
- Department of Statistics, George Washington University, Washington, DC 20052, USA
| | - Tianjiao Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Chuan Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Alharbi KS. Non-coding RNAs as therapeutic targets in Parkinson's Disease: A focus on dopamine. Pathol Res Pract 2024; 263:155641. [PMID: 39395297 DOI: 10.1016/j.prp.2024.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Parkinson's Disease is a highly complicated neurological disorder, with a key manifestation of loss of dopaminergic neurons. Despite the plethora of medicines that alleviate the symptoms, there is an urgent need for new treatments acting on the fundamental pathology of PD. Non-coding RNAs are becoming increasingly important in gene regulation and various cellular processes and are found to play a role in PD pathophysiology. This review analyzes the cross-talk of distinct ncRNAs with dopamine signaling. We attempt to constrain the various ncRNA networks that can activate dopamine production. First, we describe the deregulation of miRNAs that target dopamine receptors and have been implicated in PD. Next, we turn to the functions of lncRNAs in dopaminergic neurons and the connections to susceptibility genes for PD. Finally, we will analyze the novel circRNAs, such as ciRS-7, which may modulate dopamine-linked processes and serve as possible PD biomarkers. In this review, we describe recent progress in dopamine neuron revival to treat PD and the therapeutic potential of ncRNA. This review critically evaluates the available data, and we predict the role of some ncRNAs, such as PTBP1, to become candidate treatment targets in the future. Thus, this review aims to summarize the molecular causes for the deficit in dopamine signaling in PD and point to novel ncRNAs-linked therapeutic directions in neuroscience.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, AL Qassim 51452, Saudi Arabia.
| |
Collapse
|
12
|
Yang YC, Ho KH, Hua KT, Chien MH. Roles of K(H)SRP in modulating gene transcription throughout cancer progression: Insights from cellular studies to clinical perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189202. [PMID: 39447687 DOI: 10.1016/j.bbcan.2024.189202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The KH-type splicing regulatory protein (KHSRP), also known as KSRP, is an RNA-binding protein that regulates gene expressions through various mechanisms, including messenger (m)RNA degradation, micro (mi)RNA maturation, and transcriptional activity. KSRP has been implicated in a wide range of physiological and pathological processes, with emerging evidence highlighting its role in modulating diverse aspects of cancer behaviors. In this review, we provide a comprehensive overview of KSRP's clinical relevance and its multifaceted regulatory mechanisms in cancer. Our extensive pan-cancer analysis uncovers associations of KSRP with clinical outcomes and identifies cell cycle progression as a key signaling pathway correlated with KSRP expression. Furthermore, we identify miR-17-5p as critical miRNAs positively correlated with KSRP, and it is associated with poor survival in various cancers. Collectively, this review offers new insights into the potential of KSRP as a target for therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
13
|
Dong X, Cheng T, Zhang L, Song L, Shi C. CircTSN promotes the proliferation and metastasis of gastric cancer through the miR-1825/SLC38A2 signaling axis. Discov Oncol 2024; 15:533. [PMID: 39379756 PMCID: PMC11461732 DOI: 10.1007/s12672-024-01407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Comprehensive treatment of gastric cancer (GC) is progressing, but the rapid proliferation and metastasis of GC remains a cause of high recurrence and mortality rates. In this study we investigated GC-associated circRNA tending to yield more insight into the mechanisms of gastric cancer development. METHODS We detected the expression levels of circTSN in GC tissues and cell lines using qRT-PCR. The circular structure of circTSN was confirmed by Sanger sequencing, agarose gel electrophoresis and RNase R. A series of cell functional experiments were employed to investigate the implication of circTSN aberrant expression on the proliferation and metastasis of GC cells. The predicted binding domain between circTSN and miR-1825 was analyzed by luciferase reporter gene analysis. Meanwhile, subcutaneous tumor xenografts in nude mice were used to validate the role of circTSN in vivo. RESULTS It was found that RNA levels of circTSN were significantly elevated in GC tissues and cell lines, which was also confirmed to contain a closed-loop structure. CCK8, clone formation, EdU, transwell and in vivo experiments indicated that the highly expressed circTSN was involved in the proliferation and metastasis process of GC. In addition, circTSN modulates the expression of SLC38A2 by sequence-specific binding to miR-1825. CONCLUSION This study identified that circTSN, which is highly expressed in GC, was able to contribute to the proliferation and metastasis of GC cell through miR-1825/SLC38A2 axis and this might provide a new candidate target for the precision treatment of GC.
Collapse
Affiliation(s)
- Xuqiang Dong
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Tianyu Cheng
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Lijun Zhang
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Liqun Song
- Department of Operating Room, Yixing People's Hospital, Wuxi, Jiangsu, China.
| | - Chao Shi
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
14
|
Zang X, He XY, Xiao CM, Lin Q, Wang MY, Liu CY, Kong LY, Chen Z, Xia YZ. Circular RNA-encoded oncogenic PIAS1 variant blocks immunogenic ferroptosis by modulating the balance between SUMOylation and phosphorylation of STAT1. Mol Cancer 2024; 23:207. [PMID: 39334380 PMCID: PMC11438063 DOI: 10.1186/s12943-024-02124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The clinical response rate to immune checkpoint blockade (ICB) therapy in melanoma remains low, despite its widespread use. Circular non-coding RNAs (circRNAs) are known to play a crucial role in cancer progression and may be a key factor limiting the effectiveness of ICB treatment. METHODS The circRNAs that were downregulated after coadministration compared with single administration of PD-1 inhibitor administration were identified through RNA-seq and Ribo-seq, and thus the circPIAS1 (mmu_circ_0015773 in mouse, has_circ_0008378 in human) with high protein coding potential was revealed. Fluorescence in situ hybridization (FISH) assays were conducted to determine the localization of circPIAS1 in human and mouse melanoma cells, as well as its presence in tumor and adjacent tissues of patients. Validation through dual-luciferase reporter assay and LC-MS/MS confirmed the ability of circPIAS1 to encode a novel 108 amino acid polypeptide (circPIAS1-108aa). Specific antisense oligonucleotides (ASOs) targeting the junction site of circPIAS1 were developed to reduce its intracellular levels. Proliferation changes in melanoma cells were assessed using CCK8, EdU, and colony formation assays. The impact of circPIAS1-108aa on the ferroptosis process of melanoma cells was studied through GSH, MDA, and C11-BODIPY staining assays. Western Blot, Immunoprecipitation (IP), and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques were employed to investigate the impact of circPIAS1-108aa on the P-STAT1/SLC7A11/GPX4 signaling pathway, as well as its influence on the balance between STAT1 SUMOylation and phosphorylation. Additionally, a melanoma subcutaneous transplanted tumor mouse model was utilized to examine the combined effect of reducing circPIAS1 levels alongside PD-1 inhibitor. RESULTS Compared with the group treated with PD-1 inhibitor alone, circPIAS1 was significantly down-regulated in the coadministration group and demonstrated higher protein coding potential. CircPIAS1, primarily localized in the nucleus, was notably upregulated in tumor tissues compared to adjacent tissues, where it plays a crucial role in promoting cancer cell proliferation. This circRNA can encode a unique polypeptide consisting of 108 amino acids, through which it exerts its cancer-promoting function and impedes the effectiveness of ICB therapy. Mechanistically, circPIAS1-108aa hinders STAT1 phosphorylation by recruiting SUMO E3 ligase Ranbp2 to enhance STAT1 SUMOylation, thereby reactivating the transduction of the SLC7A11/GPX4 signaling pathway and restricting the immunogenic ferroptosis induced by IFNγ. Furthermore, the combination of ASO-circPIAS1 with PD-1 inhibitor effectively inhibits melanoma growth and significantly enhances the efficacy of immune drugs in vivo. CONCLUSIONS Our study uncovers a novel mechanism regarding immune evasion in melanoma driven by a unique 108aa peptide encoded by circPIAS1 in melanoma that dramatically hinders immunogenic ferroptosis triggered by ICB therapy via modulating the balance between SUMOylation and phosphorylation of STAT1. This work reveals circPIAS1-108aa as a critical factor limiting the immunotherapeutic effects in melanoma and propose a promising strategy for improving ICB treatment outcomes.
Collapse
Affiliation(s)
- Xin Zang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiao-Yu He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Qing Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Meng-Yue Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Cheng-Yan Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Zhong Chen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 109 Long Mian Avenue, Nanjing, 211100, China.
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor and Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
15
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
17
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
18
|
Yao J, Xu H, Ferrick-Kiddie EA, Nottingham RM, Wu DC, Ares M, Lambowitz AM. Human cells contain myriad excised linear intron RNAs with links to gene regulation and potential utility as biomarkers. PLoS Genet 2024; 20:e1011416. [PMID: 39325823 PMCID: PMC11460701 DOI: 10.1371/journal.pgen.1011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
A previous study using Thermostable Group II Intron Reverse Transcriptase sequencing (TGIRT-seq) found human plasma contains short (≤300 nt) structured full-length excised linear intron (FLEXI) RNAs with potential to serve as blood-based biomarkers. Here, TGIRT-seq identified >9,000 different FLEXI RNAs in human cell lines, including relatively abundant FLEXIs with cell-type-specific expression patterns. Analysis of public CLIP-seq datasets identified 126 RNA-binding proteins (RBPs) that have binding sites within the region corresponding to the FLEXI or overlapping FLEXI splice sites in pre-mRNAs, including 53 RBPs with binding sites for ≥30 different FLEXIs. These included splicing factors, transcription factors, a chromatin remodeling protein, cellular growth regulators, and proteins with cytoplasmic functions. Analysis of ENCODE datasets identified subsets of these RBPs whose knockdown impacted FLEXI host gene mRNA levels or proximate alternative splicing, indicating functional interactions. Hierarchical clustering identified six subsets of RBPs whose FLEXI binding sites were co-enriched in six subsets of functionally related host genes: AGO1-4 and DICER, including but not limited to agotrons or mirtron pre-miRNAs; DKC1, NOLC1, SMNDC1, and AATF (Apoptosis Antagonizing Transcription Factor), including but not limited to snoRNA-encoding FLEXIs; two subsets of alternative splicing factors; and two subsets that included RBPs with cytoplasmic functions (e.g., LARP4, PABPC4, METAP2, and ZNF622) together with regulatory proteins. Cell fractionation experiments showed cytoplasmic enrichment of FLEXI RNAs with binding sites for RBPs with cytoplasmic functions. The subsets of host genes encoding FLEXIs with binding sites for different subsets of RBPs were co-enriched with non-FLEXI other short and long introns with binding sites for the same RBPs, suggesting overarching mechanisms for coordinately regulating expression of functionally related genes. Our findings identify FLEXIs as a previously unrecognized large class of cellular RNAs and provide a comprehensive roadmap for further analyzing their biological functions and the relationship of their RBPs to cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Jun Yao
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Elizabeth A. Ferrick-Kiddie
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Ryan M. Nottingham
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Douglas C. Wu
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology University of California, Santa Cruz, California, United States of America
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| |
Collapse
|
19
|
Chen J, Wang H, Xu J, Chen E, Meng Q, Wang J, Xiang H, Zhou W, Shan G, Ju Z, Song Z. CircZFR promotes colorectal cancer progression via stabilizing BCLAF1 and regulating the miR-3127-5p/RTKN2 axis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1881-1898. [PMID: 38805063 DOI: 10.1007/s11427-023-2514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 05/29/2024]
Abstract
Aberrant expression of circular RNAs (circRNAs) is frequently linked to colorectal cancer (CRC). Here, we identified circZFR as a promising biomarker for CRC diagnosis and prognosis. CircZFR was upregulated in CRC tissues and serum exosomes and its level was linked to cancer incidence, advanced-stages, and metastasis. In both in vitro and in vivo settings, circZFR promoted the growth and spread while suppressing apoptosis of CRC. Exosomes with circZFR overexpression promoted the proliferation and migration of cocultured CRC cells. Mechanistically, epithelial splicing regulatory protein 1 (ESRP1) in CRC cells may enhance the production of circZFR. BCL2-associated transcription factor 1 (BCLAF1) bound to circZFR, which prevented its ubiquitinated degradation. Additionally, circZFR sponged miR-3127-5p to boost rhotekin 2 (RTKN2) expression. Our TCP1-CD-QDs nanocarrier was able to carry and deliver circZFR siRNA (si-circZFR) to the vasculature of CRC tissues and cells, which inhibited the growth of tumors in patient-derived xenograft (PDX) models. Taken together, our results show that circZFR is an oncogenic circRNA, which promotes the development and spread of CRC in a BCLAF1 and miR-3127-5p-dependent manner. CircZFR is a possible serum biopsy marker for the diagnosis and a desirable target for further treatment of CRC.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Jianbin Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Haoyi Xiang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Ge Shan
- Department of Pulmonary and Critical Care Medicine, Regional medical center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
20
|
Li Y, Wang Z, Gao P, Cao D, Dong R, Zhu M, Fei Y, Zuo X, Cai J. CircRHBDD1 promotes immune escape via IGF2BP2/PD-L1 signaling and acts as a nanotherapeutic target in gastric cancer. J Transl Med 2024; 22:704. [PMID: 39080693 PMCID: PMC11289934 DOI: 10.1186/s12967-024-05498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been implicated in the development and progression of gastric cancer (GC). However, it remains unclear whether dysregulated circRNA affects immune escape and the efficacy of immunotherapy in GC. Our aim is to investigate the molecular mechanism of circRNA affecting GC immunotherapy and identify effective molecular therapeutic targets. METHODS The differential expression profile of circRNAs was established through circRNA sequencing, comparing three paired GC tissues with their adjacent non-cancerous gastric tissues. The expression level of circRHBDD1 in GC tissues was then assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The biological characteristics of circRHBDD1 were verified through a series of experiments, including agarose gel electrophoresis assays, RNase R treatment, and actinomycin D experiments. The prognostic value of circRHBDD1 in GC was evaluated by conducting both univariate and multivariate survival analyses. Furthermore, loss- and gain-of-function approaches were utilized to investigate the impact of circRHBDD1 on GC immune escape. RNA-sequencing, immunoprecipitation, flow cytometry, and methylated RNA immunoprecipitation (meRIP) analysis were performed to elucidate the underlying molecular mechanisms. RESULTS We discovered that circRHBDD1 exhibited remarkably high expression levels in GC tissues and cell lines. Notably, the high expression of circRHBDD1 was significantly correlated with poor overall survival and disease-free survival among GC patients. Both in vitro and in vivo experiments revealed that circRHBDD1 upregulated the expression of PD-L1 and impeded the infiltration of CD8+ T cells. Further, we found that circRHBDD1 binds to IGF2BP2, disrupting the interaction between E3 ligase TRIM25 and IGF2BP2, and ultimately inhibiting IGF2BP2 ubiquitination and degradation. Intriguingly, IGF2BP2 enhances PD-L1 mRNA stability through m6A modification. Additionally, we developed Poly (lactide-co-glycolic acid) (PLGA)-Polyethylene glycol (PEG)-based nanoparticles loaded with circRHBDD1 siRNA. In vivo experiments validated that the combination of PLGA-PEG(si-circRHBDD1) and anti-PD-1 offers a safe and efficacious nano-drug regimen for cancer immunotherapy. CONCLUSION Our results demonstrated that circRHBDD1 promoted GC immune escape by upregulating the expression of PD-L1 and reprogramming T cell-mediated immune response. Inhibition of circRHBDD1 expression could potentially enhance the response of GC patients to immunotherapy, thus improving treatment outcomes. Additionally, the development of a nanodrug delivery system provides a feasible approach for future clinical applications.
Collapse
Affiliation(s)
- Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
| | - Juan Cai
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
21
|
Okholm TLH, Kamstrup AB, Nielsen MM, Hollensen AK, Graversgaard ML, Sørensen MH, Kristensen LS, Vang S, Park SS, Yeo E, Dyrskjøt L, Kjems J, Pedersen JS, Damgaard CK. circHIPK3 nucleates IGF2BP2 and functions as a competing endogenous RNA. eLife 2024; 13:RP91783. [PMID: 39041323 PMCID: PMC11265796 DOI: 10.7554/elife.91783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.
Collapse
Affiliation(s)
- Trine Line Hauge Okholm
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology & Immunology, University of California, San FranciscoSan FranciscoUnited States
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | | | - Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | | | | | | | | | - Søren Vang
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eugene Yeo
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus UniversityAarhusDenmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
- Bioinformatics Research Center (BiRC), Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
22
|
Li Z, Sarker B, Zhao F, Zhou T, Zhang J, Xu C. COL: a pipeline for identifying putatively functional back-splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566217. [PMID: 38014194 PMCID: PMC10680571 DOI: 10.1101/2023.11.08.566217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Circular RNAs (circRNAs) are a class of generally non-coding RNAs produced by back- splicing. Although the vast majority of circRNAs are likely to be products of splicing error and thereby confer no benefits to organisms, a small number of circRNAs have been found to be functional. Identifying other functional circRNAs from the sea of mostly non-functional circRNAs is an important but difficult task. Because available experimental methods for this purpose are of low throughput or versality and existing computational methods have limited reliability or applicability, new methods are needed. We hypothesize that functional back- splicing events that generate functional circRNAs (i) exhibit substantially higher back-splicing rates than expected from the total splicing amounts, (ii) have conserved splicing motifs, and (iii) show unusually high back-splicing levels. We confirm these features in back-splicing shared among human, macaque, and mouse, which should enrich functional back-splicing. Integrating the three features, we design a computational pipeline named COL for identifying putatively functional back-splicing. Different from the methods that require multiple samples, COL can predict functional back-splicing using a single sample. Under the same data requirement, COL has a lower false positive rate than that of the commonly used method that is based on the back- splicing level alone. We conclude that COL is an efficient and versatile method for rapid identification of putatively functional back-splicing and circRNAs that can be experimentally validated. COL is available at https://github.com/XuLabSJTU/COL .
Collapse
|
23
|
Okholm TLH, Kamstrup AB, Nielsen MM, Hollensen AK, Graversgaard ML, Sørensen MH, Kristensen LS, Vang S, Park SS, Yeo GW, Dyrskjøt L, Kjems J, Pedersen JS, Damgaard CK. circHIPK3 nucleates IGF2BP2 and functions as a competing endogenous RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557527. [PMID: 37745562 PMCID: PMC10515936 DOI: 10.1101/2023.09.14.557527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Circular RNAs (circRNAs) represent a class of widespread endogenous RNAs that regulate gene expression and thereby influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Specifically, we use temporal depletion of circHIPK3 or specific RNA binding proteins (RBPs) and identify several perturbed genes by RNA sequencing analyses. Using expression-coupled motif analyses of mRNA expression data from various knockdown experiments, we identify an 11-mer motif within circHIPK3, which is also enriched in genes that become downregulated upon circHIPK3 depletion. By mining eCLIP datasets, we find that the 11-mer motif constitutes a strong binding site for IGF2BP2 and validate this circHIPK3-IGF2BP2 interaction experimentally using RNA-immunoprecipitation and competition assays in bladder cancer cell lines. Our results suggest that circHIPK3 and IGF2BP2 mRNA targets compete for binding. Since the identified 11-mer motif found in circHIPK3 is enriched in upregulated genes following IGF2BP2 knockdown, and since IGF2BP2 depletion conversely globally antagonizes the effect of circHIPK3 knockdown on target genes, our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2- STAT3 mRNA binding and thereby STAT3 mRNA levels. However, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Finally, we show that circHIPK3 expression correlates with overall survival of patients with bladder cancer. Our results are consistent with a model where relatively few cellular circHIPK3 molecules function as inducers of IGF2BP2 condensation thereby regulating STAT3 and other key factors for cell proliferation and potentially cancer progression.
Collapse
|
24
|
Choi SW, Nam JW. Optimal design of synthetic circular RNAs. Exp Mol Med 2024; 56:1281-1292. [PMID: 38871815 PMCID: PMC11263348 DOI: 10.1038/s12276-024-01251-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally, this review describes several potential applications of circular RNAs.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
25
|
Wang L, Meng C, Long Y, Liu Y, Yang L, Gao X, Sun S, Feng F. The hsa_circ_0082152 maintains NF-κB mRNA stability by binding to MTDH to promote anti-tuberculosis drug-induced liver injury. Int J Biol Macromol 2024; 269:131793. [PMID: 38670193 DOI: 10.1016/j.ijbiomac.2024.131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Anti-tuberculosis drug-induced liver injury (ADLI) is a common adverse reaction during anti-tuberculosis treatment and often leads to treatment interruptions. Circular RNAs (circRNAs) have been identified as key modulators in liver diseases. CircRNAs is a special class of noncoding RNAs that have been found to have significant impacts on the progression of inflammation via various mechanisms. In the serum of ADLI patients, upregulation of the circular RNA hsa_circ_0082152 (derived from the host gene snd1) was observed, along with increased ALT and AST levels, as well as alterations in the levels of inflammation-related factors such as NF-κB, IL-1β and TNF-α. To elucidate the underlying mechanisms, we established an HL-7702-ADLI cell model and confirmed similar upregulation of hsa_circ_0082152. Downregulation of hsa_circ_0082152 significantly inhibited inflammatory injury in ADLI cells, while upregulation had the opposite effect. RNA immunoprecipitation showed that hsa_circ_0082152 functions by interacting with metadherin (MTDH). Our study further verified that the interaction of hsa_circ_0082152 with the MTDH protein binding to NF-κB mRNA to maintain NF-κB mRNA stability, which increases the expression of NF-κB and its targets IL-1β and TNF-α. Conversely, depletion of MTDH rescued the promotive effect of hsa_circ_0082152 overexpression on ADLI inflammation. Therefore, hsa_circ_0082152 overexpression promotes ADLI progression via the MTDH/NF-κB axis.
Collapse
Affiliation(s)
- Lin Wang
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Chunyan Meng
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Yifei Long
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Yue Liu
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Luming Yang
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xuelei Gao
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Shufeng Sun
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Fumin Feng
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China.
| |
Collapse
|
26
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
27
|
Fang R, Yuan W, Mao C, Cao J, Chen H, Shi X, Cong H. Human circular RNA hsa_circ_0000231 clinical diagnostic effectiveness as a new tumor marker in gastric cancer. Cancer Rep (Hoboken) 2024; 7:e2081. [PMID: 38703060 PMCID: PMC11069127 DOI: 10.1002/cnr2.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Owing to the subtlety of initial symptoms associated with gastric cancer (GC), the majority of patients are diagnosed at later stages. Given the absence of reliable diagnostic markers, it is imperative to identify novel markers that exhibit high sensitivity and specificity. Circular RNA, a non-coding RNA, plays an important role in tumorigenesis and development and is well expressed in body fluids. AIMS In this study, we aimed to identify hsa_circ_0000231 as a new biomarker for the diagnosis of GC and to assess its clinical diagnostic value in serum. METHODS AND RESULTS The stability and correctness of hsa_circ_0000231 was determined by agarose gel electrophoresis, Rnase R assay and Sanger sequencing. Real-time quantitative polymerase chain reaction (qRT-PCR) was designed to discover the expression level of hsa_circ_0000231 and whether it has dynamic serum monitoring capability. The correlation between hsa_circ_0000231 and clinicopathological parameters was analyzed by collecting clinical and pathological data from GC patients. In addition, diagnostic efficacy was assessed by constructing receiver operating characteristic curves (ROC). Hsa_circ_0000231 exhibits a stable and consistently expressed structure. In GC serum, cells, and tissues, it demonstrates reduced expression levels. Elevated expression levels observed postoperatively suggest its potential for dynamic monitoring. Additionally its expression level correlates with TNM staging and neuro/vascular differentiation. The area under ROC curve (AUC) for hsa_circ_0000231 is 0.781, indicating its superior diagnostic value compared to CEA, CA19-9, and CA72-4. The combination of these four indicators enhances diagnostic accuracy, with an AUC of 0.833. CONCLUSIONS The stable expression of hsa_circ_0000231 in the serum of gastric cancer patients holds promise as a novel biomarker for both the diagnosis and dynamic monitoring of GC.
Collapse
Affiliation(s)
- Ronghua Fang
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Clinical MedicineMedical School of Nantong UniversityNantongChina
| | - Wentao Yuan
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Clinical MedicineMedical School of Nantong UniversityNantongChina
| | - Chunyan Mao
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Clinical MedicineMedical School of Nantong UniversityNantongChina
| | - Jing Cao
- Department of Blood TransfusionAffiliated Hospital of Nantong UniversityNantongChina
| | - Hongmei Chen
- Vip WardAffiliated Hospital of Nantong UniversityNantongChina
| | - Xiuying Shi
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Hui Cong
- Department of Laboratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Department of Blood TransfusionAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
28
|
Chen H, Wen J, Zhang W, Ma W, Guo Y, Shen L, Zhang Z, Yang F, Zhang Y, Gao Y, Xu T, Yan Y, Li W, Zhang J, Mao S, Yao X. circKDM1A suppresses bladder cancer progression by sponging miR-889-3p/CPEB3 and stabilizing p53 mRNA. iScience 2024; 27:109624. [PMID: 38632984 PMCID: PMC11022052 DOI: 10.1016/j.isci.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Circular RNAs (circRNAs) play crucial biological functions in various tumors, including bladder cancer (BCa). However, the roles and underlying molecular mechanisms of circRNAs in the malignant proliferation of BCa are yet unknown. CircKDM1A was observed to be downregulated in BCa tissues and cells. Knockdown of circKDM1A promoted the proliferation of BCa cells and bladder xenograft growth, while the overexpression of circKDM1A exerts the opposite effect. The dual-luciferase reporter assay revealed that circKDM1A was directly bound to miR-889-3p, acting as its molecular sponge to downregulate CPEB3. In turn, the CPEB3 was bound to the CPE signal in p53 mRNA 3'UTR to stabilize its expression. Thus, circKDM1A-mediated CPEB3 downregulation inhibits the stability of p53 mRNA and promotes BCa malignant progression. In conclusion, circKDM1A functions as a tumor suppressor in the malignant proliferation of BCa via the miR-889-3p/CPEB3/p53 axis. CircKDM1A may be a potential prognostic biomarker and therapeutic target of BCa.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wen
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine Shanghai, Shanghai 200072, P.R. China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wenchao Ma
- Department of Reproduction, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Liliang Shen
- Department of Urology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Zhijin Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Shanghai 200435, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Zhou T, Li Z, Jiang Y, Su K, Xu C, Yi H. Emerging roles of circular RNAs in regulating the hallmarks of thyroid cancer. Cancer Gene Ther 2024; 31:507-516. [PMID: 38316961 PMCID: PMC11016468 DOI: 10.1038/s41417-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Thyroid cancer is a prevalent endocrine malignancy with increasing incidence in recent years. Although most thyroid cancers grow slowly, they can become refractory, leading to a high mortality rate once they exhibit recurrence, metastasis, resistance to radioiodine therapy, or a lack of differentiation. However, the mechanisms underlying these malignant characteristics remain unclear. Circular RNAs, a type of closed-loop non-coding RNAs, play multiple roles in cancer. Several studies have demonstrated that circular RNAs significantly influence the development of thyroid cancers. In this review, we summarize the circular RNAs identified in thyroid cancers over the past decade according to the hallmarks of cancer. We found that eight of the 14 hallmarks of thyroid cancers are regulated by circular RNAs, whereas the other six have not been reported to be correlated with circular RNAs. This review is expected to help us better understand the roles of circular RNAs in thyroid cancers and accelerate research on the mechanisms and cure strategies for thyroid cancers.
Collapse
Affiliation(s)
- Tianjiao Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Zheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumeng Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kaiming Su
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chuan Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
30
|
Wu H, Liu X, Fang Y, Yang Y, Huang Y, Pan X, Shen HB. Decoding protein binding landscape on circular RNAs with base-resolution transformer models. Comput Biol Med 2024; 171:108175. [PMID: 38402841 DOI: 10.1016/j.compbiomed.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Circular RNAs (circRNAs), a class of endogenous RNA with a covalent loop structure, can regulate gene expression by serving as sponges for microRNAs and RNA-binding proteins (RBPs). To date, most computational methods for predicting RBP binding sites on circRNAs focus on circRNA fragments instead of circRNAs. These methods detect whether a circRNA fragment contains binding sites, but cannot determine where are the binding sites and how many binding sites are on the circRNA transcript. We report a hybrid deep learning-based tool, CircSite, to predict RBP binding sites at single-nucleotide resolution and detect key contributed nucleotides on circRNA transcripts. CircSite takes advantage of convolutional neural networks (CNNs) and Transformer for learning local and global representations of circRNAs binding to RBPs, respectively. We construct 37 datasets of circRNAs interacting with proteins for benchmarking and the experimental results show that CircSite offers accurate predictions of RBP binding nucleotides and detects key subsequences aligning well with known binding motifs. CircSite is an easy-to-use online webserver for predicting RBP binding sites on circRNA transcripts and freely available at http://www.csbio.sjtu.edu.cn/bioinf/CircSite/.
Collapse
Affiliation(s)
- Hehe Wu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaojian Liu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Yi Fang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Yang Yang
- Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Huang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai, 200083, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| |
Collapse
|
31
|
Dremel SE, Tagawa T, Koparde VN, Hernandez-Perez C, Arbuckle JH, Kristie TM, Krug LT, Ziegelbauer JM. Interferon induced circRNAs escape herpesvirus host shutoff and suppress lytic infection. EMBO Rep 2024; 25:1541-1569. [PMID: 38263330 PMCID: PMC10933408 DOI: 10.1038/s44319-023-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases. During lytic infection, four circRNAs are commonly induced across all subfamilies of human herpesviruses, suggesting a shared mechanism of regulation. We test one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs are upregulated by either interferon-β or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we find an interferon-stimulated circRNA, circRELL1, inhibits lytic Herpes Simplex Virus-1 infection. We previously reported circRELL1 inhibits lytic Kaposi sarcoma-associated herpesvirus infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Vishal N Koparde
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, Bethesda, 20892, USA
- Frederick National Laboratory for Cancer Research Advanced Biomedical Computational Sciences, Leidos Biomedical Research, Inc., Frederick, 21701, USA
| | | | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA.
| |
Collapse
|
32
|
Tang C, He X, Jia L, Zhang X. Circular RNAs in glioma: Molecular functions and pathological implications. Noncoding RNA Res 2024; 9:105-115. [PMID: 38075205 PMCID: PMC10700123 DOI: 10.1016/j.ncrna.2023.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2025] Open
Abstract
Circular RNAs (circRNAs) are a special class of non-coding RNAs with the ring structure. They are stable, abundant and conservative across mammals. The biogenesis and molecular properties of circRNAs are being elucidated, which exert regulatory functions not only through miRNA and protein sponge, but also via translation and exosomal interaction. Accumulating studies have demonstrated that circRNAs are aberrantly expressed in various diseases, especially in cancer. Glioma is one of the most common malignant cerebral neoplasms with poor prognosis. The accurate diagnosis and effective therapies of glioma have always been challenged, there is an urgent need for developing promising therapeutic intervention. Therefore, exploring novel biomarkers is crucial for diagnosis, treatment and prognosis of the glioma which can provide better assistance in guiding treatment. Recent findings found that circRNAs are systematically altered in glioma and may play critical roles in glioma tumorigenesis, proliferation, invasion and metastasis. Due to their distinct functional properties, they are considered as the potential therapeutic targets, diagnostic and prognostic biomarkers. This review elaborates on current advances towards the biogenesis, translation and interaction of circRNAs in many diseases and focused on the role of their involvement in glioma progression, highlighting the potential value of circRNAs in glioma.
Collapse
Affiliation(s)
- Cheng Tang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Lintao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
33
|
Wang J, Zhang H, Chen L, Fu K, Yan Y, Liu Z. CircDCBLD2 alleviates liver fibrosis by regulating ferroptosis via facilitating STUB1-mediated PARK7 ubiquitination degradation. J Gastroenterol 2024; 59:229-249. [PMID: 38310161 DOI: 10.1007/s00535-023-02068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Liver fibrosis can progress to cirrhosis and hepatic carcinoma without treatment. CircDCBLD2 was found to be downregulated in liver fibrosis. However, the precise underlying mechanism requires further investigation. METHODS qRT-PCR, Western blot, and immunohistochemistry assays were used to detect the related molecule levels. HE, Masson's trichrome, and Sirius Red staining were used to assess the pathological changes in mice's liver tissues. Flow cytometric analysis and commercial kit were used to assess the levels of lipid reactive oxygen species (ROS), malonaldehyde (MDA), glutathione (GSH), and iron. Cell viability was assessed by MTT. Immunoprecipitation was used to study the ubiquitination of PARK7. Mitophagy was determined by immunostaining and confocal imaging. RIP and Co-IP assays were used to assess the interactions of circDCBLD2/HuR, HuR/STUB1, and STUB1/PARK7. Fluorescence in situ hybridization and immunofluorescence staining were used to assess the co-localization of circDCBLD2 and HuR. RESULTS CircDCBLD2 was downregulated, whereas PARK7 was upregulated in liver fibrosis. Ferroptosis activators increased circDCBLD2 while decreasing PARK7 in hepatic stellate cells (HSCs) and mice with liver fibrosis. CircDCBLD2 overexpression reduced cell viability and GSH, PARK7, and GPX4 expression in erastin-treated HSCs while increasing MDA and iron levels, whereas circDCBLD2 knockdown had the opposite effect. CircDCBLD2 overexpression increased STUB1-mediated PARK7 ubiquitination by promoting HuR-STUB1 binding and thus increasing STUB1 mRNA stability. PARK7 overexpression or HuR knockdown reversed the effects of circDCBLD2 overexpression on HSC activation and ferroptosis. CircDCBLD2 reduced liver fibrosis in mice by inhibiting PARK7. CONCLUSION CircDCBLD2 overexpression increased PARK7 ubiquitination degradation by upregulating STUB1 through its interaction with HuR, inhibiting HSC activation and promoting HSC ferroptosis, ultimately enhancing liver fibrosis.
Collapse
Affiliation(s)
- Juan Wang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Haoye Zhang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Limin Chen
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Kangkang Fu
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Yu Yan
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China.
- Changsha & Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Hunan, 410008, China.
| |
Collapse
|
34
|
Yuan H, Chen C, Li H, Qu G, Chen L, Liu Y, Zhang Y, Zhao Q, Lian C, Ji A, Hou X, Liu X, Jiang K, Zhu Y, He Y. Role of a novel circRNA-CGNL1 in regulating pancreatic cancer progression via NUDT4-HDAC4-RUNX2-GAMT-mediated apoptosis. Mol Cancer 2024; 23:27. [PMID: 38297362 PMCID: PMC10829403 DOI: 10.1186/s12943-023-01923-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.
Collapse
Affiliation(s)
- Hao Yuan
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chuang Chen
- Department of Hepatopancreatobiliary Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Haonan Li
- Changzhi Medical College, Changzhi, China
| | - Gexi Qu
- Changzhi Medical College, Changzhi, China
| | - Luyao Chen
- Changzhi Medical College, Changzhi, China
| | - Yaxing Liu
- Changzhi Medical College, Changzhi, China
| | - Yufeng Zhang
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China
| | - Qiang Zhao
- Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Changhong Lian
- Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Aifang Ji
- Heping Hospital, Changzhi Medical College, Changzhi, China
| | | | - Xinjian Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Yi Zhu
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Yuan He
- Changzhi Medical College, Changzhi, China.
- Heping Hospital, Changzhi Medical College, Changzhi, China.
| |
Collapse
|
35
|
Gutierrez-Camino A, Caron M, Richer C, Fuchs C, Illarregi U, Poncelet L, St-Onge P, Bataille AR, Tremblay-Dauphinais P, Lopez-Lopez E, Camos M, Ramirez-Orellana M, Astigarraga I, Lécuyer É, Bourque G, Martin-Guerrero I, Sinnett D. CircRNAome of Childhood Acute Lymphoblastic Leukemia: Deciphering Subtype-Specific Expression Profiles and Involvement in TCF3::PBX1 ALL. Int J Mol Sci 2024; 25:1477. [PMID: 38338754 PMCID: PMC10855129 DOI: 10.3390/ijms25031477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
| | - Lucas Poncelet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Alain R. Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal Tremblay-Dauphinais
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Elixabet Lopez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Mireia Camos
- Hematology Laboratory, Sant Joan de Déu Research Institute, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Manuel Ramirez-Orellana
- Department of Pediatric Hematology and Oncology, Niño Jesús University Hospital, 28009 Madrid, Spain;
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Pediatrics, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Éric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada;
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
36
|
Sun ZY, Yang CL, Huang LJ, Mo ZC, Zhang KN, Fan WH, Wang KY, Wu F, Wang JG, Meng FL, Zhao Z, Jiang T. circRNADisease v2.0: an updated resource for high-quality experimentally supported circRNA-disease associations. Nucleic Acids Res 2024; 52:D1193-D1200. [PMID: 37897359 PMCID: PMC10767896 DOI: 10.1093/nar/gkad949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
circRNADisease v2.0 is an enhanced and reliable database that offers experimentally verified relationships between circular RNAs (circRNAs) and various diseases. It is accessible at http://cgga.org.cn/circRNADisease/ or http://cgga.org.cn:9091/circRNADisease/. The database currently includes 6998 circRNA-disease entries across multiple species, representing a remarkable 19.77-fold increase compared to the previous version. This expansion consists of a substantial rise in the number of circRNAs (from 330 to 4246), types of diseases (from 48 to 330) and covered species (from human only to 12 species). Furthermore, a new section has been introduced in the database, which collects information on circRNA-associated factors (genes, proteins and microRNAs), molecular mechanisms (molecular pathways), biological functions (proliferation, migration, invasion, etc.), tumor and/or cell line and/or patient-derived xenograft (PDX) details, and prognostic evidence in diseases. In addition, we identified 7 159 865 relationships between mutations and circRNAs among 30 TCGA cancer types. Due to notable enhancements and extensive data expansions, the circRNADisease 2.0 database has become an invaluable asset for both clinical practice and fundamental research. It enables researchers to develop a more comprehensive understanding of how circRNAs impact complex diseases.
Collapse
Affiliation(s)
- Zhi-Yan Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chang-Lin Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Li-Jie Huang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zong-Chao Mo
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518045, China
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ke-Nan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Wen-Hua Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kuan-Yu Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Ji-Guang Wang
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518045, China
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fan-Lin Meng
- Marketing and Management Department, CapitalBio Technology, Beijing 101111, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518045, China
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
37
|
Wang T, Zhang C, Xu L, Li X. Roles of circular RNAs in osteogenic/osteoclastogenic differentiation. Biofactors 2024; 50:6-15. [PMID: 37534732 DOI: 10.1002/biof.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023]
Abstract
The process of bone remodeling occurs and is regulated through interactions between osteoclasts, which resorb bone, and osteoblasts, which generate bone tissue. When the homeostatic balance between these two cell types is dysregulated, this can contribute to abnormal bone remodeling resulting in a loss of bone mass as is observed in osteoporosis (OP) and other forms of degenerative bone metabolic diseases. At present, details of molecular mechanism underlying the development of bone metabolic diseases such as OP remain to be elucidated. Circular RNAs (circRNAs) are small non-coding RNA molecules with a closed-loop structure that can regulate the differentiation of osteoclasts and osteoblasts. The present review provides a systematic overview of recent literature on the processes through which circRNAs regulate the dynamic balance between osteoblasts and osteoclasts that ultimately preserve bone homeostasis. It will also give insight that can shape current understanding of the pathogenesis of OP and other bone metabolic diseases to better guide diagnostic and treatment strategies for affected patients.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Chao Zhang
- Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Lin Xu
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Xingnuan Li
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| |
Collapse
|
38
|
Fan X, Yang Y, Wu G, Kong Y, Zhang Y, Zha X. Circ-CARD6 inhibits oxidative stress-induced apoptosis and autophagy in ARPE-19 cells via the miR-29b-3p/PRDX6/PI3K/Akt axis. Exp Eye Res 2024; 238:109690. [PMID: 37939831 DOI: 10.1016/j.exer.2023.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Oxidative stress-induced damage and dysfunction of retinal pigment epithelium (RPE) cells are important pathogenetic factors of age-related macular degeneration (AMD) and hereditary retinopathy diseases (HRDs). This study aimed to elucidate the roles and mechanisms of circ-CARD6 and miR-29b-3p in oxidative stress-induced RPE and provide new ideas for the diagnosis and treatment of retinopathy disease (RD). METHODS A model of oxidative stress-induced RPE (ARPE-19) was established, and the level of malondialdehyde (MDA) and concentration of reactive oxygen species (ROS) were detected by a DCFH-DA fluorescent probe and MDA kit. The cell viability was measured by a CCK-8 assay. The expression of PRDX6/PI3K/Akt axis genes and proteins related to apoptosis and autophagy were determined by RT‒qPCR and Western blot analyses. The dual-luciferase reporter system confirmed the targeting relationship between miR-29b-3p and circ-CARD6 and between miR-29b-3p and PRDX6. RESULTS In H2O2-treated ARPE-19 cells, the expression of circ-CARD6 and PRDX6 was decreased, while the expression of miR-29b-3p was increased. The overexpression of circ-CARD6 inhibits oxidative stress-induced increases in ROS, apoptosis and autophagy in ARPE-19 cells. circ-CARD6 targets miR-29b-3p, miR-29b-3p targets PRDX6, and circ-CARD6 regulates PRDX6 via miR-29b-3p. Further studies showed that circ-CARD6 acts as a competitive endogenous RNA of miR-29b-3p to affect the expression of PRDX6, thereby inhibiting autophagy and apoptosis in ARPE-19 cells. CONCLUSION circ-CARD6 can inhibit oxidative stress and apoptosis by regulating the miR-29b-3p/PRDX6/PI3K/Akt axis.
Collapse
Affiliation(s)
- Xinyu Fan
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yanni Yang
- Ophthalmology Department, The Second Hospital of Ningbo, Ningbo, 315010, Zhejiang, China
| | - Guojiu Wu
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yanbo Kong
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Xu Zha
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
39
|
Hansen CE, Springstubbe D, Müller S, Petkovic S. Directed Circularization of a Short RNA. Methods Mol Biol 2024; 2765:209-226. [PMID: 38381342 DOI: 10.1007/978-1-0716-3678-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Basic research and functional analyses of circular RNA (circRNA) have been limited by challenges in circRNA formation of desired length and sequence in adequate yields. Nowadays, circular RNA can be obtained using enzymatic, "ribozymatic," or modulated splice events. However, there are few records for the directed circularization of RNA. Here, we present a proof of principle for an affordable and efficient RNA-based system for the controlled synthesis of circRNA with a physiological 3',5'-phosphodiester conjunction. The engineered hairpin ribozyme variant circular ribozyme 3 (CRZ-3) performs self-cleavage poorly. We designed an activator-polyamine complex to complete cleavage as a prerequisite for subsequent circularization. The developed protocol allows synthesizing circRNA without external enzymatic assistance and adds a controllable way of circularization to the existing methods.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Sonja Petkovic
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
40
|
Xu G, Liu G, Wang Z, Li Y, Fang W. Circular RNAs: Promising Treatment Targets and Biomarkers of Ischemic Stroke. Int J Mol Sci 2023; 25:178. [PMID: 38203348 PMCID: PMC10779226 DOI: 10.3390/ijms25010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ischemic stroke is one of the most significant causes of morbidity and mortality worldwide. However, there is a dearth of effective drugs and treatment methods for ischemic stroke. Significant numbers of circular RNAs (circRNAs) exhibit abnormal expression following ischemic stroke and are considered potential therapeutic targets. CircRNAs have emerged as promising biomarkers due to their stable expression in peripheral blood and their potential significance in ischemic stroke diagnosis and prognosis. This review provides a summary of 31 circRNAs involved in the pathophysiological processes of apoptosis, autophagy, inflammation, oxidative stress, and angiogenesis following ischemic stroke. Furthermore, we discuss the mechanisms of action of said circRNAs and their potential clinical applications. Ultimately, circRNAs exhibit promise as both therapeutic targets and biomarkers for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yunman Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| |
Collapse
|
41
|
Xie G, Wu T, Ji G, Wu H, Lai Y, Wei B, Huang W. Circular RNA and intervertebral disc degeneration: unravelling mechanisms and implications. Front Mol Biosci 2023; 10:1302017. [PMID: 38192334 PMCID: PMC10773835 DOI: 10.3389/fmolb.2023.1302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Low back pain (LBP) is a major public health problem worldwide and a significant health and economic burden. Intervertebral disc degeneration (IDD) is the reason for LBP. However, we have not identified effective therapeutic strategies to address this challenge. With accumulating knowledge on the role of circular RNAs in the pathogenesis of IDD, we realised that circular RNAs (circRNAs) may have tremendous therapeutic potential and clinical application prospects in this field. This review presents an overview of the current understanding of characteristics, classification, biogenesis, and function of circRNAs and summarises the protective and detrimental circRNAs involved in the intervertebral disc that have been studied thus far. This review is aimed to help researchers better understand the regulatory role of circRNAs in the progression of IDD, reveal their clinical therapeutic potential, and provide a theoretical basis for the prevention and targeted treatment of IDD.
Collapse
Affiliation(s)
- Guohao Xie
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangju Ji
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Lai
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenhua Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Chu S, Fei B, Yu M. Molecular Mechanism of Circ_0088300-BOLL Interaction Regulating Mitochondrial Metabolic Reprogramming and Involved in Gastric Cancer Growth and Metastasis. J Proteome Res 2023; 22:3793-3810. [PMID: 37953520 DOI: 10.1021/acs.jproteome.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
This study aims to investigate the effect and molecular mechanism of the interaction between circRNA circ_0088300 and the RNA binding protein (RBP) BOLL on the growth and metastasis of gastric cancer. A prognostic risk model was established by screening differentially expressed RBP genes from the TCGA database, and BOLL was identified as a critical RBP. Gene Set Enrichment analysis (GSEA) showed that BOLL was associated with mitochondrial function. The upregulation fold change of circ_0088300 was the highest in the GSE93541 data set, and the RPISeq database confirmed its binding relationship with BOLL. In vitro experiments showed that BOLL regulates mitochondrial metabolism and cancer cell function and circ_0088300 upregulates the expression level of BOLL. In vivo experiments demonstrated that knocking down circ_0088300 can inhibit tumor growth and metastasis, whereas overexpression of BOLL can reverse this effect. In conclusion, we have reached a preliminary conclusion that upregulation of BOLL by circ_0088300 promotes gastric cancer growth and metastasis by promoting mitochondrial metabolic reprogramming.
Collapse
Affiliation(s)
- Songtao Chu
- Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin 132013, P.R. China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal and Anal. Surgery, the Third Bethune Hospital of Jilin University, Changchun 130000, Jilin Province, P.R. China
| | - Miao Yu
- Department of Gastrointestinal Colorectal and Anal. Surgery, the Third Bethune Hospital of Jilin University, Changchun 130000, Jilin Province, P.R. China
| |
Collapse
|
43
|
Kazemi S, Mirzaei R, Karampoor S, Hosseini-Fard SR, Ahmadyousefi Y, Soltanian AR, Keramat F, Saidijam M, Alikhani MY. Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microb Pathog 2023; 185:106459. [PMID: 37995882 DOI: 10.1016/j.micpath.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.
Collapse
Affiliation(s)
- Sima Kazemi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Iran
| | - Fariba Keramat
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
44
|
Shen J, Min Y, Luo J, Tang X, Han Z, Luo W, Xie F, Cao M, Zhou T, He J. circMSH3 is a potential biomarker for the diagnosis of colorectal cancer and affects the distant metastasis of colorectal cancer. PeerJ 2023; 11:e16297. [PMID: 37953794 PMCID: PMC10637257 DOI: 10.7717/peerj.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/23/2023] [Indexed: 11/14/2023] Open
Abstract
Objectives To identify the most significantly differentially expressed circular RNAs (circRNAs) in colorectal cancer (CRC) tissues in terms of their expression levels and circularity, and to analyze the relationship between their expression levels and the clinical characteristics of patients. Methods circRNA RNA-seq technology was used to screen differentially expressed circRNAs in CRC. Sanger sequencing was used to identify circRNA back-splice junction sites. The relative expression levels of hsa_circ_0003761 (circMSH3) in CRC tissues and cell lines were detected by quantitative real-time fluorescence PCR technology. An RNA-protein pull-down assay was used to detect protein binding to circRNAs. Dual-luciferase reporter gene vectors were constructed to verify that circRNAs bind to microRNAs. Results Four hundred twenty circRNAs were found to be upregulated, and 616 circRNAs were downregulated. circMSH3 was derived from the MutS homolog 3 (MSH3) gene and was formed by a loop of exons 9, 10, 11, and 12. In 110 pairs of CRC and adjacent tissues, circMSH3 expression was 4.487-fold higher in CRC tissues. circMSH3 was also highly expressed in the HT-29 and LOVO CRC cell lines. The expression level of circMSH3 was associated with distant metastasis in CRC patients (P = 0.043); the area under the curve (AUC) of circMSH3 for CRC diagnosis was 0.75, with a sensitivity and specificity of 70.9% and 66.4%, respectively. circMSH3 could bind to a variety of proteins, mainly those involved in RNA transcription, splicing, cell cycle, and cell junctions. Furthermore, circMSH3 could bind to miR-1276, miR-942-5p, and miR-409-3p. Conclusion circMSH3 is a potential biomarker for the diagnosis of CRC and affects the distant metastasis of CRC. Multiple RNA-binding protein binds to circMSH3, and circMSH3 binds to miR-1276, miR-942-5p, and miR-409-3p, thereby affecting the expression of circMSH3.
Collapse
Affiliation(s)
- Jian Shen
- Department of Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Yu Min
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Jingen Luo
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Xingkui Tang
- Department of General Surgery, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Zeping Han
- Department of Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Wenfeng Luo
- Department of Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Fangmei Xie
- Department of Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinhua He
- Department of Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Derakhshan Z, Bahmanpour S, Alaee S, Fallahi J, Tabei SMB. The Role of Circular RNAs in Male Infertility and Reproductive Cancers: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:527-541. [PMID: 38094281 PMCID: PMC10715113 DOI: 10.30476/ijms.2022.95302.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/01/2022] [Accepted: 08/28/2022] [Indexed: 12/18/2023]
Abstract
Infertility is a global health problem affecting about 15% of all couples, of which 50% are due to male infertility. Although the etiology of infertility is known in most infertile men, idiopathic male infertility remains a challenge. Therefore, there is a need for novel diagnostic methods to detect the underlying mechanisms and develop appropriate therapies. Recent studies have focused on the role of non-coding RNAs (ncRNAs) in male infertility. Circular RNAs (CircRNAs), a type of ncRNAs, are found to play a key role in the development of some pathological conditions, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, etc. Several studies have reported the presence of CircRNAs and their target genes in the human reproductive system. In addition, their expression in testicular tissues, sperm cells, and seminal fluid has been identified. Abnormal expression of CircRNAs has been associated with azoospermia and asthenozoospermia in infertile men. The present narrative review provides a brief description of the role of CircRNAs in spermatogenic cells, male infertility, and reproductive cancers. In addition, some CircRNAs have been identified as potential biomarkers for disease detection and treatment.
Collapse
Affiliation(s)
- Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Department of Anatomy and Reproductive Biology, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Zhang Y, Chao F, Lv L, Li M, Shen Z. Hsa_circ_0041150 serves as a novel biomarker for monitoring chemotherapy resistance in small cell lung cancer patients treated with a first-line chemotherapy regimen. J Cancer Res Clin Oncol 2023; 149:15365-15382. [PMID: 37639013 PMCID: PMC10620281 DOI: 10.1007/s00432-023-05317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To explore the potential of circRNAs as biomarkers in non-invasive body fluids for monitoring chemotherapy resistance in SCLC patients. METHODS CircRNAs were screened and characterized using transcriptome sequencing, Sanger sequencing, actinomycin D treatment, and Ribonuclease R assay. Our study involved 174 participants, and serum samples were collected from all chemotherapy-resistant patients (n = 54) at two time points: stable disease and progressive disease. We isolated and identified serum extracellular vesicles (EVs) from the patients using ultracentrifugation, transmission electron microscopy, nanoflow cytometry, and western blotting analysis. The expression levels of serum and serum EVs circRNAs were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The impact of circRNA on the function of SCLC cells was assessed through various assays, including proliferation assay, scratch assay, transwell assay, and cisplatin resistance assay. RESULTS Hsa_circ_0041150 was found to be upregulated in chemoresistant SCLC cells and played a role in promoting proliferation, invasion, migration, and cisplatin resistance. Furthermore, the expression levels of hsa_circ_0041150 in serum and serum EVs increased when SCLC patients developed resistance after a first-line chemotherapy regimen. When combined with NSE, the monitoring sensitivity (70.37%) and specificity (81.48%) for chemotherapy resistance significantly improved. Moreover, the expression level of hsa_circ_0041150 showed significant associations with time to progression from SD to PD, and high hsa_circ_0041150 levels after drug resistance were more likely to cause chemotherapy resistance. Additionally, hsa_circ_0041150 demonstrated valuable potential in monitoring the progression from initial diagnosis to chemotherapy resistance in SCLC patients. CONCLUSION Thus, EVs hsa_circ_0041150 holds promise as a biomarker for monitoring chemotherapy resistance in SCLC patients.
Collapse
Affiliation(s)
- Yang Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fengmei Chao
- Division of Life Sciences and Medicine, Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lihua Lv
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| | - Zuojun Shen
- Cheeloo College of Medicine, Shandong University, Jinan, China.
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
47
|
Di Fusco D, Segreto MT, Di Maggio G, Iannucci A, Maresca C, Di Grazia A, Colella M, Stolfi C, Monteleone G, Monteleone I. Insulin-like Growth Factor II mRNA-Binding Protein 1 Regulates Pancreatic Cancer Cell Growth through the Surveillance of CDC25A mRNA. Cancers (Basel) 2023; 15:4983. [PMID: 37894350 PMCID: PMC10605367 DOI: 10.3390/cancers15204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
A number of data indicate that the sources of different kinds of PDAC may be discovered at the transcription/transduction stage. RNA metabolism is manipulated at various steps by different RNA-binding proteins (RBPs), and the deregulation or irregular activity of RBPs is known to contribute to tumor promotion and progression. The insulin-like growth factor 2 mRNA-binding protein family (IMPs), and IMP1 in particular, has been linked with a poor prognosis in PDAC patients; however, little is known about its contribution in PDAC carcinogenesis. In this study, we investigated the function of IMP1 in PDAC. To evaluate IMP1 expression and correlation with PDAC prognosis, we utilized several public databases. Using a specific siRNA IMP1, we analyzed cell death and cell cycle progression in PDAC cell lines and 3D spheroids. The role of IMP1 was also evaluated in vivo in a Panc-1-derived tumor xenograft murine model. Public data suggest that PDAC patients with higher expression of IMP1 showed poor overall and progression-free survival. IMP1 silencing leads to reduced cell growth in PDAC cells and three-dimensional spheroids. Abrogation of IMP1 in PDAC cells showed lower levels of CDC25A, increased phosphorylation of the cyclin-dependent kinase (CDK)2, and accumulation of PDAC cells in the G1 phase. Immunoprecipitation experiments revealed that IMP1 binds CDC25A mRNA, thus controlling cell-cycle progression. Ultimately, we proved that suppression of IMP1 blocked in vivo growth of Panc-1 transferred into immunodeficient mice. Our results indicate that IMP1 drives the PDCA cell cycle and represents a novel strategy for overcoming PDCA cell proliferation.
Collapse
Affiliation(s)
- Davide Di Fusco
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Maria Teresa Segreto
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Giulia Di Maggio
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Claudia Maresca
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Antonio Di Grazia
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Marco Colella
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Carmine Stolfi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Giovanni Monteleone
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (D.D.F.); (M.T.S.); (G.D.M.); (C.M.); (A.D.G.); (M.C.); (C.S.); (G.M.)
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
48
|
Yao X, Liu H, Wang Z, Lu F, Chen W, Feng Q, Miao Y, Zhang J, Wang Y, Chen Y, Xue L, Liu Y, Chen L, Zhang Q. Circular RNA EIF3I promotes papillary thyroid cancer progression by interacting with AUF1 to increase Cyclin D1 production. Oncogene 2023; 42:3206-3218. [PMID: 37697064 DOI: 10.1038/s41388-023-02830-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Circular RNAs (circRNAs) play an important role in regulating the development of human cancers through diverse biological functions. However, the exact molecular mechanisms underlying the role of circRNAs in papillary thyroid cancer (PTC) remain largely unknown. Here, we found that hsa_circ_0011385, designated as circular eukaryotic translation initiation factor 3 subunit I (circEIF3I), preferentially localized in the cytoplasm of PTC cells and was more stable than its linear counterpart, EIF3I. Gain- and loss-of-function studies indicated that circEIF3I promoted PTC progression by facilitating cell proliferation, cell cycle, cell migration, and invasion in vitro, as well as PTC cell proliferation in vivo. Mechanistically, circEIF3I interacted with AU-rich element (ARE) RNA-binding factor 1 (AUF1) in the cytoplasm of PTC cells, thus reducing the degradation of Cyclin D1 mRNA and increasing Cyclin D1 protein production, ultimately resulting in PTC progression. Collectively, our results demonstrate the vital role of circEIF3I in PTC progression, supporting its significance as a potential therapeutic target.
Collapse
Affiliation(s)
- Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhen Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fangting Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenying Chen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qing Feng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yahu Miao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jie Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanlei Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Chen
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liping Xue
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
49
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serrano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat Commun 2023; 14:5327. [PMID: 37723137 PMCID: PMC10507039 DOI: 10.1038/s41467-023-40348-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023] Open
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identify over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1526 and 3308 circRNAs are custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 29% of Parkinson's and 12% of Alzheimer's disease-associated genes produced validated circRNAs. circDNAJC6, which is transcribed from a juvenile-onset Parkinson's gene, is already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produce circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA-regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- State Key Lab of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B Feany
- Departement of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA.
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Zhu M, Chen D, Ruan C, Yang P, Zhu J, Zhang R, Li Y. CircRNAs: A Promising Star for Treatment and Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:14194. [PMID: 37762497 PMCID: PMC10532269 DOI: 10.3390/ijms241814194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
CircRNAs are a class of endogenous long non-coding RNAs with a single-stranded circular structure. Most circRNAs are relatively stable, highly conserved, and specifically expressed in tissue during the cell and developmental stages. Many circRNAs have been discovered in OSCC. OSCC is one of the most severe and frequent forms of head and neck cancer today, with a poor prognosis and low overall survival rate. Due to its prevalence, OSCC is a global health concern, characterized by genetic and epigenomic changes. However, the mechanism remains vague. With the advancement of biotechnology, a large number of circRNAs have been discovered in mammalian cells. CircRNAs are dysregulated in OSCC tissues and thus associated with the clinicopathological characteristics and prognosis of OSCC patients. Research studies have demonstrated that circRNAs can serve as biomarkers for OSCC diagnosis and treatment. Here, we summarized the properties, functions, and biogenesis of circRNAs, focusing on the progress of current research on circRNAs in OSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| |
Collapse
|