1
|
Wong BHS, Shim H, Goay SSM, Ong ST, Muhammad Taib NAB, Chai KXY, Lim K, Huang D, Ong CK, Vaiyapuri TS, Cheah YC, Wang Y, Wulff H, Webster RD, Shelat VG, Verma NK. The novel quinoline derivative SKA-346 as a K Ca3.1 channel selective activator. RSC Adv 2024; 14:38364-38377. [PMID: 39635364 PMCID: PMC11615718 DOI: 10.1039/d4ra07330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
The calcium-activated KCa3.1 channel plays a crucial role in T-cell immune response. Genetic manipulation of T-cells to upregulate the expression of K+ channels has been shown to boost T-cell cytotoxicity in cancer. Here, we aimed to identify and characterize an activator that would augment KCa3.1 currents without affecting other channels. We synthesized five quinoline derivatives and used electrophysiology to screen them on KCa3.1 and a panel of 14 other ion channels. One quinoline derivative, SKA-346, activated KCa3.1 with an EC50 of 1.9 μM and showed selectivity against the other channels. In silico analysis using RosettaLigand and GLIDE demonstrated a well-converged pose of SKA-346 in a binding pocket at the interface between the calmodulin N-lobe and the S45A helix in the S4-S5 linker of the KCa3.1 channel. SKA-346 (30 mg kg-1), tolerated by mice after intra-peritoneal administration, exhibited a peak plasma concentration of 6.29 μg mL-1 (29.2 μM) at 15 min and a circulating half-life (t 1/2) of 2.8 h. SKA-346 could serve as a template for the development of more potent KCa3.1 activators to enhance T-cell cytotoxicity in cancer.
Collapse
Affiliation(s)
- Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech NTU), Nanyang Technological University Singapore Singapore
| | - Heesung Shim
- Physical and Life Sciences, Lawrence Livermore National Laboratory Livermore CA USA
| | - Stephanie Shee Min Goay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- LKCMedicine-ICE Collaborative Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- LKCMedicine-ICE Collaborative Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Nur Ayuni Binte Muhammad Taib
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Kelila Xin Ye Chai
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Kerry Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Dachuan Huang
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
- Duke-NUS Medical School Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
- Duke-NUS Medical School Singapore
| | | | - Yeong Cheng Cheah
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Heike Wulff
- Department of Pharmacology, University of California Davis CA USA
| | - Richard D Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore Singapore
| | - Vishalkumar G Shelat
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- Department of General Surgery, Tan Tock Seng Hospital Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| |
Collapse
|
2
|
Obajdin J, Larcombe-Young D, Glover M, Kausar F, Hull CM, Flaherty KR, Tan G, Beatson RE, Dunbar P, Mazza R, Bove C, Taylor C, Bille A, Spillane KM, Cozzetto D, Vigilante A, Schurich A, Davies DM, Maher J. Solid tumor immunotherapy using NKG2D-based adaptor CAR T cells. Cell Rep Med 2024; 5:101827. [PMID: 39566469 PMCID: PMC11604534 DOI: 10.1016/j.xcrm.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
NKG2D ligands (NKG2DLs) are broadly expressed in cancer. To target these, we describe an adaptor chimeric antigen receptor (CAR) termed NKG2D/Dap10-12. Herein, T cells are engineered to co-express NKG2D with a fusion protein that comprises Dap10 joined to a Dap12 endodomain. NKG2D/Dap10-12 T cells elicit compelling efficacy, eradicating or controlling NKG2DL-expressing tumors in several established xenograft models. Importantly, durable responses, long-term survival, and rejection of tumor re-challenge are reproducibly achieved. Efficacy is markedly superior to a clinical stage CAR analog, comprising an NKG2D-CD3ζ fusion. Structure-function analysis using an extended CAR panel demonstrates that potency is dependent on membrane proximity of signaling units, high NKG2D cell surface expression, adaptor structure, provision of exogenous Dap10, and inclusion of one rather than three immune tyrosine activation motifs per signaling unit. Potent therapeutic impact of NKG2D/Dap10-12 T cells is also underpinned by enhanced oxidative phosphorylation, reduced senescence, and transcriptomic re-programming for increased ribosomal biogenesis.
Collapse
Affiliation(s)
- Jana Obajdin
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Daniel Larcombe-Young
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Maya Glover
- Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK
| | | | | | - Katie R Flaherty
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, London SE1 9RT, UK
| | - Ge Tan
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Richard E Beatson
- Department of Respiratory Medicine, Division of Medicinal Sciences, University College London, London, UK
| | | | | | - Camilla Bove
- Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK
| | | | - Andrea Bille
- Department of Thoracic Surgery, Guy's and St. Thomas' NHS Trust Foundation, London SE1 9RT, UK
| | | | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Alessandra Vigilante
- King's College London, Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, Guy's Hospital, London SE1 9RT, UK
| | - Anna Schurich
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, London SE1 9RT, UK
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK; Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK; Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK.
| |
Collapse
|
3
|
More NE, Mandlik R, Zine S, Gawali VS, Godad AP. Exploring the therapeutic opportunities of potassium channels for the treatment of rheumatoid arthritis. Front Pharmacol 2024; 15:1286069. [PMID: 38783950 PMCID: PMC11111972 DOI: 10.3389/fphar.2024.1286069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the synovial joint, which leads to inflammation, loss of function, joint destruction, and disability. The disease biology of RA involves complex interactions between genetic and environmental factors and is strongly associated with various immune cells, and each of the cell types contributes differently to disease pathogenesis. Several immunomodulatory molecules, such as cytokines, are secreted from the immune cells and intervene in the pathogenesis of RA. In immune cells, membrane proteins such as ion channels and transporters mediate the transport of charged ions to regulate intracellular signaling pathways. Ion channels control the membrane potential and effector functions such as cytotoxic activity. Moreover, clinical studies investigating patients with mutations and alterations in ion channels and transporters revealed their importance in effective immune responses. Recent studies have shown that voltage-gated potassium channels and calcium-activated potassium channels and their subtypes are involved in the regulation of immune cells and RA. Due to the role of these channels in the pathogenesis of RA and from multiple pieces of clinical evidence, they can be considered therapeutic targets for the treatment of RA. Here, we describe the role of voltage-gated and calcium-activated potassium channels and their subtypes in RA and their pharmacological application as drug targets.
Collapse
Affiliation(s)
| | - Rahul Mandlik
- Medical Affairs, Shalina Healthcare DMCC, Dubai, United Arab Emirates
| | - Sandip Zine
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | | | - Angel Pavalu Godad
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
4
|
Wang Y, Hurley A, De Giorgi M, Tanner MR, Hu RC, Pennington MW, Lagor WR, Beeton C. Adeno-Associated virus 8 delivers an immunomodulatory peptide to mouse liver more efficiently than to rat liver. PLoS One 2023; 18:e0283996. [PMID: 37040361 PMCID: PMC10089316 DOI: 10.1371/journal.pone.0283996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Targeting the Kv1.3 potassium channel has proven effective in reducing obesity and the severity of animal models of autoimmune disease. Stichodactyla toxin (ShK), isolated from the sea anemone Stichodactyla helianthus, is a potent blocker of Kv1.3. Several of its analogs are some of the most potent and selective blockers of this channel. However, like most biologics, ShK and its analogs require injections for their delivery, and repeated injections reduce patient compliance during the treatment of chronic diseases. We hypothesized that inducing the expression of an ShK analog by hepatocytes would remove the requirement for frequent injections and lead to a sustained level of Kv1.3 blocker in the circulation. To this goal, we tested the ability of Adeno-Associated Virus (AAV)8 vectors to target hepatocytes for expressing the ShK analog, ShK-235 (AAV-ShK-235) in rodents. We designed AAV8 vectors expressing the target transgene, ShK-235, or Enhanced Green fluorescent protein (EGFP). Transduction of mouse livers led to the production of sufficient levels of functional ShK-235 in the serum from AAV-ShK-235 single-injected mice to block Kv1.3 channels. However, AAV-ShK-235 therapy was not effective in reducing high-fat diet-induced obesity in mice. In addition, injection of even high doses of AAV8-ShK-235 to rats resulted in a very low liver transduction efficiency and failed to reduce inflammation in a well-established rat model of delayed-type hypersensitivity. In conclusion, the AAV8-based delivery of ShK-235 was highly effective in inducing the secretion of functional Kv1.3-blocking peptide in mouse, but not rat, hepatocytes yet did not reduce obesity in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ayrea Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark R. Tanner
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rong-Chi Hu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christine Beeton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
5
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
A bioengineered probiotic for the oral delivery of a peptide Kv1.3 channel blocker to treat rheumatoid arthritis. Proc Natl Acad Sci U S A 2023; 120:e2211977120. [PMID: 36595694 PMCID: PMC9926172 DOI: 10.1073/pnas.2211977120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Engineered microbes for the delivery of biologics are a promising avenue for the treatment of various conditions such as chronic inflammatory disorders and metabolic disease. In this study, we developed a genetically engineered probiotic delivery system that delivers a peptide to the intestinal tract with high efficacy. We constructed an inducible system in the probiotic Lactobacillus reuteri to secrete the Kv1.3 potassium blocker ShK-235 (LrS235). We show that LrS235 culture supernatants block Kv1.3 currents and preferentially inhibit human T effector memory (TEM) lymphocyte proliferation in vitro. A single oral gavage of healthy rats with LrS235 resulted in sufficient functional ShK-235 in the circulation to reduce inflammation in a delayed-type hypersensitivity model of atopic dermatitis mediated by TEM cells. Furthermore, the daily oral gavage of LrS235 dramatically reduced clinical signs of disease and joint inflammation in rats with a model of rheumatoid arthritis without eliciting immunogenicity against ShK-235. This work demonstrates the efficacy of using the probiotic L. reuteri as a novel oral delivery platform for the peptide ShK-235 and provides an efficacious strategy to deliver other biologics with great translational potential.
Collapse
|
7
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. Two Main Cellular Components in Rheumatoid Arthritis: Communication Between T Cells and Fibroblast-Like Synoviocytes in the Joint Synovium. Front Immunol 2022; 13:922111. [PMID: 35844494 PMCID: PMC9284267 DOI: 10.3389/fimmu.2022.922111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that endangers the health of approximately 1% of the global population. Current RA medications on the market mainly include non-steroidal anti-inflammatory drugs, biological agents, and disease-modifying drugs. These drugs aim to inhibit the overactivated immune response or inflammation of RA, but they cannot cure RA. A better understanding of the pathogenesis of RA will provide a new understanding to search for RA targets and for drug development. The infiltration of T cells and hyper-proliferation of fibroblast-like synoviocytes (FLS) in the synovium of patients with RA are significantly upregulated. Furthermore, the abnormal activation of these two types of cells has been confirmed to promote development of the course of A by many studies. This article systematically summarizes the interactions between T cells and FLS in RA synovial tissues, including one-way/mutual regulation and direct/indirect regulation between the two. It further aims to investigate the pathogenesis of RA from the perspective of mutual regulation between T cells and FLS and to provide new insights into RA research.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Chen Zhu,
| |
Collapse
|
8
|
Vaiciuleviciute R, Kalvaityte U, Bernotiene E, Mobasheri A. Ion Channel Modulators for Treatment-Resistant Rheumatoid Arthritis: Focus on Inflammation. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
9
|
Cook Sangar ML, Girard EJ, Hopping G, Yin C, Pakiam F, Brusniak MY, Nguyen E, Ruff R, Gewe MM, Byrnes-Blake K, Nairn NW, Miller DM, Mehlin C, Strand AD, Mhyre AJ, Correnti CE, Strong RK, Simon JA, Olson JM. A potent peptide-steroid conjugate accumulates in cartilage and reverses arthritis without evidence of systemic corticosteroid exposure. Sci Transl Med 2021; 12:12/533/eaay1041. [PMID: 32132215 DOI: 10.1126/scitranslmed.aay1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.
Collapse
Affiliation(s)
- Michelle L Cook Sangar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gene Hopping
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chunfeng Yin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Elizabeth Nguyen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mesfin M Gewe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | - Christopher Mehlin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew D Strand
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roland K Strong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Han Y, Wang J, Jin M, Jia L, Yan C, Wang Y. Shentong Zhuyu Decoction Inhibits Inflammatory Response, Migration, and Invasion and Promotes Apoptosis of Rheumatoid Arthritis Fibroblast-like Synoviocytes via the MAPK p38/PPAR γ/CTGF Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6187695. [PMID: 33511203 PMCID: PMC7826240 DOI: 10.1155/2021/6187695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The current study is aimed at exploring the effect of Shentong Zhuyu Decoction on the proliferation, migration, invasion, and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its underlying molecular mechanism. MATERIALS AND METHODS The type II collagen-induced arthritis (CIA) model was established. Subsequently, the RA-FLS were isolated from the CIA rat model and identified by immunohistochemistry. The viability, apoptosis, cell cycle, migration, and invasion of RA-FLS were detected by the cell counting kit 8 (CCK-8) assay, flow cytometry, wound-healing assay, and transwell invasion assay, respectively. The levels of MAPK p38, PPARγ, CTGF, Bcl-2, Bax, caspase-3, IL-1β, MMP-3, CDK4, and cyclin D1 were determined by qRT-PCR and western blotting, respectively. RESULTS After treatment with Shentong Zhuyu Decoction medicated serum, the OD570 value, migrative and invasive abilities, and the secretion of IL-1β, MMP-3 were remarkably decreased in RA-FLS, while the apoptosis rate was increased. Further, results showed that Shentong Zhuyu Decoction inhibited the transition from the G1 phase to S phase. Additionally, Shentong Zhuyu Decoction significantly inhibited the expression of Bcl-2, CDK4, cyclin D1, MAPK p-p38, and CTGF, whereas elevated the levels of Bax, caspase-3, and PPARγ. Importantly, the effects of Shentong Zhuyu Decoction were consistent with the trends of MAPK P38 inhibitor (SB203580) and PPARγ agonist (GW1929). CONCLUSIONS Shentong Zhuyu Decoction inhibited viability, inflammatory response, migration, invasion, and transition from the G1 phase to S phase and promoted apoptosis of RA-FLS via the MAPK p38/PPARγ/CTGF pathway.
Collapse
Affiliation(s)
- Ying Han
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Wang
- Department of Chinese Medicine Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Jin
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Jia
- Department II of Respiratory, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Cuihuan Yan
- Institute of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yali Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Tanner MR, Huq R, Sikkema WKA, Nilewski LG, Yosef N, Schmitt C, Flores-Suarez CP, Raugh A, Laragione T, Gulko PS, Tour JM, Beeton C. Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis. Antioxidants (Basel) 2020; 9:E1005. [PMID: 33081234 PMCID: PMC7602875 DOI: 10.3390/antiox9101005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species have been involved in the pathogenesis of rheumatoid arthritis (RA). Our goal was to determine the effects of selectively scavenging superoxide (O2•-) and hydroxyl radicals with antioxidant nanoparticles, called poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), on the pathogenic functions of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and on the progression of an animal model of RA. We used human FLS from patients with RA to determine PEG-HCC internalization and effects on FLS cytotoxicity, invasiveness, proliferation, and production of proteases. We used the pristane-induced arthritis (PIA) rat model of RA to assess the benefits of PEG-HCCs on reducing disease severity. PEG-HCCs were internalized by RA-FLS, reduced their intracellular O2•-, and reduced multiple measures of their pathogenicity in vitro, including proliferation and invasion. In PIA, PEG-HCCs caused a 65% reduction in disease severity, as measured by a standardized scoring system of paw inflammation and caused a significant reduction in bone and tissue damage, and circulating rheumatoid factor. PEG-HCCs did not induce lymphopenia during PIA. Our study demonstrated a role for O2•- and hydroxyl radicals in the pathogenesis of a rat model of RA and showed efficacy of PEG-HCCs in treating a rat model of RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William K. A. Sikkema
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Lizanne G. Nilewski
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Nejla Yosef
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cody Schmitt
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
| | - Carlos P. Flores-Suarez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arielle Raugh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresina Laragione
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - Pércio S. Gulko
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
- The NanoCarbon Center, Rice University, Houston, TX 77005, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Ong ST, Bajaj S, Tanner MR, Chang SC, Krishnarjuna B, Ng XR, Morales RAV, Chen MW, Luo D, Patel D, Yasmin S, Ng JJH, Zhuang Z, Nguyen HM, El Sahili A, Lescar J, Patil R, Charman SA, Robins EG, Goggi JL, Tan PW, Sadasivam P, Ramasamy B, Hartimath SV, Dhawan V, Bednenko J, Colussi P, Wulff H, Pennington MW, Kuyucak S, Norton RS, Beeton C, Chandy KG. Modulation of Lymphocyte Potassium Channel K V1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacol Transl Sci 2020; 3:720-736. [PMID: 32832873 DOI: 10.1021/acsptsci.0c00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/23/2022]
Abstract
We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.
Collapse
Affiliation(s)
- Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shih Chieh Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Xuan Rui Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ming Wei Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dharmeshkumar Patel
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sabina Yasmin
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeremy Jun Heng Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Zhong Zhuang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Julien Lescar
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Edward G Robins
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667.,Singapore Bioimaging Consortium, NUS Clinical Imaging Research Centre (CIRC), Centre for Life Sciences, Singapore 117599
| | - Julian L Goggi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Peng Wen Tan
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Pragalath Sadasivam
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Siddana V Hartimath
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Vikas Dhawan
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Janna Bednenko
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Paul Colussi
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Michael W Pennington
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - K George Chandy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
13
|
Haidar O, O'Neill N, Staunton CA, Bavan S, O'Brien F, Zouggari S, Sharif U, Mobasheri A, Kumagai K, Barrett-Jolley R. Pro-inflammatory Cytokines Drive Deregulation of Potassium Channel Expression in Primary Synovial Fibroblasts. Front Physiol 2020; 11:226. [PMID: 32265733 PMCID: PMC7105747 DOI: 10.3389/fphys.2020.00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/27/2020] [Indexed: 01/15/2023] Open
Abstract
The synovium secretes synovial fluid, but is also richly innervated with nociceptors and acts as a gateway between avascular joint tissues and the circulatory system. Resident fibroblast-like synoviocytes' (FLS) calcium-activated potassium channels (K Ca) change in activity in arthritis models and this correlates with FLS activation. Objective To investigate this activation in an in vitro model of inflammatory arthritis; 72 h treatment with cytokines TNFα and IL1β. Methods FLS cells were isolated from rat synovial membranes. We analyzed global changes in FLS mRNA by RNA-sequencing, then focused on FLS ion channel genes and the corresponding FLS electrophysiological phenotype and finally modeling data with ingenuity pathway analysis (IPA) and MATLAB. Results IPA showed significant activation of inflammatory, osteoarthritic and calcium signaling canonical pathways by cytokines, and we identified ∼200 channel gene transcripts. The large K Ca (BK) channel consists of the pore forming Kcnma1 together with β-subunits. Following cytokine treatment, a significant increase in Kcnma1 RNA abundance was detected by qPCR and changes in several ion channels were detected by RNA-sequencing, including a loss of BK channel β-subunit expression Kcnmb1/2 and an increase in Kcnmb3. In electrophysiological experiments, there was a decrease in over-all current density at 20 mV without change in chord conductance at this potential. Conclusion TNFα and IL1β treatment of FLS in vitro recapitulated several common features of inflammatory arthritis at the transcriptomic level, including increase in Kcnma1 and Kcnmb3 gene expression.
Collapse
Affiliation(s)
- Omar Haidar
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nathanael O'Neill
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Caroline A Staunton
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Selvan Bavan
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Zouggari
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Umar Sharif
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Orthopedics and Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, Netherlands.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kosuke Kumagai
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Orthopaedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
14
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
15
|
Ji MJ, Hong JH. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2020; 34:1615-1622. [PMID: 31480869 PMCID: PMC6735303 DOI: 10.1080/14756366.2019.1659791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly aggressive fibroblast-like synoviocytes (FLSs) are inflammatory mediators involved in synovial joint destruction. Membrane channels and transporters are essential components of the cell migration apparatus and are involved in various cellular functions. Although evidence is emerging that cell migration is a physiological/pathological process, the mechanism of highly dynamic synoviocytes linked to the membrane channels and carbonic anhydrases (CAs) in inflamed joints is only partially understood. In this review, topics covered will give a brief overview of CAs and the membrane channels of synoviocytes. We have also systematically focused on the role of FLS channels and transporters under various conditions, including rheumatoid arthritis (RA), to understand the pathophysiology of the migration of synoviocytes as inflammatory mediators in joints.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| |
Collapse
|
16
|
Liu Q, Körner H, Wu H, Wei W. Endoplasmic reticulum stress in autoimmune diseases. Immunobiology 2019; 225:151881. [PMID: 31879042 DOI: 10.1016/j.imbio.2019.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
If the body's immune system is disordered and begins to attack "self" and therefore, its own tissues this is considered to be an autoimmune pathology. The specific mechanisms vary between the different diseases and have not always been elucidated but chronic, non-resolving inflammation is a common theme in the pathogenesis of autoimmune diseases. Interestingly, it has been shown that development and occurrence of various inflammatory responses are closely correlated to endoplasmic reticulum stress. Therefore, this review discusses the current progress of research about the relationship between autoimmune diseases and endoplasmic reticulum stress, specifically the unfolded protein response (UPR).
Collapse
Affiliation(s)
- Qi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
17
|
Xiong Y, Mi BB, Liu MF, Xue H, Wu QP, Liu GH. Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Synovial Inflammation in Rheumatoid Arthritis. Med Sci Monit 2019; 25:2246-2256. [PMID: 30916045 PMCID: PMC6448456 DOI: 10.12659/msm.915451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) has a high prevalence in the elderly population. The genes and pathways in the inflamed synovium in patients with RA are poorly understood. This study aimed to identify differentially expressed genes (DEGs) linked to the progression of synovial inflammation in RA using bioinformatics analysis. MATERIAL AND METHODS Gene expression profiles of datasets GSE55235 and GSE55457 were acquired from the Gene Expression Omnibus (GEO) database. DEGs were identified using Morpheus software, and co-expressed DEGs were identified with Venn diagrams. Protein-protein interaction (PPI) networks were assembled with Cytoscape software and separated into subnetworks using the Molecular Complex Detection (MCODE) algorithm. The functions of the top module were assessed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. RESULTS DEGs that were upregulated were significantly enhanced in protein binding, the cell cytosol, organization of the extracellular matrix (ECM), regulation of RNA transcription, and cell adhesion. DEGs that were downregulated were associated with control of the immune response, B-cell and T-cell receptor signaling pathway regulation. KEGG pathway analysis showed that upregulated DEGs enhanced pathways associated with the cell adherens junction, osteoclast differentiation, and hereditary cardiomyopathies. Downregulated DEGs were enriched in primary immunodeficiency, cell adhesion molecules (CAMs), cytokine-cytokine receptor interaction, and hematopoietic cell lineages. CONCLUSIONS The findings from this bioinformatics network analysis study identified molecular mechanisms and the key hub genes that may contribute to synovial inflammation in patients with RA.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Meng-Fei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qi-Peng Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|