1
|
Monte A, Vilimek D, Uchytil J, Skypala J, Cipryan L, Casula V, Jandačka D, Nieminen MT. High levels of glycated haemoglobin (HbA1c) are associated with lower knee joint cartilage quality and higher knee joint symptoms in healthy individuals. Eur J Appl Physiol 2025; 125:885-894. [PMID: 39482452 DOI: 10.1007/s00421-024-05646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024]
Abstract
In an asymptomatic population, we investigated the relationships between glycated haemoglobin (HbA1c) and cartilage T2 relaxation time at the knee joint level. Fourteen and 17 participants with high and normal levels of HbA1c were recruited, respectively. A blood sample was used to determine the HbA1c level. T2 relaxation time (T2) of the superficial and deep parts of the femoral cartilage in the anterior, central, and posterior topographical sites was calculated using magnetic resonance (1.5 T) images. Each participant completed a knee injury and osteoarthritis outcome score questionnaire (KOOS) and a series of biomechanical analyses while running at their self-selected speed. The group with a high level of HbA1c had a lower score of KOOS symptoms than the other group (P < 0.05). HbA1c was found to be negatively related to the KOOS symptoms score. The group with a high level of HbA1c had low T2 values in all of the investigated topographical sites of the knee femoral cartilage (P < 0.05 in all cases). T2 was negatively correlated with HbA1c levels in all investigated knee femoral cartilage regions. Our data suggest that the subjects with high levels of HbA1c were those with low knee joint symptoms and lower values of T2. These results indicate that HbA1c could be correlated with cartilage deterioration due to its ability to dehydrate collagen fibre, possibly acting as a risk factor for the development of osteoarthritis.
Collapse
Affiliation(s)
- Andrea Monte
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200, Ostrava, Czech Republic.
- Departments of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Dominik Vilimek
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200, Ostrava, Czech Republic
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. Listopadu 15, Ostrava, Poruba, 70800, Czech Republic
| | - Jaroslav Uchytil
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200, Ostrava, Czech Republic
| | - Jiri Skypala
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200, Ostrava, Czech Republic
| | - Lukáš Cipryan
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200, Ostrava, Czech Republic
| | - Victor Casula
- Physics and Technology, Research Unit of Medical Imaging, University of Oulu, Oulu, Finland
| | - Daniel Jandačka
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, 70200, Ostrava, Czech Republic
| | - Miika T Nieminen
- Physics and Technology, Research Unit of Medical Imaging, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
2
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Berthon JY, Cabannes M, Bouton C, Carre M, Bridon E, Filaire E. In vitro, ex vivo and clinical approaches to evaluate the potential effect of Gentiana lutea extract on skin. Int J Cosmet Sci 2023; 45:688-698. [PMID: 37365865 DOI: 10.1111/ics.12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/05/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Dark circles affect subjects of all ages and in all skin types. They can be treated by various methods, particular by topical solutions. This investigation was directed towards exploring the effect of gentiopicroside (GP) on the skin around the eyes. For this, an extract of Gentiana lutea (GIE) containing GP (65% by dry matter) was evaluated on oxidant and angiogenesis parameters using in vitro and ex-vivo studies. A clinical experimentation was also realized. METHODS The effect of GIE at different concentrations on antioxidant gene was evaluated in vitro by RT-qPCR after treatment of NHDF. The effect of 2.93 μg mL-1 GIE on the release of VEGF-A and VEGF-C by NHDF was also studied. The effect of 87.9 μg mL-1 GIE was also evaluated on pseudotube formation in a coculture system of normal dermal microvascular endothelial cells (HMVEC-d)-NHDF stimulated or not with VEGF as pro-angiogenic factor. Prior to these assays, preliminary cytotoxicity assays were performed using a standard WST-8 reduction assay. The expressions of carboxymethyl-lysine and glyoxalase-1 were quantified on skin explants topically treated with 147 μg mL-1 GIE in basal and UVA-irradiated conditions. A clinical study was conducted in 22 subjects using topical twice daily for 14 days on eye area (split-face application: cream containing 147 μg mL-1 GIE versus placebo). 3D image acquisition and skin colour measurement were performed at D0 and D14. RESULTS Treatment of GIE upregulated the gene expression of NFE2L2 and downregulated the expression of CXCL8. GIE targeted AGEs pathways and reduced the formation of pseudotubes. A total of 147 μg mL-1 GIE gel cream significantly reduced significantly the average roughness and relief of the upper eyelid skin as well as the redness of dark circles after 14 days of application. CONCLUSION By acting on the pathway of AGEs, VEGF-A and VEFG-C, GIE seems to allow a rejuvenation of the skin resulting, among others, in a decrease in redness. It now would be interesting to evaluate the efficacy of GIE on skin around eyes microbiota, antibacterial gentiopicroside property being well-established.
Collapse
Affiliation(s)
| | | | | | | | | | - Edith Filaire
- UMR 1019 INRAE-University Clermont-Auvergne, UNH (Human Nutrition Unity), ECREIN Team, Clermont-Ferrand, France
- Groupe ICARE. Biopôle. Rue Emile Duclaux, Saint Beauzire, France
| |
Collapse
|
4
|
De Roover A, Escribano-Núñez A, Monteagudo S, Lories R. Fundamentals of osteoarthritis: Inflammatory mediators in osteoarthritis. Osteoarthritis Cartilage 2023; 31:1303-1311. [PMID: 37353140 DOI: 10.1016/j.joca.2023.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVES As more has become known of the pathophysiology of osteoarthritis (OA), evidence that inflammation plays a critical role in its development and progression has accumulated. Here, we aim to review current knowledge of the complex inflammatory network in the OA joint. DESIGN This narrative review is presented in three main sections: local inflammation, systemic inflammation, and therapeutic implications. We focused on inflammatory mediators and their link to OA structural changes in the joint. RESULTS OA is characterized by chronic and low-grade inflammation mediated mostly by the innate immune system, which results in cartilage degradation, bone remodeling and synovial changes. Synovitis is regarded as an OA characteristic and associated with increased severity of symptoms and joint dysfunction. However, the articular cartilage and the subchondral bone also produce several pro-inflammatory mediators thus establishing a complex interplay between the different tissues of the joint. In addition, systemic low-grade inflammation induced by aging, obesity and metabolic syndrome can contribute to OA development and progression. The main inflammatory mediators associated with OA include cytokines, chemokines, growth factors, adipokines, and neuropeptides. CONCLUSIONS Future research is needed to deeper understand the molecular pathways mediating the inflammation in OA to provide new therapeutics that target these pathways, or to repurpose existing drugs.
Collapse
Affiliation(s)
- Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ana Escribano-Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Rik Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Cambon-Binder A, Jaisson S, Tuffet S, Courties A, Eymard F, Okwieka A, Gillery P, Miquel A, Rousseau A, Crema MD, Berenbaum F, Sellam J. Serum carboxymethyllysine concentration is associated with erosive hand osteoarthritis. Osteoarthritis Cartilage 2023:S1063-4584(23)00727-6. [PMID: 36931384 DOI: 10.1016/j.joca.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE Carboxymethyllysine (CML) and homocitrulline (HCit) are the products of two non-enzymatic post-translational modifications of protein, a process related to age. We investigated whether serum CML and HCit concentrations were associated with hand osteoarthritis (HOA), especially erosive HOA. DESIGN Serum CML and HCit were measured by using liquid chromatography coupled with tandem mass spectrometry at inclusion in 386 patients included in the DIGICOD cohort. We investigated whether serum CML and/or HCit concentrations were associated with erosive HOA or with HOA clinical and radiological features. Moreover, we compared the tissular concentrations of CML and HCit in OA and non-OA cartilage from proximal interphalangeal and metacarpo-phalangeal (MCP) joints from human cadaveric donors. RESULTS Median (IQR) serum CML concentration was lower in patients with erosive HOA than those with non-erosive HOA (178.7 [157.1-208.8] vs 194.7 [168.9-217.1] μmol/mol Lys, p=0.002), but median HCit concentration did not differ between the groups (193.9 [162.9-232.0] vs 193.9 [155.9-224.6] μmol/mol Lys). Cartilage HCit and CML concentrations were not correlated with clinical features. Serum CML concentration was higher in OA than non-OA MCPs (7.0 vs 4.0 mmol/mol Lys, p=0.01). CONCLUSIONS Serum CML concentration was lower in erosive HOA than non-erosive HOA, and cartilage CML concentration was higher in OA than non-OA cartilage. These results encourage further studies to test whether serum CML could be a new prognostic biomarker in HOA.
Collapse
Affiliation(s)
- A Cambon-Binder
- Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), Orthopaedic and Upper Limb Surgery Department, Saint-Antoine Hospital, Paris, France; Centre de Recherche Saint-Antoine, INSERM UMRS_938, Paris, France
| | - S Jaisson
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France; Biochemistry Department, University Hospital of Reims, Reims, France
| | - S Tuffet
- Sorbonne University, AP-HP, Service de Pharmacologie Clinique et Plateforme de Recherche Clinique de l'Est Parisien (URCEST, CRB, CRC), Saint-Antoine Hospital, Paris, France
| | - A Courties
- Centre de Recherche Saint-Antoine, INSERM UMRS_938, Paris, France; Sorbonne University, AP-HP, Rheumatology department, Saint-Antoine Hospital, Paris, France
| | - F Eymard
- Department of Rheumatology, AP-HP, Henri Mondor Hospital, 94000 Créteil, France
| | - A Okwieka
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France; Biochemistry Department, University Hospital of Reims, Reims, France
| | - P Gillery
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France; Biochemistry Department, University Hospital of Reims, Reims, France
| | - A Miquel
- Sorbonne University, AP-HP, Radiology Department, Saint-Antoine Hospital, Paris, France
| | - A Rousseau
- Sorbonne University, AP-HP, Service de Pharmacologie Clinique et Plateforme de Recherche Clinique de l'Est Parisien (URCEST, CRB, CRC), Saint-Antoine Hospital, Paris, France
| | - M D Crema
- Institut d'Imagerie du Sport, Institut National du Sport, de l'Expertise et de la Performance (INSEP), Paris, France
| | - F Berenbaum
- Centre de Recherche Saint-Antoine, INSERM UMRS_938, Paris, France; Sorbonne University, AP-HP, Rheumatology department, Saint-Antoine Hospital, Paris, France
| | - J Sellam
- Centre de Recherche Saint-Antoine, INSERM UMRS_938, Paris, France; Sorbonne University, AP-HP, Rheumatology department, Saint-Antoine Hospital, Paris, France.
| |
Collapse
|
6
|
Waqas K, Szilagyi IA, Schiphof D, Boer CG, Bierma-Zeinstra S, van Meurs JBJ, Zillikens MC. Skin autofluorescence, a non-invasive biomarker of advanced glycation end products, and its relation to radiographic and MRI based osteoarthritis. Osteoarthritis Cartilage 2022; 30:1631-1639. [PMID: 36087928 DOI: 10.1016/j.joca.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Accumulation of advanced glycation end products (AGEs) in articular cartilage during aging has been proposed as a mechanism involved in the development of osteoarthritis (OA). Therefore, we investigated a cross-sectional relationship between skin AGEs, a biomarker for systemic AGEs accumulation, and OA. METHODS Skin AGEs were estimated with the AGE Reader™ as skin autofluorescence (SAF). Knee and hip X-rays were scored according to Kellgren and Lawrence (KL) system. KL-sum score of all four joints was calculated per participant to assess severity of overall radiographic OA (ROA) including or excluding those with prosthesis. Knee MRI of tibiofemoral joint (TFMRI) was assessed for cartilage loss. Sex-stratified regression models were performed after testing interaction with SAF. RESULTS 2,153 participants were included for this cross-sectional analysis. In women (n = 1,206) for one unit increase in SAF, the KL-sum score increased by 1.15 (95% confidence interval = 1.00-1.33) but excluding women with prosthesis, there was no KL-sum score increase [0.96 (0.83-1.11)]. SAF was associated with higher prevalence of prosthesis [Odds ratio, OR = 1.67 (1.10-2.54)] but not with ROA [OR = 0.83 (0.61-1.14)] when compared to women with no ROA. In men (n = 947), there was inconclusive association between SAF and KL sum score or prosthesis. For TFMRI (n = 103 women), SAF was associated with higher prevalence of cartilage loss, full-thickness [OR = 5.44 (1.27-23.38)] and partial-thickness [OR = 1.45 (0.38-5.54)], when compared to participants with no cartilage loss. CONCLUSION Higher SAF in women was associated with higher prosthesis prevalence and a trend towards higher cartilage loss on MRI. Our data presents inconclusive results between SAF and ROA in both sexes.
Collapse
Affiliation(s)
- K Waqas
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - I A Szilagyi
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of General Practice, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - D Schiphof
- Department of General Practice, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - C G Boer
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | - S Bierma-Zeinstra
- Department of General Practice, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Orthopaedics & Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | - J B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Orthopaedics & Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | - M C Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Lei Y, Zhang Q, Kuang G, Wang X, Fan Q, Ye F. Functional biomaterials for osteoarthritis treatment: From research to application. SMART MEDICINE 2022; 1:e20220014. [PMID: 39188730 PMCID: PMC11235767 DOI: 10.1002/smmd.20220014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Osteoarthritis (OA) is a common disease that endangers millions of middle-aged and elderly people worldwide. Researchers from different fields have made great efforts and achieved remarkable progress in the pathogenesis and treatment of OA. However, there is still no cure for OA. In this review, we discuss the pathogenesis of OA and summarize the current clinical therapies. Moreover, we introduce various natural and synthetic biomaterials for drug release, cartilage transplantation, and joint lubricant during the OA treatment. We also present our perspectives and insights on OA treatment in the future. We hope that this review will foster communication and collaboration among biological, clinical, and biomaterial researchers, paving the way for OA therapeutic breakthroughs.
Collapse
Affiliation(s)
- Yang Lei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Gaizheng Kuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Xiaochen Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Alhujaily M, Mir MM, Mir R, Alghamdi MAA, Wani JI, Sabah ZU, Elfaki I, Alnour TMS, Jeelani M, Abomughaid MM, Alharbi SA. Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia. J Pers Med 2022; 12:jpm12040639. [PMID: 35455754 PMCID: PMC9030104 DOI: 10.3390/jpm12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus constitutes a big challenge to the global health care system due to its socioeconomic impacts and very serious complications. The incidence and the prevalence rate are increased in the Gulf region including the KSA. Type 2 diabetes mellitus (T2DM) is caused by diverse risk factors including obesity, unhealthy dietary habits, physical inactivity, smoking and genetic factors. The molecular genetic studies have helped in the detection of many single nucleotide polymorphisms (SNP) with different diseases including cancers, cardiovascular diseases and T2DM. The glyoxalase 1 (GLO1) is a detoxifying enzyme and catalyzes the elimination of the cytotoxic product methylglyoxal (MG) by converting it to D-lactate, which is not toxic to tissues. MG accumulation is associated with the pathogenesis of different diseases including T2DM. In this study, we have investigated the association of the glyoxalase 1 SNPs (rs2736654) rs4746 C>A and rs1130534 T>A with T2DM using the amplification refractory mutation system PCR. We also measured the concentration of MG by ELISA in T2DM patients and matched heathy controls. Results show that the CA genotype of the GLO rs4647 A>C was associated with T2DM with OR = 2.57, p-value 0.0008 and the C allele was also associated with increased risk to T2DM with OR = 2.24, p-value = 0.0001. It was also observed that AT genotype of the rs1130534 was associated with decreased susceptibility to T2DM with OR = 0.3, p-value = 0.02. The A allele of rs1130534 was also associated with reduced risk to T2DM with PR = 0.27 = 0.006. In addition, our ELISA results demonstrate significantly increased MG concentrations in serum of the T2DM patients. We conclude that the GLO1 SNP may be associated with decreased enzyme activity and a resultant susceptibility to T2DM. Further well-designed studies in different and large patient populations are recommended to verify these findings.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia; (M.A.); (M.M.A.)
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Correspondence:
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (T.M.S.A.)
| | | | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.u.S.)
| | - Zia ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.u.S.)
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Tarig Mohammad Saad Alnour
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (T.M.S.A.)
| | - Mohammed Jeelani
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Mosleh Mohammad Abomughaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia; (M.A.); (M.M.A.)
| | - Samir Abdulkarim Alharbi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| |
Collapse
|
9
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
10
|
Van Gulick L, Saby C, Jaisson S, Okwieka A, Gillery P, Dervin E, Morjani H, Beljebbar A. An integrated approach to investigate age-related modifications of morphological, mechanical and structural properties of type I collagen. Acta Biomater 2022; 137:64-78. [PMID: 34673231 DOI: 10.1016/j.actbio.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
The main propose of this study is to characterize the impact of chronological aging on mechanical, structural, biochemical, and morphological properties of type I collagen. We have developed an original approach combining a stress-strain measurement device with a portable Raman spectrometer to enable simultaneous measurement of Raman spectra during stress vs strain responses of young adult, adult and old rat tail tendon fascicles (RTTFs). Our data showed an increase in all mechanical properties such as Young's modulus, yield strength, and ultimate tensile strength with aging. At the molecular level, Raman data revealed that the most relevant frequency shift was observed at 938 cm-1 in Old RTTFs, which is assigned to the C-C. This suggested a long axis deformation of the peptide chains in Old RTTFs during tensile stress. In addition, the intensity of the band at 872 cm-1, corresponding to hydroxyproline decreased for young adult RTTFs and increased for the adult ones, while it remained unchanged for Old RTTFs during tensile stress. The amide III band (1242 and 1265 cm-1) as well as the band ratios I1631/ I1663 and I1645 / I1663 responses to tensile stress were depending on mechanical phases (toe, elastic and plastic). The quantification of advanced glycation end-products by LC-MS/MS and spectrofluorometry showed an increase in their content with aging. This suggested that the accumulation of such products was correlated to the alterations observed in the mechanical and molecular properties of RTTFs. Analysis of the morphological properties of RTTFs by SHG combined with CT-FIRE software revealed an increase in length and straightness of collagen fibers, whereas their width and wavy fraction decreased. Our integrated study model could be useful to provide additional translational information to monitor progression of diseases related to collagen remodeling in musculoskeletal disorders. STATEMENT OF SIGNIFICANCE: Type I collagen is the major component of the extracellular matrix. Its architectural and structural organization plays an important role in the mechanical properties of many tissues at the physiological and pathological levels. The objective of this work is to develop an integrated approach to bring a new insight on the impact of chronological aging on the structural organization and mechanical properties of type I collagen. We combined a portable Raman spectrometer with a mechanical tensile testing device in order to monitor in real time the changes in the Raman fingerprint of type I collagen fibers during the mechanical stress. Raman spectroscopy allowed the identification of the type I collagen bonds that were affected by mechanical stress in a differential manner with aging.
Collapse
|
11
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Nikoo S, Maghari A, Habibi-Rezaei M, Moosavi-Movahedi AA. Mechanistic study of lysozyme glycation by fructose and modulation by curcumin derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Lei J, He M, Xu L, He C, Li J, Wang W. Azilsartan prevented AGE-induced inflammatory response and degradation of aggrecan in human chondrocytes through inhibition of Sox4. J Biochem Mol Toxicol 2021; 35:e22827. [PMID: 34051020 DOI: 10.1002/jbt.22827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/04/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Advanced glycation end products (AGEs)-induced inflammation and degradation of aggrecan in human chondrocytes play an important role in the progression and development of osteoarthritis (OA). Azilsartan, an angiotensin II receptor antagonist, has been licensed for the treatment of high blood pressure. However, the effects of Azilsartan in OA and AGEs-induced damages in chondrocytes have not been previously reported. The injured chondrocytes model was established by incubating with 5 μmol/L AGEs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to evaluate the cell viability of treated SW1353 cells. The gene expression levels of interleukin-1α (IL-1α), tumor necrosis factor-β (TNF-β), IL-6, a disintegrin-like and metallopeptidase with thrombospondin type motif-4 (ADAMTS-4), ADAMTS-5, Aggrecan, and Sox-4 were evaluated using quantitative real-time polymerase chain reaction and their protein levels were determined using enzyme-linked immunosorbent assay or Western blot analysis. Mitogen-activated protein kinase p38 pathway was surveyed using phosp-p38 level and its specific inhibitor SB203580 was employed to block the p38 pathway. The overexpression of Sox4 plasmid was transfected into SW1353 cells to assess its regulation on ADAMTS-4 and ADAMTS-5. Azilsartan reduced AGEs-induced production of proinflammatory cytokines, such as IL-1α, TNF-β, and IL-6. Azilsartan prevented AGEs-induced expressions of ADAMTS-4 and ADAMTS-5 as well as the reduction of aggrecan. Mechanistically, AGEs treatment increased the expression of Sox4 in a dose-dependent manner. AGE treatment increased the level of phosphorylated p38. However, treatment with the p38 inhibitor SB203580 inhibited AGEs-induced expression of Sox4, suggesting that AGEs-induced expression of Sox4 is mediated by p38. Furthermore, Azilsartan suppressed AGEs-induced phosphorylation of p38 and expression of Sox4. Finally, the overexpression of Sox4 abolished the inhibitory effects of Azilsartan against the expressions of ADAMTS-4 and ADAMTS-5. Azilsartan treatment prevented AGEs-induced inflammatory response and degradation of aggrecan through inhibition of Sox4.
Collapse
Affiliation(s)
- Jie Lei
- Bone Injury Diagnosis and Treatment Center, Hubei Provincial Hospital Of TCM, Wuhan, Hubei, China
| | - Mengyin He
- Department of Radiology, Wuhan Traditional Chinese Medicine Hospital, Wuhan, Hubei, China
| | - Liangzhou Xu
- Department of Radiology, Wuhan Traditional Chinese Medicine Hospital, Wuhan, Hubei, China
| | - Chengjian He
- Bone Injury Diagnosis and Treatment Center, Hubei Provincial Hospital Of TCM, Wuhan, Hubei, China
| | - Jie Li
- Department of Orthopaedics, First Affiliated Hospital of Guangzhou Traditional Chinese, Medicine University, Guangzhou, Guangdong, China
| | - Wei Wang
- Bone Injury Diagnosis and Treatment Center, Hubei Provincial Hospital Of TCM, Wuhan, Hubei, China
| |
Collapse
|
14
|
Senavirathna L, Ma C, Chen R, Pan S. Proteomic Investigation of Glyceraldehyde-Derived Intracellular AGEs and Their Potential Influence on Pancreatic Ductal Cells. Cells 2021; 10:cells10051005. [PMID: 33923186 PMCID: PMC8145644 DOI: 10.3390/cells10051005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-derived advanced glycation end products (AGEs) play an important role in the pathogenesis of many diseases including cancer. Accumulation of intracellular AGEs could stimulate cancer induction and facilitate cancer progression. We evaluated the toxic effect of glyceraldehyde-derived intracellular AGEs on normal and malignant pancreatic ductal cells by assessing the cell viability, toxicity, and oxidative stress, followed by proteomic analysis. Our functional studies showed that pancreatic cancer cells (PANC-1 and MIA PaCa-2) were more resistant to glyceraldehyde treatment compared to normal pancreatic ductal epithelial cells (HPDE), while cytotoxicity effects were observed in all cell types. Furthermore, using 13C isotopic labeled glyceraldehyde, the proteomic data revealed a dose-dependent increment of the number of glycation adducts in both these cell types. HPDE cells showed a higher number of intracellular AGEs compared to cancer cells. At a molecular level, the glycations in the lysine residues of proteins showed a concurrent increase with the concentration of the glyceraldehyde treatment, while the arginine glycations appeared to be less affected by the glyceraldehyde doses. Further pathway analysis of these glycated proteins suggested that the glycated proteins participate in important biological processes that are major hallmarks of cancer initiation and progression, including metabolic processes, immune response, oxidative stress, apoptosis, and S100 protein binding.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
15
|
Courties A, Do A, Leite S, Legris M, Sudre L, Pigenet A, Petit J, Nourissat G, Cambon-Binder A, Maskos U, Berenbaum F, Sellam J. The Role of the Non-neuronal Cholinergic System in Inflammation and Degradation Processes in Osteoarthritis. Arthritis Rheumatol 2020; 72:2072-2082. [PMID: 32638534 DOI: 10.1002/art.41429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/27/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The non-neuronal cholinergic system represents non-neuronal cells that have the biochemical machinery to synthetize de novo and/or respond to acetylcholine (ACh). We undertook this study to investigate this biochemical machinery in chondrocytes and its involvement in osteoarthritis (OA). METHODS Expression of the biochemical machinery for ACh metabolism and nicotinic ACh receptors (nAChR), particularly α7-nAChR, in human OA and murine chondrocytes was determined by polymerase chain reaction and ligand-binding. We investigated the messenger RNA expression of the human duplicate α7-nACh subunit, called CHRFAM7A, which is responsible for truncated α7-nAChR. We assessed the effect of nAChR on chondrocytes activated by interleukin-1β (IL-1β) and the involvement of α7-nAChR using chondrocytes from wild-type (WT) and α7-deficient Chrna7-/- mice. The role of α7-nAChR in OA was explored after medial meniscectomy in WT and Chrna7-/- mice. RESULTS Human and murine chondrocytes express the biochemical partners of the non-neuronal cholinergic system and a functional α7-nAChR at their cell surface (n = 5 experiments with 5 samples each). The expression of CHRFAM7A in human OA chondrocytes (n = 23 samples) correlated positively with matrix metalloproteinase 3 (MMP-3) (r = 0.38, P < 0.05) and MMP-13 (r = 0.48, P < 0.05) expression. Nicotine decreased the IL-1β-induced IL-6 and MMP expression, in a dose-dependent manner, in WT chondrocytes but not in Chrna7-/- chondrocytes. Chrna7-/- mice that underwent meniscectomy (n = 7) displayed more severe OA cartilage damage (mean ± SD Osteoarthritis Research Society International [OARSI] score 4.46 ± 1.09) compared to WT mice that underwent meniscectomy (n = 9) (mean ± SD OARSI score 3.05 ± 0.9; P < 0.05). CONCLUSION The non-neuronal cholinergic system is functionally expressed in chondrocytes. Stimulation of nAChR induces antiinflammatory and anticatabolic activity through α7-nAChR, but the anticatabolic activity may be mitigated by truncated α7-nAChR in human chondrocytes. In vivo experiments strongly suggest that α7-nAChR has a protective role in OA.
Collapse
Affiliation(s)
- Alice Courties
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Ariane Do
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sarah Leite
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Manon Legris
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Laure Sudre
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Audrey Pigenet
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Juliette Petit
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Geoffroy Nourissat
- 2INSERM UMR 938, Centre de Recherche Saint-Antoine, Clinique Maussins, Groupe Ramsay Générale de Santé, Paris, France
| | - Adeline Cambon-Binder
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Francis Berenbaum
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jérémie Sellam
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
16
|
Suzuki A, Yabu A, Nakamura H. Advanced glycation end products in musculoskeletal system and disorders. Methods 2020; 203:179-186. [PMID: 32987130 DOI: 10.1016/j.ymeth.2020.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The human population is ageing globally, and the number of old people is increasing yearly. Diabetes is common in the elderly, and the number of diabetic patients is also increasing. Elderly and diabetic patients often have musculoskeletal disorder, which are associated with advanced glycation end products (AGEs). AGEs are heterogeneous molecules derived from non-enzymatic products of the reaction of glucose or other sugar derivatives with proteins or lipids, and many different types of AGEs have been identified. AGEs are a biomarker for ageing and for evaluating disease conditions. Fluorescence, spectroscopy, mass spectrometry, chromatography, and immunological methods are commonly used to measure AGEs, but there is no standardized evaluation method because of the heterogeneity of AGEs. The formation of AGEs is irreversible, and they accumulate in tissue, eventually causing damage. AGE accumulation has been confirmed in neuromusculoskeletal tissues, including bones, cartilage, muscles, tendons, ligaments, and nerves, where they adversely affect biomechanical properties by causing charge changes and forming cross-linkages. AGEs also bind to receptors, such as the receptor for AGEs (RAGE), and induce inflammation by intracellular signal transduction. These mechanisms cause many varied aging and diabetes-related pathological conditions, such as osteoporosis, osteoarthritis, sarcopenia, tendinopathy, and neuropathy. Understanding of AGEs related pathomechanism may lead to develop novel methods for the prevention and therapy of such disorders which affect patients' quality of life. Herein, we critically review the current methodology used for detecting AGEs, and present potential mechanisms by which AGEs cause or exacerbate musculoskeletal disorders.
Collapse
Affiliation(s)
- Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan.
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| |
Collapse
|
17
|
Cannata F, Vadalà G, Ambrosio L, Napoli N, Papalia R, Denaro V, Pozzilli P. Osteoarthritis and type 2 diabetes: From pathogenetic factors to therapeutic intervention. Diabetes Metab Res Rev 2020; 36:e3254. [PMID: 31829509 DOI: 10.1002/dmrr.3254] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Over the last decades, osteoarthritis (OA) and type 2 diabetes (T2D) prevalence increased due to the global ageing population and the pandemic obesity. They currently affect a substantial part of the Western world population and are characterized by enhancing the risk of disability and reduction of quality of life. OA is a multifactorial condition whose development derives from the interaction between individual and environmental factors: The best known primarily include age, female gender, genetic determinants, articular biomechanics, and obesity (OB). Given the high prevalence of OA and T2D and their association with OB and inflammation, several studies have been conducted to investigate the causative role of biological characteristics proper to T2D on the development of OA. This review aims to analyse the relationship between of OA and T2D, in order to explain the pathophysiological drivers of the degenerative process and to delineate possible targets to which appropriate treatments may be addressed in the near future.
Collapse
Affiliation(s)
- Francesca Cannata
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Nicola Napoli
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
18
|
Berenbaum F, Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med 2020; 132:377-384. [PMID: 32100608 DOI: 10.1080/00325481.2020.1730669] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Globally, osteoarthritis (OA) is the most prevalent arthritic condition in those aged over 60 years. OA has a high impact on patient disability and is associated with a significant economic burden. Pain is the most common first sign of disease and the leading cause of disability. Data demonstrating the increasing global prevalence of OA, together with a greater understanding of the burden of the disease, have led to a reassessment of the seriousness of OA and calls for the designation of OA as a serious disease in line with the diseases impact on comorbidity, disability, and mortality. While OA was traditionally seen as a prototypical 'wear and tear' disease, it is now more accurately thought of as a disease of the whole joint involving cartilage together with subchondral bone and synovium. As more has become known of the pathophysiology of OA, it has become increasingly common for it to be described using a number of overlapping phenotypes. Patients with OA will likely experience multiple phenotypes during their disease. This review focuses on what we feel are three key phenotypes: post-trauma, metabolic, and aging. A greater understanding of OA phenotypes, particularly at the early stages of disease, may be necessary to improve treatment outcomes. In the future, non-pharmacological and pharmacological treatments could be tailored to patients based on the key features of their phenotype and disease pathway.
Collapse
Affiliation(s)
- Francis Berenbaum
- INSERM CRSA, Department of Rheumatology, Hospital Saint Antoine, AP-HP.Sorbonne Université , Paris, France
| | | |
Collapse
|
19
|
Zeng C, Li Y, Ma J, Niu L, Tay FR. Clinical/Translational Aspects of Advanced Glycation End-Products. Trends Endocrinol Metab 2019; 30:959-973. [PMID: 31597608 DOI: 10.1016/j.tem.2019.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Advanced glycation end-products (AGEs) have been implicated in chronic hyperglycemia and age-related diseases. Endogenous AGEs produced by humans generate oxidative stress and activation of inflammatory signaling pathways via AGE-specific receptors. The present review summarizes current knowledge on the pathogenic role of AGEs in chronic noncommunicable diseases. Although correlations exist between glycation and the pathogenesis of these diseases, uncertainties remain in light of recurrent intervention failures of apparently promising animal models to be translated into clinically useful anti-AGE strategies. Future intervention of AGEs or their receptors should embrace more carefully executed clinical trials. Nevertheless, suppressing symptoms via lifetime drug application is unlikely to eliminate the burden of chronic diseases unless deep-rooted lifestyle issues that cause these diseases are simultaneously addressed.
Collapse
Affiliation(s)
- Chang Zeng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jingzhi Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lina Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; The Graduate School, Augusta University, Augusta, GA, USA.
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; The Graduate School, Augusta University, Augusta, GA, USA.
| |
Collapse
|
20
|
Birch CS, Bonwick GA. Advanced Glycation Endproducts (AGEs) in Food: Health Implications and Mitigation Strategies. MITIGATING CONTAMINATION FROM FOOD PROCESSING 2019:191-220. [DOI: 10.1039/9781788016438-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Controversy remains over the impact of advanced glycation endproducts (AGEs), not only in their formation, but also whether they actually come directly from food products or are generated by the body in response to ingestion of certain foods. This final chapter will take a different approach to food contaminants and look at the health impact of AGEs, regardless of whether they are directly ingested from food, autogenerated by the body as a consequence of underlying disease conditions or contribute to the aetiology of disease. AGEs are formed from food components or as a consequence of some disease states, such as type II diabetes or cardiovascular disease (CVD). As such these compounds are inextricably linked to the Maillard reaction and cooking conditions. Furthermore, processing-derived chemical contaminants in cooked foods are of concern to consumers. This chapter examines new research into naturally derived plant extracts as inhibitory agents on new dietary AGE (dAGE) formation and introduces practical approaches for the reduction of dAGE consumption in the daily diet. Understanding the pathogenic mechanisms of AGEs is paramount to developing strategies against diabetic and cardiovascular complications.
Collapse
|
21
|
Yang J, Zhang F, Shi H, Gao Y, Dong Z, Ma L, Sun X, Li X, Chang S, Wang Z, Qu Y, Li H, Hu K, Sun A, Ge J. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB J 2019; 33:14410-14422. [PMID: 31665609 DOI: 10.1096/fj.201900115rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nε-(carboxymethyl) lysine (CML), the major member of advanced glycation end products, was widely studied in diabetic complications and aging-associated diseases. However, the impact of CML on myocardial ischemia/reperfusion injury (MI/RI) was rarely reported. In the present study, CML was increased in both patients with acute myocardial infarction (53.4 ± 7.8 vs. 28.1 ± 4.4 ng; P = 0.017), and mice underwent MI/RI (16.4 ± 1.4 vs. 10.8 ± 0.9 ng; P = 0.006). Depletion of neutrophils reduced CML (17.8 ± 1.0 vs. 9.9 ± 0.3 ng; P < 0.001), indicating neutrophils were the major cells contributing to CML formation during MI/RI. CML treatment exacerbated MI/RI by elevating myocardial injury marker (274.3 ± 18.0 vs. 477.2 ± 34.3 pg; P < 0.001), enlarging myocardial infarct size (32.9 ± 3.6 vs. 45.2 ± 3.8%; P = 0.03), increasing myocardial fibrosis (17.5 ± 1.6 vs. 29.7 ± 2.2%; P < 0.001) and impairing cardiac function (59.4 ± 2.4% vs. 46.0 ± 1.3%; P = 0.001). Further study revealed that CML increased the phosphorylation of receptor interacting protein (RIP) 3, an important initiator of necroptosis, and its downstream proteins. Receptor for advanced glycation end product (RAGE) deficiency effectively blocked RIP3 phosphorylation induced by CML and rescued CML-mediated MI/RI, indicating CML promoted RIP3-mediated necroptosis through RAGE. In addition, glyoxalase-1 overexpression could effectively attenuate MI/RI by reducing CML formation, providing a potential therapeutic target for MI/RI.-Yang, J., Zhang, F., Shi, H., Gao, Y., Dong, Z., Ma, L., Sun, X., Li, X., Chang, S., Wang, Z., Qu, Y., Li, H., Hu, K., Sun, A., Ge, J. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ji'e Yang
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Xiao Li
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Suchi Chang
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Zeng Wang
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Yanan Qu
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Hua Li
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Preliminary Characterization of a Ni2+-Activated and Mycothiol-Dependent Glyoxalase I Enzyme from Streptomyces coelicolor. INORGANICS 2019. [DOI: 10.3390/inorganics7080099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The glyoxalase system consists of two enzymes, glyoxalase I (Glo1) and glyoxalase II (Glo2), and converts a hemithioacetal substrate formed between a cytotoxic alpha-ketoaldehyde, such as methylglyoxal (MG), and an intracellular thiol, such as glutathione, to a non-toxic alpha-hydroxy acid, such as d-lactate, and the regenerated thiol. Two classes of Glo1 have been identified. The first is a Zn2+-activated class and is exemplified by the Homo sapiens Glo1. The second class is a Ni2+-activated enzyme and is exemplified by the Escherichia coli Glo1. Glutathione is the intracellular thiol employed by Glo1 from both these sources. However, many organisms employ other intracellular thiols. These include trypanothione, bacillithiol, and mycothiol. The trypanothione-dependent Glo1 from Leishmania major has been shown to be Ni2+-activated. Genetic studies on Bacillus subtilis and Corynebacterium glutamicum focused on MG resistance have indicated the likely existence of Glo1 enzymes employing bacillithiol or mycothiol respectively, although no protein characterizations have been reported. The current investigation provides a preliminary characterization of an isolated mycothiol-dependent Glo1 from Streptomyces coelicolor. The enzyme has been determined to display a Ni2+-activation profile and indicates that Ni2+-activated Glo1 are indeed widespread in nature regardless of the intracellular thiol employed by an organism.
Collapse
|
23
|
Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8:cells8070749. [PMID: 31331077 PMCID: PMC6678343 DOI: 10.3390/cells8070749] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration.
Collapse
|
24
|
Chen YR, Yang KC, Lu DH, Wu WT, Wang CC, Tsai MH. The chondroprotective effect of diosmin on human articular chondrocytes under oxidative stress. Phytother Res 2019; 33:2378-2386. [PMID: 31270886 DOI: 10.1002/ptr.6425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 11/08/2022]
Abstract
Excessive oxidative stress, which can amplify inflammatory responses, is involved in the pathologic progression of knee osteoarthritis. Diosmin is known to possess a variety of biological functions such as antiinflammatory and antioxidant activities. We therefore demonstrated the chondroprotective potentials of diosmin on human articular chondrocytes under oxidative stress. The cytotoxicity of diosmin (5, 10, 50, and 100 μM) to chondrocytes was first evaluated. Subsequently, the cells were treated with diosmin (5 and 10 μM) after hydrogen peroxide (H2 O2 ) exposure. We found that the cytotoxicity of diosmin occurred in a dose-dependent manner (10, 50, and 100 μM), and low-dose diosmin (5 μM) slightly impaired cell viability. Diosmin supplementations (5 and 10 μM) did not show beneficial effects on mitochondrial activity, cytotoxicity, proliferation, and survival and the cell senescence was ameliorated in H2 O2 -exposed chondrocytes. On the other hand, diosmin down-regulated the mRNA levels of iNOS, COX-2, IL-1β, COL1A1, MMP-3, and MMP-9; up-regulated TIMP-1 and SOX9; and improved COL2A1 in chondrocytes under oxidative stresses. Furthermore, diosmin also regulated glutathione reductase and glutathione peroxidase of H2 O2 -exposed chondrocytes. In conclusion, diosmin displayed a remarkable antiinflammatory effect compared with the antioxidant capacity on human chondrocytes. Diosmin can maintain the homeostasis of extracellular matrix of articular cartilage.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.,School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dai-Hua Lu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chen-Chie Wang
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,Department of Orthopedics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Farhan SS, Hussain SA. Advanced glycation end products (AGEs) and their soluble receptors (sRAGE) as early predictors of reno-vascular complications in patients with uncontrolled type 2 diabetes mellitus. Diabetes Metab Syndr 2019; 13:2457-2461. [PMID: 31405660 DOI: 10.1016/j.dsx.2019.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
AIM To evaluate the role of advanced glycation end-products (AGEs) and their soluble receptors (sRAGE) expression levels as predictors of vascular complications in uncontrolled type 2 diabetes mellitus (T2DM). METHODS Cross-sectional study was conducted on T2DM adults of both sexes who attended the outpatient service of Al-Karak Teaching Hospital, Jordan during the period from June 2017 to August 2018. Participants were categorized in two groups according to their glycemic control and the presence of reno-vascular complications. Twenty healthy subjects were recruited as control group. Blood sample was obtained from all participants and used for the assessment of FBG, HbA1c, serum AGEs and sRAGE, serum urea and creatinine; 24 h urine was also collected for the determination of urinary albumin. RESULTS Diabetic subjects with vascular complication had a significantly higher serum AGEs 50.3 ± 13 vs. 28.9 ± 8 pg/ml) and AGEs/sRAGE ratio (0.058 ± 0.02 vs. 0.037 ± 0.02) associated with significantly lower serum sRAGE (868.7 ± 50.8 vs. 912.8 ± 294.3) compared to those with no complications. Serum AGEs and sRAGE showed weak negative and non-significant association in both groups of patients. However, the AGEs/sRAGE ration was inversely and significantly associated with the urinary albumin/creatinine ratio (r = - 0.51, P = 0.009) only in DM patients with reno-vascular complications. CONCLUSION We found an association between AGEs/sRAGE ratio and urinary albumin/serum creatinine ratio in T2DM patients with reno-vascular complications; providing evidence that serum AGEs and sRAGE can be considered as predictors of vascular complications in uncontrolled T2DM patients.
Collapse
Affiliation(s)
- Sinan Subhi Farhan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Rafidain University College, Baghdad, Iraq
| | - Saad Abdulrahmann Hussain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Rafidain University College, Baghdad, Iraq.
| |
Collapse
|
26
|
Antognelli C, Moretti S, Frosini R, Puxeddu E, Sidoni A, Talesa VN. Methylglyoxal Acts as a Tumor-Promoting Factor in Anaplastic Thyroid Cancer. Cells 2019; 8:cells8060547. [PMID: 31174324 PMCID: PMC6627963 DOI: 10.3390/cells8060547] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Methylglyoxal (MG) is a potent inducer of advanced glycation end products (AGEs). MG, long considered a highly cytotoxic molecule with potential anticancer value, is now being re-evaluated to a protumorigenic agent in some malignancies. Anaplastic thyroid cancer (ATC) is an extremely aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Successful therapeutic intervention in ATC is undermined by our poor understanding of its molecular etiology. In the attempt to understand the role of MG in ATC aggressiveness, we used immunohistochemistry to examine the level of MG protein adducts in ATC and slow-growing papillary thyroid cancer (PTC). We detected a high level of MG adducts in ATC compared to PTC ones, suggesting a protumor role for MG-mediated dicarbonyl stress in ATC. Accordingly, MG adduct accumulation in ATC cells in vitro was associated with a marked mesenchymal phenotype and increased migration/invasion, which were both reversed by aminoguanidine (AG)—a scavenger of MG—and resveratrol—an activator of Glyoxalase 1 (Glo1), the key metabolizing enzyme of MG. Our study represents the first demonstration that MG, via AGEs, acts as a tumor-promoting factor in ATC and suggests that MG scavengers and/or Glo1 activators merit investigations as potential therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Roberta Frosini
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Angelo Sidoni
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|