1
|
Qian Y, Qi Y, Lin J, Zhang T, Mo L, Xue Q, Zheng N, Niu Y, Dong X, Shi Y, Jiang Y. AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide mediated mtROS. Free Radic Biol Med 2025; 229:237-250. [PMID: 39805512 DOI: 10.1016/j.freeradbiomed.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity. Our previous study showed that chronic ethanol consumption increased de novo ceramide synthesis and necroptosis in myocardium. In this study, we investigated the role of AdipoRon on ceramide metabolism and necroptosis in chronic ethanol-treated myocardium. Eight-week-old C57/BL6J mice were fed with a Lieber-Decarli diet containing vehicle or AdipoRon for 12 weeks. Cardiac function, histology and oxidative stress were assessed. We found that chronic ethanol treatment decreased expression of AdipoR2 in myocardium and H9c2 cells, whereas AdipoRon improved cardiac function, reduced myocardium ceramide levels and suppressed necroptosis. By pharmacological interventions, RNA interference and point mutations in AdipoR2, we demonstrated that AdipoRon reduced ceramide levels through PPARα mediated lipid metabolism rather than AdipoR2's ceramidase activity. Using transmission electron microscope and reactive oxygen species (ROS) staining, we showed that chronic ethanol induced myocardium mitochondria damage and mitochondrial reactive oxygen species (mtROS) accumulation. Meanwhile, we found that AdipoRon ameliorated chronic ethanol induced cardiac necroptosis via the SIRT3-SOD2-mtROS pathway. Moreover, C6 ceramide treatment recapitulated chronic ethanol in inducing mtROS and necroptosis, whereas the ceramide synthesis inhibitors myriocin (MYR) and fumonisin B1 (FB1) attenuated chronic ethanol induced mtROS and necroptosis. Collectively, AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide de novo synthesis and mtROS, which highlights the therapeutic potential of targeting ceramide metabolism and oxidative stress pathways in treating ethanol induced cardiotoxicity.
Collapse
Affiliation(s)
- Yile Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanyu Qi
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lingjie Mo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiupeng Xue
- Forensic Science and Information Technology Research Centre of Supreme People's Procuratorate, Beijing, 100726, China
| | - Nianchang Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yaqin Niu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Academy of Forensic Science Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China.
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Ilia I, Ciordas PD, Nitusca D, Anton A, Marian C. Analysis of the Level of Adiponectin and Selected Cytokines in Patients with Knee Osteoarthritis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:571. [PMID: 38674217 PMCID: PMC11052232 DOI: 10.3390/medicina60040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Knee osteoarthritis (KOA) is a degenerative disease that is continuously targeting people of different ages, but especially the elderly population, the number of which tends to increase continuously at the global level. Apart from age, excess weight can influence the evolution of the disease, with obesity being associated with a weak inflammation stage and an imbalance between pro-inflammatory and anti-inflammatory cytokines. The present work aimed to analyze specific biomarkers, namely ACRP-30, IL-10, TNF-α, and IL-6, in knee synovial fluid, and correlate them with KOA patients' clinical data, radiographic changes, and functional and pain scores. Materials and Methods: 24 subjects with KOA and over 50 years of age participate in the present study. Synovial fluid was harvested using ultrasound guidance from the target knees of the enrolled KOA patients, and the levels of ACRP-30, IL-10, TNF-α, and IL-6 were measured using enzyme-linked immunosorbent assays (ELISA). All patients underwent a supine X-ray at the target knee and were classified using Kellgren-Lawrence (K-L) grading. The Western Ontario and McMaster University Osteoarthritis Index (WOMAC) was used to assess self-reported physical function, pain, and stiffness. Results: The obtained results highlighted a significant correlation between age and adiponectin level (p = 0.0451, r = -0.412). Also, the IL-10 values are lower in cases where the intensity of the pain is more pronounced (p = 0.0405, r = -0.421). In addition, analyzing the data by gender, it was observed that in the case of males, stiffness is more related to age (p = 0.0079, r = 0.7993), compared to women (p = 0.0203, r = 0.6223). In the case of women, the progression of the disease tends to increase more intensively the WOMAC score's total values (p = 0.00031, r = 0.8342), compared with men (p = 0.0289, r = 7013). Regarding interleukins and BMI, significant correlations were observed only in the case of men. Conclusions: A significant correlation between age and adiponectin, and adiponectin and IL-6, suggests that advanced age may contribute to adiponectin reduction. Comparing men with women, it was observed that men's age is more related to rigidity, and IL-6 and IL-10 are directly correlated to BMI; in addition, women seem to be more sensitive to pain and stiffness.
Collapse
Affiliation(s)
- Iosif Ilia
- Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (I.I.); (P.D.C.); (D.N.); (C.M.)
- Faculty of Physical Education and Sport, Physical Activities Research Center, “Aurel Vlaicu” University of Arad, 310025 Arad, Romania
| | - Paula Diana Ciordas
- Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (I.I.); (P.D.C.); (D.N.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timişoara, Romania
| | - Diana Nitusca
- Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (I.I.); (P.D.C.); (D.N.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timişoara, Romania
| | - Alina Anton
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Catalin Marian
- Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (I.I.); (P.D.C.); (D.N.); (C.M.)
- Center for Complex Network Science, “Victor Babes” University of Medicine and Pharmacy, 300041 Timişoara, Romania
| |
Collapse
|
4
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
5
|
Qiao Y, Yao X, Zhao Y, Kang Y, Xu C, Zhao J, Zhao S. Increased Expression of Adipokines in Patients With Frozen Shoulder. Am J Sports Med 2023; 51:3261-3267. [PMID: 37615177 DOI: 10.1177/03635465231189797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
BACKGROUND Adipokines represent a spectrum of bioactive molecules that could modulate fibroblastic and inflammatory processes. The role of adipokines in the pathogenesis of frozen shoulder (FS), a common musculoskeletal disorder characterized by chronic inflammation, remains obscure. PURPOSE To evaluate whether adipokines contribute to the pathogenic mechanisms of FS and to evaluate any potential correlation of adipokines with patients' symptoms. STUDY DESIGN Controlled laboratory study. METHODS Shoulder capsule specimens were obtained from 10 patients with FS and 10 patients with shoulder instability (control group). The specimens were dyed using hematoxylin and eosin and immunohistochemically assessed with antibodies targeting adipokines, collagen I, collagen III, and tumor necrosis factor α. Immunoreactivity was graded from "no" to "strong" in a blinded manner. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) analysis was conducted. Before the surgery, patient-reported frequency of pain, severity of pain, stiffness, and shoulder range of motion were documented. RESULTS In comparison with the control group, patients with FS had significantly greater pain frequency, pain severity, and stiffness and more limited shoulder range of motion (P < .001). Hematoxylin and eosin- and Masson trichrome-stained samples from the FS group displayed hypercellularity and increased collagen fibers. Immunohistochemistry and RT-qPCR analyses indicated that expression of adipokines was significantly increased in FS capsules compared with the control group. The expression of collagen I, collagen III, and tumor necrosis factor α was also increased in FS capsules. No significant correlation was noted between adipokine expression and patient-reported outcomes in the control group, whereas in patients with FS, adiponectin expression was correlated with pain frequency (r = 0.78; P = .01) and stiffness (r = 0.73; P = .02). Visfatin was also correlated with pain frequency (r = 0.70; P = .02). CONCLUSION/CLINICAL RELEVANCE This study indicated a potential role for adipokines in the pathogenesis of FS and demonstrated a correlation between adipokine expression and patients' pain and stiffness.
Collapse
Affiliation(s)
- Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhao
- Department of Orthopaedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiqi Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Peng J, Chen Q, Wu C. The role of adiponectin in cardiovascular disease. Cardiovasc Pathol 2023; 64:107514. [PMID: 36634790 DOI: 10.1016/j.carpath.2022.107514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease that seriously threatens the health of human beings, especially middle-aged and elderly people over 50 years old. It has the characteristics of high prevalence, high disability rate and high mortality rate. Previous studies have shown that adiponectin has therapeutic effects on a variety of CVDs. As a key adipokine, adiponectin, is an abundant peptide-regulated hormone that is mainly released by adipocytes and cardiomyocytes, as well as endothelial and skeletal cells. Adiponectin can protect against CVD by improving lipid metabolism, protecting vascular endothelial cells and inhibiting foam cell formation and vascular smooth muscle cell proliferation. Further investigation of the molecular and cellular mechanisms underlying the adiponectin system may provide new ideas for the treatment of CVD. Herein, this review aims to describe the structure and function of adiponectin and adiponectin receptors, introduce the function of adiponectin in the protection of cardiovascular disease and analyze the potential use and clinical significance of this hormone in the protection and treatment of cardiovascular disease, which shows that adiponectin can be expected to become a new therapeutic target and biomarker for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- Jin Peng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chuncao Wu
- Insititution of Chinese Materia Medica Preparation, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
7
|
Bantulà M, Tubita V, Roca-Ferrer J, Mullol J, Valero A, Bobolea I, Pascal M, de Hollanda A, Vidal J, Picado C, Arismendi E. Differences in Inflammatory Cytokine Profile in Obesity-Associated Asthma: Effects of Weight Loss. J Clin Med 2022; 11:jcm11133782. [PMID: 35807067 PMCID: PMC9267201 DOI: 10.3390/jcm11133782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity and asthma are associated with systemic inflammation maintained by mediators released by adipose tissue and lung. This study investigated the inflammatory serum mediator profile in obese subjects (O) (n = 35), non-obese asthma (NOA) patients (n = 14), obese asthmatics (OA) (n = 21) and healthy controls (HC) (n = 33). The effect of weight loss after bariatric surgery (BS) was examined in 10 OA and 31 O subjects. We analyzed serum markers including leptin, adiponectin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, ST2, IL-5, IL-9, and IL-18. Compared with HC subjects, the O group showed increased levels of leptin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, and ST2; the OA group presented increased levels of MCP-1, ezrin, YKL-40, and IL-18, and the NOA group had increased levels of ezrin, YKL-40, IL-5, and IL-18. The higher adiponectin/leptin ratio in NOA with respect to OA subjects was the only significant difference between the two groups. IL-9 was the only cytokine with significantly higher levels in OA with respect to O subjects. TNFR2, ezrin, MCP-1, and IL-18 concentrations significantly decreased in O subjects after BS. O, OA, and NOA showed distinct patterns of systemic inflammation. Leptin and adiponectin are regulated in asthma by obesity-dependent and -independent mechanisms. Combination of asthma and obesity does not result in significant additive effects on circulating cytokine levels.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Correspondence: ; Tel.: +34-932275400
| | - Valeria Tubita
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
| | - Jordi Roca-Ferrer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Valero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Irina Bobolea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Mariona Pascal
- Immunology Department, CDB, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain;
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Josep Vidal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red en Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - César Picado
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
8
|
Ma S, Murakami K, Tanaka K, Hashimoto M, Tanaka M, Kitagori K, Akizuki S, Nakashima R, Yoshifuji H, Ohmura K, Morinobu A, Mimori T. Fatostatin ameliorates inflammation without affecting cell viability. FEBS Open Bio 2022; 12:594-604. [PMID: 35015380 PMCID: PMC8886327 DOI: 10.1002/2211-5463.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
The mature form of sterol regulatory element-binding protein 1 (SREBP1) is a transcription factor involved in lipid synthesis, which participates in toll like receptor 4 (TLR4)-triggered inflammatory pathways during the resolution phase of inflammation in macrophages. SREBP1 has thus attracted interest as a candidate target molecule for ameliorating inflammation. Fatostatin is a small molecule that inhibits the maturation and function of SREBP, and its role in regulating inflammation is poorly understood. To evaluate the anti-inflammatory effect of fatostatin, we compared body weight, footpad and hock dimensions, and arthritis scores between K/BxN serum-induced arthritis mice treated with fatostatin and those treated with dimethyl sulfoxide as vehicle control. We performed hematoxylin and eosin staining of joints of distal paws to assess tissue inflammation. Moreover, inflammatory cytokine production levels and cell viability were measured in lipopolysaccharide (LPS)-responsive human embryonic kidney 293 cells (293/hTLR4A-MD2-CD14 cells) after fatostatin administration. In K/BxN serum-induced arthritis mice, fatostatin treatment significantly reduced the arthritis scores and lining hyperplasia. In vitro analysis revealed that fatostatin significantly inhibited the secretion of inflammatory cytokines from cells activated with LPS, without affecting cell viability. This is the first study to elucidate that fatostatin is an anti-inflammatory agent that modulates the processing of lipid transcription factors without affecting cell viability. Therefore, this study reveals the potential of anti-inflammatory therapeutics that link lipid regulation and inflammation.
Collapse
Affiliation(s)
- Shuhe Ma
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Kosaku Murakami
- Kyoto University Graduate School of Medicine, Center for Cancer Immunotherapy and Immunobiology
| | - Kazune Tanaka
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Motomu Hashimoto
- Kyoto University Graduate School of Medicine, Department for Advanced Medicine for Rheumatic Disease, Kyoto, Japan.,Osaka City University Graduate School of Medicine, Department of Clinical Immunology, Osaka, Japan
| | - Masao Tanaka
- Kyoto University Graduate School of Medicine, Department for Advanced Medicine for Rheumatic Disease, Kyoto, Japan
| | - Koji Kitagori
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Shuji Akizuki
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Ran Nakashima
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Hajime Yoshifuji
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Koichiro Ohmura
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Akio Morinobu
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Tsuneyo Mimori
- Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan.,Ijinkai Takeda General Hospital, Kyoto, Japan
| |
Collapse
|
9
|
Adiponectin Promotes VEGF Expression in Rheumatoid Arthritis Synovial Fibroblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-106a-5p. Cells 2021; 10:cells10102627. [PMID: 34685605 PMCID: PMC8534315 DOI: 10.3390/cells10102627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an erosive polyarthritis that can lead to severe joint destruction and painful disability if left untreated. Angiogenesis, a critical pathogenic mechanism in RA, attracts inflammatory leukocytes into the synovium, which promotes production of proinflammatory cytokines and destructive proteases. Adipokines, inflammatory mediators secreted by adipose tissue, also contribute to the pathophysiology of RA. The most abundant serum adipokine is adiponectin, which demonstrates proinflammatory effects in RA, although the mechanisms linking adiponectin and angiogenic manifestations of RA are not well understood. Our investigations with the human MH7A synovial cell line have revealed that adiponectin dose- and time-dependently increases vascular endothelial growth factor (VEGF) expression, stimulating endothelial progenitor cell (EPC) tube formation and migration. These adiponectin-induced angiogenic activities were facilitated by MEK/ERK signaling. In vivo experiments confirmed adiponectin-induced downregulation of microRNA-106a-5p (miR-106a-5p). Inhibiting adiponectin reduced joint swelling, bone destruction, and angiogenic marker expression in collagen-induced arthritis (CIA) mice. Our evidence suggests that targeting adiponectin has therapeutic potential for patients with RA. Clinical investigations are needed.
Collapse
|
10
|
Sánchez-Robles EM, Girón R, Paniagua N, Rodríguez-Rivera C, Pascual D, Goicoechea C. Monoclonal Antibodies for Chronic Pain Treatment: Present and Future. Int J Mol Sci 2021; 22:ijms221910325. [PMID: 34638667 PMCID: PMC8508878 DOI: 10.3390/ijms221910325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic pain remains a major problem worldwide, despite the availability of various non-pharmacological and pharmacological treatment options. Therefore, new analgesics with novel mechanisms of action are needed. Monoclonal antibodies (mAbs) are directed against specific, targeted molecules involved in pain signaling and processing pathways that look to be very effective and promising as a novel therapy in pain management. Thus, there are mAbs against tumor necrosis factor (TNF), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), or interleukin-6 (IL-6), among others, which are already recommended in the treatment of chronic pain conditions such as osteoarthritis, chronic lower back pain, migraine, or rheumatoid arthritis that are under preclinical research. This narrative review summarizes the preclinical and clinical evidence supporting the use of these agents in the treatment of chronic pain.
Collapse
|
11
|
Choi SY, Rhim J, Heo SA, Han WJ, Kim MH, Ha CW. Efficacy and safety of a novel hemostatic material, BoneStat, compared with Ostene and Bone Wax in a rat calvarial defect model. Int J Artif Organs 2021; 44:734-747. [PMID: 34387533 DOI: 10.1177/03913988211021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemostasis has critical significance during surgical procedures. Bone Wax has traditionally been commonly used for bone hemostasis despite well-documented undesirable side effects: hindering osteogenesis and induction of inflammatory reactions with consequent increase in infection rates. A later developed formulation, Ostene, offers an alternative to Bone Wax with lesser undesired effects. In this study, BoneStat, a newly developed bone hemostatic formulation comprising water-soluble alkylene oxide co-polymers, was evaluated for water solubility, hemostatic efficacy, ease of handling, bone healing efficacy, and inflammatory reactions compared with Bone Wax and Ostene in a rat calvarial defect model. More than 95% of BoneStat was dissolved in water within 48 h, as was Ostene, but not Bone Wax. The time to hemostasis using BoneStat was significantly faster than with Ostene or Bone Wax. BoneStat also improved ease of handling compared to Ostene or BoneWax. BoneStat- and Ostene-treated groups constantly showed better bone healing than with Bone Wax. The BoneStat and Ostene groups presented no evidence of chronic inflammation reaction contrary to Bone Wax. These results suggest improved hemostasis, ease of handling, non-hindering bone healing, and unnoticeable chronic inflammatory reactions with BoneStat. Thus, Bonestat is a useful and reliable formulation for mechanical hemostasis.
Collapse
Affiliation(s)
- Seon Young Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea.,Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Jiheon Rhim
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Seon A Heo
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Woo-Jung Han
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Myung Hee Kim
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea
| | - Chul-Won Ha
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea.,Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea.,Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Adiponectin Associates with Rheumatoid Arthritis Risk in Overweight and Obesity Independently of Other Adipokines. J Clin Med 2021; 10:jcm10132791. [PMID: 34201946 PMCID: PMC8267689 DOI: 10.3390/jcm10132791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
We recently reported that increased serum adiponectin was associated with rheumatoid arthritis (RA) risk in subjects with obesity. We hereby aim to determine if other adipokines associate with RA risk and if the association between adiponectin and RA is independent of other adipokines. Two nested-case control studies were performed in two different cohorts: 82 participants of the Swedish Obese Subjects (SOS) study who developed RA during follow-up matched with 410 controls, and 88 matched pairs from the Medical Biobank of Northern Sweden. Baseline levels of circulating adipokines were measured using ELISA. In a multivariable analysis in the SOS cohort, higher adiponectin was associated with an increased risk of RA independently of other adipokines (OR for RA risk: 1.06, 95% CI: 1.01–1.12, p = 0.02). No association between leptin, resistin, and visfatin levels and the risk of RA was detected. In the cohort from the Medical Biobank of Northern Sweden, higher adiponectin was associated with an increased risk of RA only in participants with overweight/obesity (OR: 1.17, 95% CI: 1.01−1.36, p = 0.03), independently of other adipokines. Our results show that in individuals with overweight/obesity, higher circulating levels of adiponectin, but not leptin, resistin, or visfatin, were associated with an increased RA risk.
Collapse
|
13
|
Che N, Sun X, Gu L, Wang X, Shi J, Sun Y, Xu L, Liu R, Wang J, Zhu F, Peng N, Xiao F, Hu D, Lu L, Qiu W, Zhang M. Adiponectin Enhances B-Cell Proliferation and Differentiation via Activation of Akt1/STAT3 and Exacerbates Collagen-Induced Arthritis. Front Immunol 2021; 12:626310. [PMID: 33815378 PMCID: PMC8012765 DOI: 10.3389/fimmu.2021.626310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although B cells have been shown to contribute to the pathogenesis of rheumatoid arthritis (RA), the precise role of B cells in RA needs to be explored further. Our previous studies have revealed that adiponectin (AD) is expressed at high levels in inflamed synovial joint tissues, and its expression is closely correlated with progressive bone erosion in patients with RA. In this study, we investigated the possible role of AD in B cell proliferation and differentiation. We found that AD stimulation could induce B cell proliferation and differentiation in cell culture. Notably, local intraarticular injection of AD promoted B cell expansion in joint tissues and exacerbated arthritis in mice with collagen-induced arthritis (CIA). Mechanistically, AD induced the activation of PI3K/Akt1 and STAT3 and promoted the proliferation and differentiation of B cells. Moreover, STAT3 bound to the promoter of the Blimp-1 gene, upregulated Blimp-1 expression at the transcriptional level, and promoted B cell differentiation. Collectively, we observed that AD exacerbated CIA by enhancing B cell proliferation and differentiation mediated by the PI3K/Akt1/STAT3 axis.
Collapse
Affiliation(s)
- Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxuan Sun
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Gu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohui Wang
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- Chongqing International Institute for Immunology, Hong Kong, China
| | - Jingjing Shi
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yi Sun
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Lingxiao Xu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junke Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyi Zhu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- Chongqing International Institute for Immunology, Hong Kong, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- Chongqing International Institute for Immunology, Hong Kong, China
| | - Wen Qiu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Adipokines and Autoimmunity in Inflammatory Arthritis. Cells 2021; 10:cells10020216. [PMID: 33499006 PMCID: PMC7910954 DOI: 10.3390/cells10020216] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Adipokines are adipose tissue-derived factors not only playing an important role in metabolism but also influencing other central processes of the body, such as inflammation. In autoimmune diseases, adipokines are involved in inflammatory pathways affecting different cell types. Many rheumatic diseases belong to the group of autoimmune diseases, for example rheumatoid arthritis (RA) and psoriatic arthritis. Due to the autoimmune responses, a chronic inflammatory milieu develops, which affects the whole body, including adipose tissue. Metabolic alterations such as obesity influence inflammatory responses in autoimmune diseases. Adipokines are bioactive mediators mainly produced by adipose tissue. Due to alterations of systemic adipokine levels, their role as biomarkers with diagnostic potential has been suggested in the context of rheumatic diseases. In the affected joints of RA patients, different synoviocytes but also osteoclasts, osteoblasts, and chondrocytes produce several adipokines, contributing to the unique inflammatory microenvironment. Adipokines have been shown to be potent modulatory effectors on different cell types of the immune system but also local cells in synovial tissue, cartilage, and bone. This review highlights the most recent findings on the role of adipokines in the pathophysiology of inflammatory arthritis with a distinct focus on RA in the quickly developing research field.
Collapse
|
15
|
Lewis JW, Edwards JR, Naylor AJ, McGettrick HM. Adiponectin signalling in bone homeostasis, with age and in disease. Bone Res 2021; 9:1. [PMID: 33414405 PMCID: PMC7790832 DOI: 10.1038/s41413-020-00122-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
Adiponectin is the most abundant circulating adipokine and is primarily involved in glucose metabolism and insulin resistance. Within the bone, osteoblasts and osteoclasts express the adiponectin receptors, however, there are conflicting reports on the effects of adiponectin on bone formation and turnover. Many studies have shown a pro-osteogenic role for adiponectin in in vivo murine models and in vitro: with increased osteoblast differentiation and activity, alongside lower levels of osteoclastogenesis. However, human studies often demonstrate an inverse relationship between adiponectin concentration and bone activity. Moreover, the presence of multiple isoforms of adiponectin and multiple receptor subtypes has the potential to lead to more complex signalling and functional consequences. As such, we still do not fully understand the importance of the adiponectin signalling pathway in regulating bone homeostasis and repair in health, with age and in disease. In this review, we explore our current understanding of adiponectin bioactivity in the bone; the significance of its different isoforms; and how adiponectin biology is altered in disease. Ultimately, furthering our understanding of adiponectin regulation of bone biology is key to developing pharmacological and non-pharmacological (lifestyle) interventions that target adiponectin signalling to boost bone growth and repair in healthy ageing, following injury or in disease.
Collapse
Affiliation(s)
- Jonathan W Lewis
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - James R Edwards
- Ageing & Regeneration Research Group, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
16
|
Role of Adiponectin in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21218265. [PMID: 33158216 PMCID: PMC7662687 DOI: 10.3390/ijms21218265] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic inflammatory autoimmune joint disease, characterized by progressive articular damage and joint dysfunction. One of the symptoms of this disease is persistent inflammatory infiltration of the synovial membrane, the principle site of inflammation in RA. In the affected conditions, the cells of the synovial membrane, fibroblast-like synoviocytes and macrophage-like synovial cells, produce enzymes degrading cartilage and underlining bone tissue, as well as cytokines increasing the infiltration of immune cells. In patients with RA, higher levels of adiponectin are measured in the serum and synovial fluid. Adiponectin, a secretory product that is mainly white adipose tissue, is a multifunctional protein with dual anti-inflammatory and pro-inflammatory properties. Several studies underline the fact that adiponectin can play an important pro-inflammatory role in the pathophysiology of RA via stimulating the secretion of inflammatory mediators. This narrative review is devoted to the presentation of recent knowledge on the role played by one of the adipokines produced by adipose tissue—adiponectin—in the pathogenesis of rheumatoid arthritis.
Collapse
|
17
|
The Adipokine Network in Rheumatic Joint Diseases. Int J Mol Sci 2019; 20:ijms20174091. [PMID: 31443349 PMCID: PMC6747092 DOI: 10.3390/ijms20174091] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rheumatic diseases encompass a diverse group of chronic disorders that commonly affect musculoskeletal structures. Osteoarthritis (OA) and rheumatoid arthritis (RA) are the two most common, leading to considerable functional limitations and irreversible disability when patients are unsuccessfully treated. Although the specific causes of many rheumatic conditions remain unknown, it is generally accepted that immune mechanisms and/or uncontrolled inflammatory responses are involved in their etiology and symptomatology. In this regard, the bidirectional communication between neuroendocrine and immune system has been demonstrated to provide a homeostatic network that is involved in several pathological conditions. Adipokines represent a wide variety of bioactive, immune and inflammatory mediators mainly released by adipocytes that act as signal molecules in the neuroendocrine-immune interactions. Adipokines can also be synthesized by synoviocytes, osteoclasts, osteoblasts, chondrocytes and inflammatory cells in the joint microenvironment, showing potent modulatory properties on different effector cells in OA and RA pathogenesis. Effects of adiponectin, leptin, resistin and visfatin on local and systemic inflammation are broadly described. However, more recently, other adipokines, such as progranulin, chemerin, lipocalin-2, vaspin, omentin-1 and nesfatin, have been recognized to display immunomodulatory actions in rheumatic diseases. This review highlights the latest relevant findings on the role of the adipokine network in the pathophysiology of OA and RA.
Collapse
|