1
|
Gumkowska-Sroka O, Kotyla K, Kotyla P. Immunogenetics of Systemic Sclerosis. Genes (Basel) 2024; 15:586. [PMID: 38790215 PMCID: PMC11121022 DOI: 10.3390/genes15050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disorder characterized by massive fibrosis, vascular damage, and immune imbalance. Advances in rheumatology and immunology over the past two decades have led to a redefinition of systemic sclerosis, shifting from its initial perception as primarily a "hyperfibrotic" state towards a recognition of systemic sclerosis as an immune-mediated disease. Consequently, the search for genetic markers has transitioned from focusing on fibrotic mechanisms to exploring immune regulatory pathways. Immunogenetics, an emerging field at the intersection of immunology, molecular biology, and genetics has provided valuable insights into inherited factors that influence immunity. Data from genetic studies conducted thus far indicate that alterations in genetic messages can significantly impact disease risk and progression. While certain genetic variations may confer protective effects, others may exacerbate disease susceptibility. This paper presents a comprehensive review of the most relevant genetic changes that influence both the risk and course of systemic sclerosis. Special emphasis is placed on factors regulating the immune response, recognizing their pivotal role in the pathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Medical University of Silesia, Voivodeship Hospital No. 5, 41-200 Sosnowiec, Poland; (O.G.-S.); (K.K.)
| |
Collapse
|
2
|
Wang M, Huang X, Ouyang M, Lan J, Huang J, Li H, Lai W, Gao Y, Xu Q. A20 ameliorates advanced glycation end products-induced melanogenesis by inhibiting NLRP3 inflammasome activation in human dermal fibroblasts. J Dermatol Sci 2023; 112:71-82. [PMID: 37741724 DOI: 10.1016/j.jdermsci.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) promote melanogenesis through activating NLRP3 inflammasome in fibroblasts. Although A20 has been highlighted to inhibit NLRP3 inflammasome activation, its roles and mechanisms remain elusive in photoaging-associated pigmentation. OBJECTIVES To determine the significance of fibroblast A20 in AGEs-induced NLRP3 inflammasome activation and pigmentation. METHODS The correlation between A20 and AGEs or melanin was studied in sun-exposed skin and lesions of melasma and solar lentigo. We then investigated A20 level in AGEs-treated fibroblast and the effect of fibroblast A20 overexpression or knockdown on AGEs-BSA-induced NLRP3 inflammasome activation and pigmentation, respectively. Finally, the severity of NLRP3 inflammasome activation and pigmentation was evaluated after mice were injected intradermally with A20-overexpression adeno-associated virus and AGEs-BSA. RESULTS Dermal A20 expression was decreased and exhibited negative correlation with either dermal AGEs deposition or epidermal melanin level in sun-exposed skin and pigmentary lesions. Moreover, both AGEs-BSA and AGEs-collagen robustly decreased A20 expression via binding to RAGE in fibroblasts. Further, A20 overexpression or depletion significantly decreased or augmented AGEs-BSA-induced activation of NF-κB pathway and NLRP3 inflammasome and IL-18 production and secretion in fibroblasts, respectively. Importantly, fibroblast A20 potently repressed AGEs-BSA-stimulated melanin content,tyrosinase activity,and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes. Particularly, fibroblast A20 significantly abrogated AGEs-BSA-promoted melanogenesis in ex vivo skin and mouse models. Additionally, fibroblast A20 inhibited AGEs-BSA-activated MAPKs in melanocytes and the epidermis of ex vivo skin. CONCLUSIONS Fibroblast A20 suppresses AGEs-stimulate melanogenesis in photoaging-associated hyperpigmentation disorders by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jingqian Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Yifeng Gao
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Fu X, Mishra R, Chen L, Arfat MY, Sharma S, Kingsbury T, Gunasekaran M, Saha P, Hong C, Yang P, Li D, Kaushal S. Exosomes mediated fibrogenesis in dilated cardiomyopathy through a MicroRNA pathway. iScience 2023; 26:105963. [PMID: 36818289 PMCID: PMC9932122 DOI: 10.1016/j.isci.2023.105963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cardiac fibrosis is a hallmark in late-stage familial dilated cardiomyopathy (DCM) patients, although the underlying mechanism remains elusive. Cardiac exosomes (Exos) have been reported relating to fibrosis in ischemic cardiomyopathy. Thus, we investigated whether Exos secreted from the familial DCM cardiomyocytes could promote fibrogenesis. Using human iPSCs differentiated cardiomyocytes we isolated Exos of angiotensin II stimulation conditioned media from either DCM or control (CTL) cardiomyocytes. Of interest, cultured cardiac fibroblasts had increased fibrogenesis following exposure to DCM-Exos rather than CTL-Exos. Meanwhile, injecting DCM-Exos into mouse hearts enhanced cardiac fibrosis and impaired cardiac function. Mechanistically, we identified the upregulation of miRNA-218-5p in the DCM-Exos as a critical contributor to fibrogenesis. MiRNA-218-5p activated TGF-β signaling via suppression of TNFAIP3, a master inflammation inhibitor. In conclusion, our results illustrate a profibrotic effect of cardiomyocytes-derived Exos that highlights an additional pathogenesis pathway for cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Xuebin Fu
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Rachana Mishra
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Ling Chen
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Mir Yasir Arfat
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Tami Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muthukumar Gunasekaran
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
| | - Charles Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deqiang Li
- Department of Surgery, Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA,Corresponding author
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA,Corresponding author
| |
Collapse
|
4
|
Wang W, Bale S, Wei J, Yalavarthi B, Bhattacharyya D, Yan JJ, Abdala-Valencia H, Xu D, Sun H, Marangoni RG, Herzog E, Berdnikovs S, Miller SD, Sawalha AH, Tsou PS, Awaji K, Yamashita T, Sato S, Asano Y, Tiruppathi C, Yeldandi A, Schock BC, Bhattacharyya S, Varga J. Fibroblast A20 governs fibrosis susceptibility and its repression by DREAM promotes fibrosis in multiple organs. Nat Commun 2022; 13:6358. [PMID: 36289219 PMCID: PMC9606375 DOI: 10.1038/s41467-022-33767-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
In addition to autoimmune and inflammatory diseases, variants of the TNFAIP3 gene encoding the ubiquitin-editing enzyme A20 are also associated with fibrosis in systemic sclerosis (SSc). However, it remains unclear how genetic factors contribute to SSc pathogenesis, and which cell types drive the disease due to SSc-specific genetic alterations. We therefore characterize the expression, function, and role of A20, and its negative transcriptional regulator DREAM, in patients with SSc and disease models. Levels of A20 are significantly reduced in SSc skin and lungs, while DREAM is elevated. In isolated fibroblasts, A20 mitigates ex vivo profibrotic responses. Mice haploinsufficient for A20, or harboring fibroblasts-specific A20 deletion, recapitulate major pathological features of SSc, whereas DREAM-null mice with elevated A20 expression are protected. In DREAM-null fibroblasts, TGF-β induces the expression of A20, compared to wild-type fibroblasts. An anti-fibrotic small molecule targeting cellular adiponectin receptors stimulates A20 expression in vitro in wild-type but not A20-deficient fibroblasts and in bleomycin-treated mice. Thus, A20 has a novel cell-intrinsic function in restraining fibroblast activation, and together with DREAM, constitutes a critical regulatory network governing the fibrotic process in SSc. A20 and DREAM represent novel druggable targets for fibrosis therapy.
Collapse
Affiliation(s)
- Wenxia Wang
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Swarna Bale
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Wei
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dibyendu Bhattacharyya
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jing Jing Yan
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hanshi Sun
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roberta G Marangoni
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Erica Herzog
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amr H Sawalha
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Anjana Yeldandi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bettina C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - John Varga
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Kuai Q, Jian X. Inhibition of miR-23b-3p Ameliorates Scar-Like Phenotypes of Keloid Fibroblasts by Facilitating A20 Expression. Clin Cosmet Investig Dermatol 2022; 15:1549-1559. [PMID: 35967914 PMCID: PMC9365020 DOI: 10.2147/ccid.s367347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022]
Abstract
Purpose Accumulating evidence has reported that microRNAs (miRNAs) play a critical role in the mechanism of keloid formation, and recent research found that miR-23b-3p was upregulated in keloid fibroblasts (KFs). Herein, we explored the potential effect of miR-23b-3p on fibroblasts in keloid. Materials and Methods Clinical tissues, primary KFs and KEL FIB cells were used to detect the expression of miR-23b-3p by performing qRT-PCR. Gene knockdown was carried out to evaluate the molecular and biological changes of primary KFs and KEL FIB cells by conducting CCK-8 assay, flow cytometry and Western blot. The online databases and luciferase reporter assay were utilized to screen and identify the potential target of miR-23b-3p. Results Upregulation of miR-23b-3p was detected in keloid tissues, primary KFs and KF cell line KEL FIB cells, and inhibition of miR-23b-3p promoted apoptosis and suppressed proliferation and the expression of collagen I, collagen III and fibronectin of primary KFs and KEL FIB cells. Further investigation revealed that TNFAIP3, the ubiquitin-editing enzyme A20, was the direct target of miR-23b-3p, and inhibition of miR-23b-3p promoted the expression of A20 in primary KFs and KEL FIB cells. The in vitro assays indicated that A20 suppression inhibited apoptosis and facilitated proliferation and the expression of collagen I, collagen III and fibronectin of miR-23b-3p inhibitor-transfected primary KFs and KEL FIB cells. Finally, we found that miR-23b-3p inhibitor reduced the expression of receptor interacting serine/threonine protein kinase 1 (RIPK1), which was partially reversed by A20 inhibition. Conclusion These findings suggested that inhibition of miR-23b-3p/A20/RIPK1 axis induced apoptosis, limited proliferation and decreased extracellular matrix of KFs, providing a potential therapeutic target for treatment of keloid.
Collapse
Affiliation(s)
- Quan Kuai
- Department of Plastic Surgery, Guangxi Weimei Cosmetology Hospital, Nanning, People’s Republic of China
| | - Xueping Jian
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, the Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Correspondence: Xueping Jian, Department of Oral and Maxillofacial Surgery and Plastic Surgery, the Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China, Tel +86-0791-86362541, Email
| |
Collapse
|
6
|
Huang B, Li J, Zhao J. Screening and identification of potential biomarkers and therapeutic targets for systemic sclerosis-associated interstitial lung disease. Arch Rheumatol 2022; 36:548-559. [PMID: 35382367 PMCID: PMC8957772 DOI: 10.46497/archrheumatol.2021.8625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/18/2021] [Indexed: 11/03/2022] Open
Abstract
Objectives This study aims to analyze gene expression in lung tissue and lung fibroblasts of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) to identify potential biomarkers and therapeutic targets and to examine its possible role in the pathogenesis of SSc-ILD. Patients and methods We obtained datasets from Gene Expression Omnibus (GEO) database, and used Robust Rank Aggregation to calculate the co-expressed differentially-expressed-genes (DEGs) in three chips, then analyzed the function, signaling pathways and the protein-protein interaction network of the DEGs. Finally, we verified the DEGs related to SSc-ILD by three databases of Comparative Toxicogenomics Database (CTD), GENE, and DisGeNET, respectively. Results There were 16 co-expressed DEGs related to SSc-ILD in three GEO series, of which six genes were upregulated, and 10 genes were downregulated. The CTD included 29,936 genes related to SSc, and the GENE and DisGeNET databases had 429 genes related to SSc. Conclusion The results of gene differential expression analysis suggest that interleukin-6, chemokine ligand 2, intercellular adhesion molecule 1, tumor necrosis factor alpha-induced protein 3, pentraxin 3, and cartilage oligomeric matrix protein may be implicated in the pathogenesis of SSc-ILD and are expected to be potential biomarkers and therapeutic targets for SSc-ILD.
Collapse
Affiliation(s)
- Biqing Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College Hospital, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
7
|
Mzyk P, Zalog EG, McDowell CM. A20 Attenuates the Fibrotic Response in the Trabecular Meshwork. Int J Mol Sci 2022; 23:1928. [PMID: 35216043 PMCID: PMC8875798 DOI: 10.3390/ijms23041928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Although the extracellular matrix (ECM) in trabecular meshwork (TM) cells is known to be important in intraocular pressure (IOP) regulation, the molecular mechanisms involved in generating a glaucomatous environment in the TM are not completely understood. Recently we identified a molecular pathway, transforming growth factor beta 2 (TGFβ2)-toll-like receptor 4 (TLR4) signaling crosstalk, as an important regulator of glaucomatous damage in the TM, which contributes to fibrosis. Here we evaluate a novel molecular target, A20, also known as tumor necrosis factor alpha-induced protein 3 (TNFAIP3), which may help to block pathological TGFβ2-TLR4 signaling. Primary human TM cells were analyzed for A20 message and for A20 and fibronectin protein expression after treatment with TGFβ2. A20 message increased when the TLR4 pathway was inhibited in TM cells. In addition, TGFβ2, a known inducer of fibrosis, increased fibronectin expression, while at the same time decreasing the expression of A20. We then overexpressed A20 in TM cells in order to test the effect on treatment with TGFβ2, lipopolysaccharide (LPS), or cellular fibronectin extra domain A (cFN-EDA). Importantly, overexpression of A20 rescued the fibrotic response when TM cells were treated with TGFβ2, LPS, or cFN-EDA. In situ hybridization was used to probe for A20 RNA expression in age-matched control (C57BL/6J) mice and mice that constitutively express the EDA isoform of fibronectin (B6.EDA+/+). In this novel mouse model of glaucoma, A20 RNA was increased versus age-matched control mice in a cyclic manner at 6 weeks and 1 year of age, but not at 8 months. Overall, these data suggest that A20 may work through a negative feedback mechanism attenuating the ability of TGFβ2-TLR4 signaling to induce fibrosis.
Collapse
Affiliation(s)
| | | | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Madison, Madison, WI 53706, USA; (P.M.); (E.G.Z.)
| |
Collapse
|
8
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
10
|
Breitenecker K, Homolya M, Luca AC, Lang V, Trenk C, Petroczi G, Mohrherr J, Horvath J, Moritsch S, Haas L, Kurnaeva M, Eferl R, Stoiber D, Moriggl R, Bilban M, Obenauf AC, Ferran C, Dome B, Laszlo V, Győrffy B, Dezso K, Moldvay J, Casanova E, Moll HP. Down-regulation of A20 promotes immune escape of lung adenocarcinomas. Sci Transl Med 2021; 13:eabc3911. [PMID: 34233950 PMCID: PMC7611502 DOI: 10.1126/scitranslmed.abc3911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is a well-known driver of lung tumorigenesis. One strategy by which tumor cells escape tight homeostatic control is by decreasing the expression of the potent anti-inflammatory protein tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20. We observed that tumor cell intrinsic loss of A20 markedly enhanced lung tumorigenesis and was associated with reduced CD8+ T cell-mediated immune surveillance in patients with lung cancer and in mouse models. In mice, we observed that this effect was completely dependent on increased cellular sensitivity to interferon-γ (IFN-γ) signaling by aberrant activation of TANK-binding kinase 1 (TBK1) and increased downstream expression and activation of signal transducer and activator of transcription 1 (STAT1). Interrupting this autocrine feed forward loop by knocking out IFN-α/β receptor completely restored infiltration of cytotoxic T cells and rescued loss of A20 depending tumorigenesis. Downstream of STAT1, programmed death ligand 1 (PD-L1) was highly expressed in A20 knockout lung tumors. Accordingly, immune checkpoint blockade (ICB) treatment was highly efficient in mice harboring A20-deficient lung tumors. Furthermore, an A20 loss-of-function gene expression signature positively correlated with survival of melanoma patients treated with anti-programmed cell death protein 1. Together, we have identified A20 as a master immune checkpoint regulating the TBK1-STAT1-PD-L1 axis that may be exploited to improve ICB therapy in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Kristina Breitenecker
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
- Institute of Cancer Research, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Monika Homolya
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Andreea C Luca
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Veronika Lang
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Christoph Trenk
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Georg Petroczi
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Julian Mohrherr
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Jaqueline Horvath
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Stefan Moritsch
- Institute of Cancer Research, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Lisa Haas
- Research Institute of Molecular Pathology, Vienna Biocenter, AT-1030 Vienna, Austria
| | - Margarita Kurnaeva
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, AT-3500 Krems, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, AT-1210 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, AT-1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Anna C Obenauf
- Research Institute of Molecular Pathology, Vienna Biocenter, AT-1030 Vienna, Austria
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Transplant Institute and the Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, and Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
- 1st Department of Tumor Biology, National Korányi Institute of Pulmonology, Semmelweis University, HU-1121 Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, HU-1122 Budapest, Hungary
| | - Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, and Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
- 1st Department of Tumor Biology, National Korányi Institute of Pulmonology, Semmelweis University, HU-1121 Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, and 2nd Department of Pediatrics, Semmelweis University, HU-1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, HU-1094 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, HU-1094 Budapest, Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, HU-1085 Budapest, Hungary
| | - Judit Moldvay
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, HU-1121 Budapest, Hungary
- SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, HU-1122 Budapest, Hungary
| | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Herwig P Moll
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria.
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
11
|
Ota Y, Kuwana M. Updates on genetics in systemic sclerosis. Inflamm Regen 2021; 41:17. [PMID: 34130729 PMCID: PMC8204536 DOI: 10.1186/s41232-021-00167-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disease, in which an interaction of genetic and environmental factors plays an important role in its development and pathogenesis. A number of genetic studies, including candidate gene analysis and genome-wide association study, have found that the associated genetic variants are mainly localized in noncoding regions in the expression quantitative trait locus and influence corresponding gene expression. The gene variants identified as a risk for SSc susceptibility include those associated with innate immunity, adaptive immune response, and cell death, while there are only few SSc-associated genes involved in the fibrotic process or vascular homeostasis. Human leukocyte antigen class II genes are associated with SSc-related autoantibodies rather than SSc itself. Since the pathways between the associated genotype and phenotype are still poorly understood, further investigations using multi-omics technologies are necessary to characterize the complex molecular architecture of SSc, identify biomarkers useful to predict future outcomes and treatment responses, and discover effective drug targets.
Collapse
Affiliation(s)
- Yuko Ota
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To review susceptibility genes and how they could integrate in systemic sclerosis (SSc) pathophysiology providing insight and perspectives for innovative therapies. RECENT FINDINGS SSc is a rare disease characterized by vasculopathy, dysregulated immunity and fibrosis. Genome-Wide association studies and ImmunoChip studies performed in recent years revealed associated genetic variants mainly localized in noncoding regions and mostly affecting the immune system of SSc patients. Gene variants were described in innate immunity (IRF5, IRF7 and TLR2), T and B cells activation (CD247, TNFAIP3, STAT4 and BLK) and NF-κB pathway (TNFAIP3 and TNIP1) confirming previous biological data. In addition to impacting immune response, CSK, DDX6, DNASE1L3 and GSDMA/B could also act in the vascular and fibrotic components of SSc. SUMMARY Although genetic studies highlighted the dysregulated immune response in SSc, future research must focus on a deeper characterization of these variants with determination of their functional effects. Moreover, the role of these genes or others on specific vasculopathy and fibrosis would provide insight. Establishment of polygenic score or integrated genome approaches could identify new targets specific of SSc clinical features. This will allow physicians to propose new therapies to SSc patients.
Collapse
|
13
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
14
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Abstract
Inflammation is triggered by stimulation of innate sensors that recognize pathogens, chemical and physical irritants, and damaged cells subsequently initiating a well-orchestrated adaptive immune response. Immune cell activation is a strictly regulated and self-resolving process supported by an array of negative feedback mechanisms to sustain tissue homeostasis. The disruption of these regulatory pathways forms the basis of chronic inflammatory diseases, including periodontitis. Ubiquitination, a covalent posttranslational modification of target proteins with ubiquitin, has a profound effect on the stability and activity of its substrates, thereby regulating the immune system at molecular and cellular levels. Through the cooperative actions of E3 ubiquitin ligases and deubiquitinases, ubiquitin modifications are implicated in several biological processes, including proteasomal degradation, transcriptional regulation, regulation of protein-protein interactions, endocytosis, autophagy, DNA repair, and cell cycle regulation. A20 (tumor necrosis factor α-induced protein 3 or TNFAIP3) is a ubiquitin-editing enzyme that mainly functions as an endogenous regulator of inflammation through termination of nuclear factor (NF)-κB activation as part of a negative feedback loop. A20 interacts with substrates that reside downstream of immune sensors, including Toll-like receptors, nucleotide-binding oligomerization domain-containing receptors, lymphocyte receptors, and cytokine receptors. Due to its pleiotropic functions as a ubiquitin binding protein, deubiquitinase and ubiquitin ligase, and its versatile role in various signaling pathways, aberrant A20 levels are associated with numerous conditions such as rheumatoid arthritis, diabetes, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, Sjögren syndrome, coronary artery disease, multiple sclerosis, cystic fibrosis, asthma, cancer, neurological disorders, and aging-related sequelae. Similarly, A20 has recently been implicated as an essential regulator of inflammation in the oral cavity. This review presents information on the ubiquitin system and regulation of NF-κB by ubiquitination using A20 as a representative molecule and highlights how the dysregulation of this system can lead to several immune pathologies, including oral cavity-related disorders mainly focusing on periodontitis.
Collapse
Affiliation(s)
- E.C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Richmond, VA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Frommer KW, Neumann E, Müller-Ladner U. Role of adipokines in systemic sclerosis pathogenesis. Eur J Rheumatol 2020; 7:S165-S172. [PMID: 33164731 PMCID: PMC7647688 DOI: 10.5152/eurjrheum.2020.19107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease with manifestations in multiple organs, including the skin, lung, heart, joints, gastrointestinal tract, kidney, and liver. Its pathophysiology is characterized by inflammation, fibrosis, and vascular damage, with an increased expression of numerous cytokines, chemokines, and growth factors. However, besides these growth factors and cytokines, another group of molecules may be involved in the pathogenesis of SSc: the adipokines. Adipokines are proteins with metabolic and cytokine-like properties, which were originally found to be expressed by adipose tissue. However, their expression is not limited to this tissue, and they can also be found in other organs. Therefore, this review will describe the current knowledge regarding adipokines in the context of SSc and try to elucidate their potential role in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Klaus W Frommer
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| |
Collapse
|
17
|
Galant C, Marchandise J, Stoenoiu MS, Ducreux J, De Groof A, Pirenne S, Van den Eynde B, Houssiau FA, Lauwerys BR. Overexpression of ubiquitin-specific peptidase 15 in systemic sclerosis fibroblasts increases response to transforming growth factor β. Rheumatology (Oxford) 2020; 58:708-718. [PMID: 30608617 PMCID: PMC6434377 DOI: 10.1093/rheumatology/key401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/03/2018] [Indexed: 12/18/2022] Open
Abstract
Objective Ubiquitination of proteins leads to their degradation by the proteasome, and is regulated by ubiquitin ligases and substrate-specific ubiquitin-specific peptidases (USPs). The ubiquitination process also plays important roles in the regulation of cell metabolism and cell cycle. Here, we found that the expression of several USPs is increased in SSc tenosynovial and skin biopsies, and we demonstrated that USP inhibition decreases TGF-β signalling in primary fibroblast cell lines. Methods High-density transcriptomic studies were performed using total RNA obtained from SSc tenosynovial samples. Confirmatory immunostaining experiments were performed on tenosynovial and skin samples. In vitro experiments were conducted in order to study the influence of USP modulation on responses to TGF-β stimulation. Results Tenosynovial biopsies from SSc patients overexpressed known disease-associated gene pathways: fibrosis, cytokines and chemokines, and Wnt/TGF-β signalling, but also several USPs. Immunohistochemistry experiments confirmed the detection of USPs in the same samples, and in SSc skin biopsies. Exposure of primary fibroblast cell lines to TGF-β induced USP gene expression. The use of a pan-USP inhibitor decreased SMAD3 phosphorylation, and expression of COL1A1, COL3A1 and fibronectin gene expression in TGF-β-stimulated fibroblasts. The effect of the USP inhibitor resulted in increased SMAD3 ubiquitination, and was blocked by a proteasome inhibitor, thereby confirming the specificity of its action. Conclusion Overexpression of several USPs, including USP15, amplifies fibrotic responses induced by TGF-β, and is a potential therapeutic target in SSc.
Collapse
Affiliation(s)
- Christine Galant
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Pathology, Cliniques Universitaires Saint-Luc, Belgium
| | - Joel Marchandise
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Pathology, Cliniques Universitaires Saint-Luc, Belgium
| | - Maria S Stoenoiu
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Belgium
| | - Julie Ducreux
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium
| | - Aurélie De Groof
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium
| | - Sophie Pirenne
- Department of Pathology, Cliniques Universitaires Saint-Luc, Belgium
| | - Benoit Van den Eynde
- Institut de Duve, Department of Cancer Immunology and Immunotherapy, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric A Houssiau
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Belgium
| | - Bernard R Lauwerys
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Belgium
| |
Collapse
|
18
|
Insights into myofibroblasts and their activation in scleroderma: opportunities for therapy? Curr Opin Rheumatol 2019; 30:581-587. [PMID: 30074511 DOI: 10.1097/bor.0000000000000543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The persistence of myofibroblasts is a key feature of fibrosis and in fibrotic diseases including scleroderma. This review evaluates the emerging concepts of the origins and cell populations that contribute to myofibroblasts and the molecular mechanisms that govern phenotypic conversion and that highlight opportunities for new interventional treatments in scleroderma. RECENT FINDINGS Studies have defined heterogeneity in fibroblast-like cells that can develop into myofibroblast in normal wound healing, scarring and fibrosis. Characterizing these distinct cell populations and their behaviour has been a key focus. In addition, the overarching impact of epigenetic regulation of genes associated with inflammatory responses, cell signalling and cell communication and the extracellular matrix (ECM) has provided important insights into the formation of myofibroblast and their function. Important new studies include investigations into the relationship between inflammation and myofibroblast production and further evidence has been gathered that reveal the importance of ECM microenvironment, biomechanical sensing and mechanotransduction. SUMMARY This review highlights our current understanding and outlines the increasing complexity of the biological processes that leads to the appearance of the myofibroblast in normal functions and in diseased tissues. We also focus on areas of special interest in particular, studies that have therapeutic potential in fibrosis and scleroderma.
Collapse
|
19
|
González-Serna D, López-Isac E, Yilmaz N, Gharibdoost F, Jamshidi A, Kavosi H, Poursani S, Farsad F, Direskeneli H, Saruhan-Direskeneli G, Vargas S, Sawalha AH, Brown MA, Yavuz S, Mahmoudi M, Martin J. Analysis of the genetic component of systemic sclerosis in Iranian and Turkish populations through a genome-wide association study. Rheumatology (Oxford) 2019; 58:289-298. [PMID: 30247649 DOI: 10.1093/rheumatology/key281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives SSc is an autoimmune disease characterized by alteration of the immune response, vasculopathy and fibrosis. Most genetic studies on SSc have been performed in European-ancestry populations. The aim of this study was to analyse the genetic component of SSc in Middle Eastern patients from Iran and Turkey through a genome-wide association study. Methods This study analysed data from a total of 834 patients diagnosed with SSc and 1455 healthy controls from Iran and Turkey. DNA was genotyped using high-throughput genotyping platforms. The data generated were imputed using the Michigan Imputation Server, and the Haplotype Reference Consortium as a reference panel. A meta-analysis combining both case-control sets was conducted by the inverse variance method. Results The highest peak of association belonged to the HLA region in both the Iranian and Turkish populations. Strong and independent associations between the classical alleles HLA-DRB1*11: 04 [P = 2.10 × 10-24, odds ratio (OR) = 3.14] and DPB1*13: 01 (P = 5.37 × 10-14, OR = 5.75) and SSc were observed in the Iranian population. HLA-DRB1*11: 04 (P = 4.90 × 10-11, OR = 2.93) was the only independent signal associated in the Turkish cohort. An omnibus test yielded HLA-DRB1 58 and HLA-DPB1 76 as relevant amino acid positions for this disease. Concerning the meta-analysis, we also identified two associations close to the genome-wide significance level outside the HLA region, corresponding to IRF5-TNPO3 rs17424921-C (P = 1.34 × 10-7, OR = 1.68) and NFKB1 rs4648133-C (P = 3.11 × 10-7, OR = 1.47). Conclusion We identified significant associations in the HLA region and suggestive associations in IRF5-TNPO3 and NFKB1 loci in Iranian and Turkish patients affected by SSc through a genome-wide association study and an extensive HLA analysis.
Collapse
Affiliation(s)
- David González-Serna
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena López-Isac
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Neslihan Yilmaz
- Department of Rheumatology, Istanbul Bilim University, Istanbul, Turkey
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Poursani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraneh Farsad
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sofia Vargas
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, Ann Arbor MI, USA
- Department of Computational Medicine and Bioinformatics, The Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Queensland, Australia
| | - Sule Yavuz
- Department of Rheumatology, Istanbul Bilim University, Istanbul, Turkey
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javier Martin
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
20
|
Momtazi G, Lambrecht BN, Naranjo JR, Schock BC. Regulators of A20 (TNFAIP3): new drug-able targets in inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L456-L469. [PMID: 30543305 DOI: 10.1152/ajplung.00335.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Persistent activation of the transcription factor Nuclear factor-κB (NF-κB) is central to the pathogenesis of many inflammatory disorders, including those of the lung such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD). Despite recent advances in treatment, management of the inflammatory component of these diseases still remains suboptimal. A20 is an endogenous negative regulator of NF-κB signaling, which has been widely described in several autoimmune and inflammatory disorders and more recently in terms of chronic lung disorders. However, the underlying mechanism for the apparent lack of A20 in CF, COPD, and asthma has not been investigated. Transcriptional regulation of A20 is complex and requires coordination of different transcription factors. In this review we examine the existing body of research evidence on the regulation of A20, concentrating on pulmonary inflammation. Special focus is given to the repressor downstream regulatory element antagonist modulator (DREAM) and its nuclear and cytosolic action to regulate inflammation. We provide evidence that would suggest the A20-DREAM axis to be an important player in (airway) inflammatory responses and point to DREAM as a potential future therapeutic target for the modification of phenotypic changes in airway inflammatory disorders. A schematic summary describing the role of DREAM in inflammation with a focus on chronic lung diseases as well as the possible consequences of altered DREAM expression on immune responses is provided.
Collapse
Affiliation(s)
- G Momtazi
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| | - B N Lambrecht
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas), Instituto de Salud Carlos III, Madrid, Spain.,National Biotechnology Center, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - B C Schock
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| |
Collapse
|
21
|
Shamilov R, Aneskievich BJ. TNIP1 in Autoimmune Diseases: Regulation of Toll-like Receptor Signaling. J Immunol Res 2018; 2018:3491269. [PMID: 30402506 PMCID: PMC6192141 DOI: 10.1155/2018/3491269] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023] Open
Abstract
TNIP1 protein is increasingly being recognized as a key repressor of inflammatory signaling and a potential factor in multiple autoimmune diseases. In addition to earlier foundational reports of TNIP1 SNPs in human autoimmune diseases and TNIP1 protein-protein interaction with receptor regulating proteins, more recent studies have identified new potential interaction partners and signaling pathways likely modulated by TNIP1. Subdomains within the TNIP1 protein as well as how they interact with ubiquitin have not only been mapped but inflammatory cell- and tissue-specific consequences subsequent to their defective function are being recognized and related to human disease states such as lupus, scleroderma, and psoriasis. In this review, we emphasize receptor signaling complexes and regulation of cytoplasmic signaling steps downstream of TLR given their association with some of the same autoimmune diseases where TNIP1 has been implicated. TNIP1 dysfunction or deficiency may predispose healthy cells to the inflammatory response to otherwise innocuous TLR ligand exposure. The recognition of the anti-inflammatory roles of TNIP1 and improved integrated understanding of its physical and functional association with other signaling pathway proteins may position TNIP1 as a candidate target for the design and/or testing of next-generation anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Rambon Shamilov
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
22
|
Bhattacharyya S, Midwood KS, Yin H, Varga J. Toll-Like Receptor-4 Signaling Drives Persistent Fibroblast Activation and Prevents Fibrosis Resolution in Scleroderma. Adv Wound Care (New Rochelle) 2017; 6:356-369. [PMID: 29062592 DOI: 10.1089/wound.2017.0732] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Significance: This review provides current overview of the emerging role of innate immunity in driving fibrosis, and preventing its resolution, in scleroderma (systemic sclerosis, SSc). Understanding the mechanisms of dysregulated innate immunity in fibrosis and SSc will provide opportunities for therapeutic interventions using novel agents and repurposed existing drugs. Recent Advances: New insights from genomic and genetic studies implicate components of innate immune signaling such as pattern recognition receptors (PRRs), downstream signaling intermediates, and endogenous inhibitors, in fibrosis in SSc. Recent studies distinguish innate immune signaling in tissue-resident myofibroblasts and bone marrow-derived immune cells and define their roles in the development and persistence of tissue fibrosis. Critical Issues: Activation of toll-like receptors (TLRs) and other PRR mechanisms occurs in resident nonimmune cells within injured tissue microenvironments. These cells respond to damage-associated molecular patterns (DAMPs), such as tenascin-C that are recognized as danger signals, and elicit matrix production, cytokine secretion, and myofibroblast transformation and survival. When these responses persist due to constitutive TLR activation or impaired termination by endogenous inhibitors, they interfere with fibrosis resolution. The genetic basis and molecular mechanisms of these phenomena in the context of fibrosis are under current investigation. Future Directions: Precise delineation of the pathogenic DAMPs, their interaction with TLRs and other PRRs, the downstream signaling pathways and transcriptional events, and the fibroblast-specific regulation and function of endogenous inhibitors of innate immunity, will form the foundation for innovative targeted therapies to block fibrosis by reestablishing balanced innate immune signaling in fibroblasts.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hang Yin
- Department of Chemistry and Biochemistry, The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
23
|
Terao C, Kawaguchi T, Dieude P, Varga J, Kuwana M, Hudson M, Kawaguchi Y, Matucci-Cerinic M, Ohmura K, Riemekasten G, Kawasaki A, Airo P, Horita T, Oka A, Hachulla E, Yoshifuji H, Caramaschi P, Hunzelmann N, Baron M, Atsumi T, Hassoun P, Torii T, Takahashi M, Tabara Y, Shimizu M, Tochimoto A, Ayuzawa N, Yanagida H, Furukawa H, Tohma S, Hasegawa M, Fujimoto M, Ishikawa O, Yamamoto T, Goto D, Asano Y, Jinnin M, Endo H, Takahashi H, Takehara K, Sato S, Ihn H, Raychaudhuri S, Liao K, Gregersen P, Tsuchiya N, Riccieri V, Melchers I, Valentini G, Cauvet A, Martinez M, Mimori T, Matsuda F, Allanore Y. Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann Rheum Dis 2017; 76:1150-1158. [PMID: 28314753 PMCID: PMC6733404 DOI: 10.1136/annrheumdis-2016-210645] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/08/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease characterised by skin and systemic fibrosis culminating in organ damage. Previous genetic studies including genome-wide association studies (GWAS) have identified 12 susceptibility loci satisfying genome-wide significance. Transethnic meta-analyses have successfully expanded the list of susceptibility genes and deepened biological insights for other autoimmune diseases. METHODS We performed transethnic meta-analysis of GWAS in the Japanese and European populations, followed by a two-staged replication study comprising a total of 4436 cases and 14 751 controls. Associations between significant single nuclear polymorphisms (SNPs) and neighbouring genes were evaluated. Enrichment analysis of H3K4Me3, a representative histone mark for active promoter was conducted with an expanded list of SSc susceptibility genes. RESULTS We identified two significant SNP in two loci, GSDMA and PRDM1, both of which are related to immune functions and associated with other autoimmune diseases (p=1.4×10-10 and 6.6×10-10, respectively). GSDMA also showed a significant association with limited cutaneous SSc. We also replicated the associations of previously reported loci including a non-GWAS locus, TNFAIP3. PRDM1 encodes BLIMP1, a transcription factor regulating T-cell proliferation and plasma cell differentiation. The top SNP in GSDMA was a missense variant and correlated with gene expression of neighbouring genes, and this could explain the association in this locus. We found different human leukocyte antigen (HLA) association patterns between the two populations. Enrichment analysis suggested the importance of CD4-naïve primary T cell. CONCLUSIONS GSDMA and PRDM1 are associated with SSc. These findings provide enhanced insight into the genetic and biological basis of SSc.
Collapse
Affiliation(s)
- Chikashi Terao
- Department of Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University Graduate School of
Medicine, Kyoto, Japan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston,
Massachusetts, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts,
USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Takahisa Kawaguchi
- Department of Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Philippe Dieude
- Rheumatology Bichat Hospital, Paris, University, Paris, France
| | - John Varga
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Masataka Kuwana
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo,
Japan
| | - Marie Hudson
- Jewish General Hospital and Lady Davis Research Institute, Montreal, Quebec, Canada
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Marco Matucci-Cerinic
- Division of Rheumatology AOUC, Department of Experimental and Clinical Medicine, Department of Medical
& Geriatrics Medicine, University of Florence, Firenze, Italy
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| | - Gabriela Riemekasten
- Clinic for Rheumatology, University of Lübeck, Lübeck, Germany
- German Lung Center Borstel, Leibniz Institute, Germany
| | - Aya Kawasaki
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba,
Japan
| | - Paolo Airo
- Rheumatology Unit, Spedali Civili, Brescia, Italy
| | - Tetsuya Horita
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Graduate School of Medicine,
Sapporo, Japan
| | - Akira Oka
- The Institute of Medical Science, Tokai University, Isehara, Japan
| | - Eric Hachulla
- Internal Medicine Department, FHU Immune-Mediated Inflammatory Diseases and Targeted Therapies, Lille
University, Lille, France
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| | - Paola Caramaschi
- Rheumatology Department, University of Verona, Azienda Ospedaliera Universitaria Integrata, Italy
| | | | - Murray Baron
- Jewish General Hospital and Lady Davis Research Institute, Montreal, Quebec, Canada
| | - Tatsuya Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Graduate School of Medicine,
Sapporo, Japan
| | - Paul Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University,
Baltimore, Maryland, USA
| | | | - Meiko Takahashi
- Department of Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuharu Tabara
- Department of Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Shimizu
- Department of Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akiko Tochimoto
- Institute of Rheumatology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Naho Ayuzawa
- Department of Rheumatology, National Hospital Organization, Utano National Hospital, Kyoto, Japan
| | - Hidetoshi Yanagida
- Department of Rheumatology, National Hospital Organization, Utano National Hospital, Kyoto, Japan
| | - Hiroshi Furukawa
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba,
Japan
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization,
Sagamihara, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization,
Sagamihara, Japan
| | - Minoru Hasegawa
- Division of Medicine, Faculty of Medical Sciences, Department of Dermatology, University of Fukui, Fukui,
Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - Daisuke Goto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masatoshi Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto,
Japan
| | - Hirahito Endo
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Toho University, Tokyo,
Japan
| | - Hiroki Takahashi
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo,
Hokkaido, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences,
Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto,
Japan
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston,
Massachusetts, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts,
USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of
Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Katherine Liao
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston,
Massachusetts, USA
| | - Peter Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research,
Manhasset, New York, USA
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba,
Japan
| | | | | | - Gabriele Valentini
- Department of Clinical and Experimental Medicine, Rheumatology Section, Second University of Naples,
Naples, Italy
| | - Anne Cauvet
- INSERM U1016/UMR 8104, Cochin Institute, Paris Descartes University, Paris, France
| | - Maria Martinez
- INSERM U1220—IRSD—Batiment B Purpan Hospital Toulouse, Paris, France
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| | - Fumihiko Matsuda
- Department of Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yannick Allanore
- Rheumatology A Department, INSERM U1016/uMr 8104, Cochin Institute, Paris Descartes University,
Paris, France
| |
Collapse
|
24
|
Wang X, Ai L, Xu Q, Wu C, Chen Z, Su D, Jiang X, Fan Z. A20 Attenuates Liver Fibrosis in NAFLD and Inhibits Inflammation Responses. Inflammation 2017; 40:840-848. [PMID: 28251449 DOI: 10.1007/s10753-017-0528-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously reported A20 was able to inhibit lipid accumulation in nonalcoholic steatohepatitis. We want to investigate whether A20 influences liver fibrosis in this study. Liver tissues from patients with hepatic fibrosis (n = 9) and healthy individuals (n = 7) were studied for A20 protein level by immunohistochemistry. A20 messenger RNA (mRNA) and protein level were also analyzed in two murine hepatic fibrosis models: methionine- and choline-deficient (MCD) diet and extrahepatic bile duct ligation (BDL) operation by real-time PCR and western blot. In vitro, the LX-2 human hepatic stellate cell line was treated by LPS at 0, 0.001, 0.01, 0.1, and 1 μg/mL for 6 h or at the concentration of 0.1 μg/mL for 0, 6, 12, and 24 h, then A20 expression levels were detected by western blot and PCR. The mRNA level of α-SMA, collagen I, collagen III, TGF-β, IL-6, MCP-1, and TLR4 was also examined by PCR. We then overexpressed A20 in LX-2 cells using adenovirus technique. Levels of α-SMA, collagen I, collagen III, TGF-β, IL-6, MCP-1, and TLR4 were examined in A20-overexpression LX-2 cells. Patients with hepatic fibrosis showed significantly higher A20 protein level compared with healthy controls. A20 mRNA and protein levels were also increased in livers from MCD feeding or BDL operation mice in comparison to normal controls. In LX-2 cells, LPS induced A20 protein in a concentration-dependent manner. The mRNA levels of α-SMA, collagen I, collagen III, TGF-β, IL-6, MCP-1, and TLR4 were increased after LPS treatment. Overexpression of A20 in LX-2 cells inhibited α-SMA deposition and collagen I, collagen III secretion. TGF-β, IL-6, MCP-1, and TLR4 mRNA levels were also reduced in A20-overexpression LX-2 cells in response to LPS stimulation. A20 overexpression inhibits hepatic stellate cell activation, which could be the mechanism for high A20 expression protected livers from fibrosis. Enhancement of A20 expression seems to be rational therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
- Department of Gastroenterology and Hepatology, The First Hospital of Jiaxing, 1882 Central-South Road, Jiaxing, Zhejiang Province, China
| | - Luoyan Ai
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qingqing Xu
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Changwei Wu
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhiwei Chen
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Dazhi Su
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xiaoke Jiang
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhuping Fan
- Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China.
| |
Collapse
|