1
|
Tang C, Teymur A, Wu T. Urinary Immune Complexes Reflect Renal Pathology in Lupus Nephritis. Diagnostics (Basel) 2024; 14:2787. [PMID: 39767148 PMCID: PMC11727095 DOI: 10.3390/diagnostics14242787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE), involving immune complex deposition in the kidneys. While renal biopsy is the diagnostic gold standard, its invasiveness limits frequent use, driving the need for non-invasive urinary biomarkers to monitor disease progression and response to treatment. This study aimed to identify and validate urinary biomarkers for LN. METHODS Data from 10 LN-related omics databases, including urine, PBMCs, and kidney tissue, were analyzed. Differentially expressed proteins (DEPs) and genes (DEGs) were identified, and candidate biomarkers were validated via ELISA in an independent cohort of 87 urine samples. RESULTS We identified 78 biomarkers, with 14 overlapping across transcriptomic categories. Novel urinary biomarkers, including SERPING1, SLPI, and CD48, were validated. Urinary CD163, VCAM1, and ALCAM levels showed significant differences between LN and healthy controls, while urinary immune complexes (ICx) demonstrated superior diagnostic performance, with urinary ALCAM-ICx and CCL21-ICx achieving the highest AUC values. CONCLUSIONS Our findings highlight the potential of urinary immune complexes and antigens as non-invasive biomarkers for LN. ALCAM, CD163, and SERPING1-ICx, in particular, were found as promising candidates for a urinary biomarker panel to aid in the diagnosis and monitoring of LN.
Collapse
Affiliation(s)
| | | | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (C.T.); (A.T.)
| |
Collapse
|
2
|
de Cos M, Mosoyan G, Chauhan K, Troost JP, Wong JS, Lefferts S, Morgan P, Meliambro K, Egerman M, Ray J, Parker T, Levine D, Seshan S, Bardash Y, Horowitz B, Kent CA, Shaw MM, Perlman A, Moledina DG, Coca SG, Campbell KN. Urinary Plasminogen as a Marker of Disease Progression in Human Glomerular Disease. Am J Kidney Dis 2024; 84:205-214.e1. [PMID: 38452919 PMCID: PMC11260534 DOI: 10.1053/j.ajkd.2024.01.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE & OBJECTIVE Glomerular disorders have a highly variable clinical course, and biomarkers that reflect the molecular mechanisms underlying their progression are needed. Based on our previous work identifying plasminogen as a direct cause of podocyte injury, we designed this study to test the association between urine plasmin(ogen) (ie, plasmin and its precursor plasminogen) and end-stage kidney disease (ESKD). STUDY DESIGN Multicenter cohort study. SETTING & PARTICIPANTS 1,010 patients enrolled in the CureGN Cohort with biopsy-proven glomerular disease (focal segmental glomerulosclerosis, membranous nephropathy, and immunoglobulin A nephropathy). PREDICTORS The main predictor was urine plasmin(ogen) at baseline. Levels were measured by an electrochemiluminescent immunoassay developed de novo. Traditional clinical and analytical characteristics were used for adjustment. The ratio of urine plasmin(ogen)/expected plasmin(ogen) was evaluated as a predictor in a separate model. OUTCOME Progression to ESKD. ANALYTICAL APPROACH Cox regression was used to examine the association between urinary plasmin(ogen) and time to ESKD. Urinary markers were log2 transformed to approximate normal distribution and normalized to urinary creatinine (Log2uPlasminogen/cr, Log2 urinary protein/cr [UPCR]). Expected plasmin(ogen) was calculated by multiple linear regression. RESULTS Adjusted Log2uPlasminogen/cr was significantly associated with ESKD (HR per doubling Log2 uPlasminogen/cr 1.31 [95% CI, 1.22-1.40], P<0.001). Comparison of the predictive performance of the models including Log2 uPlasminogen/cr, Log2 UPCR, or both markers showed the plasmin(ogen) model superiority. The ratio of measured/expected urine plasmin(ogen) was independently associated with ESKD: HR, 0.41 (95% CI, 0.22-0.77) if ratio<0.8 and HR 2.42 (95% CI, 1.54-3.78) if ratio>1.1 (compared with ratio between 0.8 and 1.1). LIMITATIONS Single plasmin(ogen) determination does not allow for the study of changes over time. The use of a cohort of mostly white patients and the restriction to patients with 3 glomerular disorders limits the external validity of our analysis. CONCLUSIONS Urinary plasmin(ogen) and the ratio of measured/expected plasmin(ogen) are independently associated with ESKD in a cohort of patients with glomerular disease. Taken together with our previous experimental findings, urinary plasmin(ogen) could be a useful biomarker in prognostic decision making and a target for the development of novel therapies in patients with proteinuria and glomerular disease. PLAIN-LANGUAGE SUMMARY Glomerular diseases are an important cause of morbidity and mortality in patients of all ages. Knowing the individual risk of progression to dialysis or transplantation would help to plan the follow-up and treatment of these patients. Our work studies the usefulness of urinary plasminogen as a marker of progression in this context, since previous studies indicate that plasminogen may be involved in the mechanisms responsible for the progression of these disorders. Our work in a sample of 1,010 patients with glomerular disease demonstrates that urinary plasminogen (as well as the ratio of measured to expected plasminogen) is associated with the risk of progression to end-stage kidney disease. Urine plasminogen exhibited good performance and, if further validated, could enable risk stratification for timely interventions in patients with proteinuria and glomerular disease.
Collapse
Affiliation(s)
- Marina de Cos
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sean Lefferts
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul Morgan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Justina Ray
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tom Parker
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Daniel Levine
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Surya Seshan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yoni Bardash
- St. Joseph's University Medical, Paterson, New Jersey
| | - Benjamin Horowitz
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Candice A Kent
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa M Shaw
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Alan Perlman
- Rogosin Institute, Weill Cornell Medicine, New York, New York; Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
3
|
Lehner GF, Tobiasch AK, Perschinka F, Mayerhöfer T, Waditzer M, Haller V, Zassler B, Maier S, Ulmer H, Joannidis M. Associations of tissue factor and tissue factor pathway inhibitor with organ dysfunctions in septic shock. Sci Rep 2024; 14:14468. [PMID: 38914630 PMCID: PMC11196691 DOI: 10.1038/s41598-024-65262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Coagulopathy, microvascular alterations and concomitant organ dysfunctions are hallmarks of sepsis. Attempts to attenuate coagulation activation with an inhibitor of tissue factor (TF), i.e. tissue factor pathway inhibitor (TFPI), revealed no survival benefit in a heterogenous group of sepsis patients, but a potential survival benefit in patients with an international normalized ratio (INR) < 1.2. Since an increased TF/TFPI ratio determines the procoagulant activity specifically on microvascular endothelial cells in vitro, we investigated whether TF/TFPI ratio in blood is associated with INR alterations, organ dysfunctions, disseminated intravascular coagulation (DIC) and outcome in septic shock. Twenty-nine healthy controls (HC) and 89 patients with septic shock admitted to a tertiary ICU were analyzed. TF and TFPI in blood was analyzed and related to organ dysfunctions, DIC and mortality. Patients with septic shock had 1.6-fold higher levels of TF and 2.9-fold higher levels of TFPI than HC. TF/TFPI ratio was lower in septic shock compared to HC (0.003 (0.002-0.005) vs. 0.006 (0.005-0.008), p < 0.001). Non-survivors had higher TFPI levels compared to survivors (43038 (29354-54023) vs. 28041 (21675-46582) pg/ml, p = 0.011). High TFPI levels were associated with acute kidney injury, liver dysfunction, DIC and disease severity. There was a positive association between TF/TFPI ratio and troponin T (b = 0.531 (0.309-0.754), p < 0.001). A high TF/TFPI ratio is exclusively associated with myocardial injury but not with other organ dysfunctions. Systemic TFPI levels seem to reflect disease severity. These findings point towards a pathophysiologic role of TF/TFPI in sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Georg Franz Lehner
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anna Katharina Tobiasch
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Fabian Perschinka
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Timo Mayerhöfer
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Markus Waditzer
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Viktoria Haller
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Birgit Zassler
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sarah Maier
- Institute of Medical Statistics and Informatics, Medical University Innsbruck, Schöpfstrasse 41/1, 6020, Innsbruck, Austria
| | - Hanno Ulmer
- Institute of Medical Statistics and Informatics, Medical University Innsbruck, Schöpfstrasse 41/1, 6020, Innsbruck, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Alduraibi FK, Tsokos GC. Lupus Nephritis Biomarkers: A Critical Review. Int J Mol Sci 2024; 25:805. [PMID: 38255879 PMCID: PMC10815779 DOI: 10.3390/ijms25020805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Lupus nephritis (LN), a major complication in individuals diagnosed with systemic lupus erythematosus, substantially increases morbidity and mortality. Despite marked improvements in the survival of patients with severe LN over the past 50 years, complete clinical remission after immunosuppressive therapy is achieved in only half of the patients. Therefore, timely detection of LN is vital for initiating prompt therapeutic interventions and improving patient outcomes. Biomarkers have emerged as valuable tools for LN detection and monitoring; however, the complex role of these biomarkers in LN pathogenesis remains unclear. Renal biopsy remains the gold standard for the identification of the histological phenotypes of LN and guides disease management. However, the molecular pathophysiology of specific renal lesions remains poorly understood. In this review, we provide a critical, up-to-date overview of the latest developments in the field of LN biomarkers.
Collapse
Affiliation(s)
- Fatima K. Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Beth Israel Deaconess Medical Center, Harvard Teaching Hospital, Boston, MA 02215, USA
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Medicine, Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - George C. Tsokos
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Beth Israel Deaconess Medical Center, Harvard Teaching Hospital, Boston, MA 02215, USA
| |
Collapse
|
5
|
Ding H, Shen Y, Hong SM, Xiang C, Shen N. Biomarkers for systemic lupus erythematosus - a focus on organ damage. Expert Rev Clin Immunol 2024; 20:39-58. [PMID: 37712757 DOI: 10.1080/1744666x.2023.2260098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/16/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is complex autoimmune disease with heterogenous manifestations, unpredictable disease course and response to treatment. One of the critical needs in SLE management is the identification of reliable biomarkers that can aid in early diagnosis, accurate monitoring of disease activity, and assessment of treatment response. AREAS COVERED In the current review, we focus on the commonly affected organs (skin, kidney, and nervous system) in SLE to summarize the emerging biomarkers that show promise in disease diagnosis, monitoring and treatment response assessment. The subtitles within each organ domain were determined based on the most relevant and promising biomarkers for that specific organ damage. EXPERT OPINION Biomarkers have the potential to significantly benefit the management of SLE by aiding in diagnosis, disease activity monitoring, prognosis, and treatment response assessment. However, despite decades of research, none has been validated and implemented for routine clinical use. Novel biomarkers could lead to the development of precision medicine for SLE, guide personalized treatment, and improve patient outcomes. Challenges in biomarker research in SLE include defining clear and clinically relevant questions, accounting for the heterogeneity of SLE, and confirming initial findings in larger, multi-center, multi-ethnic, independent cohorts that reflect real-world clinical scenarios.
Collapse
Affiliation(s)
- Huihua Ding
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yiwei Shen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Soon-Min Hong
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chunyan Xiang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Nan Shen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Fawzy R, Serag M, Soliman A, Elwia S, Mojahed S. The association of urinary plasmin level with renal involvement and disease flare among systemic lupus erythematosus patients. Arch Rheumatol 2022; 37:527-535. [PMID: 36879566 PMCID: PMC9985374 DOI: 10.46497/archrheumatol.2022.9307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/26/2021] [Indexed: 11/03/2022] Open
Abstract
Objectives To explore the ability to use urinary level of plasmin as an indicator for renal affection and activity in systemic lupus erythematosus (SLE) patients. Patients and methods Between April 2020 and October 2020, urine samples from 50 SLE patients (2 males, 48 females; mean age: 35.5±8.1 years; range, 22 to 39 years) and 20 age- and sex-matched healthy controls (2 males, 18 females; mean age: 34.1±6.5 years; range, 27 to 38 years) were collected. The patients were divided into two groups according to the presence or absence of renal manifestations as those with renal disease (n=28) and those without renal disease (n=22). The Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), renal activity (rSLEDAI), and Systemic Lupus International Collaborating Clinics Damage Index (SLICC-DI) scores were calculated. Renal biopsy was performed to patients with active lupus nephritis (LN). The activity index (AI) and Chronicity Index (CI) were scored. Results There was a highly statistically significant difference in the mean urinary plasmin levels between SLE cases and the control group (88.9±42.6 ng/mL vs. 21.3±26.8 ng/mL, respectively; p<0.001). A significant elevation was observed (p<0.05) in patients with LN (97.9±46.6 ng/mL) than without (42.7±12.7 ng/mL), particularly in patients with active renal involvement (82.9±26.6 ng/mL) than patients with inactive renal disease (63.2±15.5 ng/mL). There were significant positive correlations between the mean urinary plasmin levels and inflammatory markers, SLEDAI, and rSLEDAI scores. Conclusion Urinary level of plasmin is significantly elevated among SLE cases, particularly in those with active LN. The remarkable association between urinary plasmin level and various activity status implies that urinary plasmin can be used as a beneficial marker to monitor lupus nephritis flare.
Collapse
Affiliation(s)
- Rasha Fawzy
- Department of Rheumatology, Benha University, Benha, Egypt
| | - Mounir Serag
- Department of Rheumatology, Benha University, Benha, Egypt
| | - Amal Soliman
- Department of Rheumatology, Benha University, Benha, Egypt
| | - Sania Elwia
- Department of Biochemistry, Benha University, Benha, Egypt
| | - Samia Mojahed
- Department of Rheumatology, Benha Teatching Hospital, Benha, Egypt
| |
Collapse
|
7
|
Palazzo L, Lindblom J, Mohan C, Parodis I. Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature. J Clin Med 2022; 11:5759. [PMID: 36233628 PMCID: PMC9570701 DOI: 10.3390/jcm11195759] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Lupus nephritis (LN) is a major cause of morbidity and mortality among patients with systemic lupus erythematosus (SLE). However, promising emerging biomarkers pave the way toward an improved management of patients with LN. We have reviewed the literature over the past decade, and we herein summarise the most relevant biomarkers for diagnosis, monitoring, and prognosis in LN. An initial systematic search of Medline was conducted to identify pertinent articles. A total of 104 studies were selected to be included in this review. Several diagnostic biomarkers, including MCP-1, TWEAK, NGAL, and uric acid, exhibited good ability to differentiate LN patients from non-renal SLE patients. Several cytokines and chemokines, including IL-10, IL-17, MCP-1, and IP-10, hold promise for assessing LN disease activity, as do cell adhesion molecules (CAMs). Angiogenesis-related and haemostasis-related proteins have also displayed potential for monitoring disease activity. Biomarkers of responses to therapy include Axl, CD163, and BAFF, whereas VCAM-1, ALCAM, and ANCAs have been reported as prognostic markers, along with traditional markers. In addition, novel renal tissue biomarkers may prove to be a useful complement to histological evaluations. The overall heterogeneity of the inclusion criteria and outcome measures across different studies, along with a lack of validation in multi-centre cohorts, call for future collaborative efforts. Nevertheless, we foresee that several biomarkers hold promise toward optimisation of the management of LN, with the use of integrated omics and panels of less invasive biomarkers paving the way towards personalised medicine.
Collapse
Affiliation(s)
- Leonardo Palazzo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Medical Unit of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Medical Unit of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Medical Unit of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
8
|
Thrombomodulin and von willebrand factor as markers of endothelial dysfunction in patients with chronic kidney disease. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of research was to study the levels of thrombomodulin (TM) and von Willebrand factor (VWF) in the serum and urine of patients with chronic kidney disease (CKD)as diagnostic markers of endothelial dysfunction. The study involved 140 patients with CKD. The clinical diagnosis was determined based on standard methods of patients examination according to the kidney diseases classification and protocols of CKD patients management. The concentrations of TM and VWF in serum and urine were quantified by ELISA. A generalized endothelial dysfunction in the vessels of the whole body, including the kidneys and high concentration of TM and FVF in the serum and urine of patients with a diabetic nephropathy have been found. The concentration of TM and VWF in the serum of patients with a chronic glomerulonephritis was at the same level as in the serum of healthy individuals, while those in urine significantly exceeded the control values, indicating endothelial damage in the glomeruli of the kidneys due to exposure to pro-inflammatory cytokines. In our opinion, the studied markers will contribute to the timely diagnosis of endothelial dysfunction in patients with CKD and to the development of criteria for prescribing antiplatelet agents in glomerular kidney disease.
Collapse
|
9
|
Abdelghany WM, Salah M, Saleh WA, Dahy OM, Helmy R. Activity of Protein S-C4b Binding Protein and Total TFPI Levels in Egyptian SLE Patients: A Cross-Sectional Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Systemic lupus erythematosus (SLE) is an immune disorder with alternating active and remission phases. Cardiovascular diseases and thrombosis are the major causes of mortality in SLE. The anticoagulant activity of Protein S (PS) is complemented by C4 binding protein (C4BP) and tissue factor pathway inhibitor (TFPI).
AIM: This study aims to determine the extent of change in the levels of PS activity, C4BP, and total TFPI in active SLE in comparison to the SLE remission phase and their association with thrombosis during SLE flare.
METHODS: The study included 180 Egyptian SLE patients who were classified into two groups: 100 SLE cases as the active group and 80 SLE cases as the remission group. The PS activity levels were processed on automated coagulation analyzers, whereas the C4BP and total TFPI levels were measured via enzyme-linked immunosorbent assay.
RESULTS: The PS activity and C4BP levels were lower in the active SLE cases than in the remitted ones (p < 0.05). The levels of PS activity and C4BP were revealed to be independent predictors of SELENA-SLEDAI flare scores. In active SLE cases, the PS activity and C4BP levels were rated as excellent and fair classifiers of thrombotic risk in SLE flare, respectively. The total TFPI levels showed no association with SLE activity or its thrombotic consequences.
CONCLUSIONS: The levels of PS activity and C4BP act as important biomarkers for SLE activity. Both can be implanted as predictive tools for thrombosis during activity.
Collapse
|
10
|
Tan G, Baby B, Zhou Y, Wu T. Emerging Molecular Markers Towards Potential Diagnostic Panels for Lupus. Front Immunol 2022; 12:808839. [PMID: 35095896 PMCID: PMC8792845 DOI: 10.3389/fimmu.2021.808839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease which can affect various tissues and organs, posing significant challenges for clinical diagnosis and treatment. The etiology of SLE is highly complex with contributions from environmental factors, stochastic factors as well as genetic susceptibility. The current criteria for diagnosing SLE is based primarily on a combination of clinical presentations and traditional lab testing. However, these tests have suboptimal sensitivity and specificity. They are unable to indicate disease cause or guide physicians in decision-making for treatment. Therefore, there is an urgent need to develop a more accurate and robust tool for effective clinical management and drug development in lupus patients. It is fortunate that the emerging Omics have empowered scientists in the discovery and identification of potential novel biomarkers of SLE, especially the markers from blood, urine, cerebrospinal fluids (CSF), and other bodily fluids. However, many of these markers have not been carefully validated for clinical use. In addition, it is apparent that individual biomarkers lack sensitivity or specificity. This review summarizes the sensitivity, specificity and diagnostic value of emerging biomarkers from recent studies, and discusses the potential of these markers in the development of biomarker panel based diagnostics or disease monitoring system in SLE.
Collapse
Affiliation(s)
- Gongjun Tan
- Department of Clinical Laboratory, Zhuhai Maternal and Child Healthcare Hospital, Zhuhai, China
| | - Binila Baby
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yuqiu Zhou
- Department of Clinical Laboratory, Zhuhai Maternal and Child Healthcare Hospital, Zhuhai, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
11
|
Zhang T, Duran V, Vanarsa K, Mohan C. Targeted urine proteomics in lupus nephritis - a meta-analysis. Expert Rev Proteomics 2021; 17:767-776. [PMID: 33423575 DOI: 10.1080/14789450.2020.1874356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Proteomic approaches are central in biomarker discovery. While mass-spectrometry-based techniques are widely used, novel targeted proteomic platforms have enabled the high-throughput detection of low-abundance proteins in an affinity-based manner. Urine has gained growing attention as an ideal biofluid for monitoring renal disease including lupus nephritis (LN). METHODS Pubmed was screened for targeted proteomic studies of LN urine interrogating ≥1000 proteins. Data from the primary studies were combined and a meta-analysis was performed. Shared proteins elevated in active LN across studies were identified, and relevant pathways were elucidated using ingenuity pathway and gene ontology analysis. Urine proteomic data was cross-referenced against renal single-cell RNAseq data from LN kidneys. RESULTS Two high-throughput targeted proteomic platforms with capacity to interrogate ≥1000 proteins have been used to investigate LN urine. Twenty-three urine proteins were significantly elevated in both studies, including 10 chemokines, and proteins implicated in angiogenesis, and extracellular matrix turnover. Of these, Cathepsin S, CXCL10, FasL, ferritin, macrophage migration inhibitory factor (MIF), and resistin were also significantly elevated within LN kidneys. CONCLUSION Targeted urinary proteomics have uncovered multiple novel biomarkers for LN. Further validation in prospective cohorts and mechanistic studies are warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Valeria Duran
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| |
Collapse
|
12
|
Egerman MA, Wong JS, Runxia T, Mosoyan G, Chauhan K, Reyes-Bahamonde J, Anandakrishnan N, Wong NJ, Bagiella E, Salem F, Meliambro K, Li H, Azeloglu EU, Coca SG, Campbell KN, Raij L. Plasminogenuria is associated with podocyte injury, edema, and kidney dysfunction in incident glomerular disease. FASEB J 2020; 34:16191-16204. [PMID: 33070369 PMCID: PMC7686123 DOI: 10.1096/fj.202000413r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023]
Abstract
Urinary plasminogen/plasmin, or plasmin (ogen) uria, has been demonstrated in proteinuric patients and exposure of cultured podocytes to plasminogen results in injury via oxidative stress pathways. A causative role for plasmin (ogen) as a "second hit" in kidney disease progression has yet to have been demonstrated in vivo. Additionally, association between plasmin (ogen) uria and kidney function in glomerular diseases remains unclear. We performed comparative studies in a puromycin aminonucleoside (PAN) nephropathy rat model treated with amiloride, an inhibitor of plasminogen activation, and measured changes in plasmin (ogen) uria. In a glomerular disease biorepository cohort (n = 128), we measured time-of-biopsy albuminuria, proteinuria, and plasmin (ogen) uria for correlations with kidney outcomes. In cultured human podocytes, plasminogen treatment was associated with decreased focal adhesion marker expression with rescue by amiloride. Increased glomerular plasmin (ogen) was found in PAN rats and focal segmental glomerulosclerosis (FSGS) patients. PAN nephropathy was associated with increases in plasmin (ogen) uria and proteinuria. Amiloride was protective against PAN-induced glomerular injury, reducing CD36 scavenger receptor expression and oxidative stress. In patients, we found associations between plasmin (ogen) uria and edema status as well as eGFR. Our study demonstrates a role for plasmin (ogen)-induced podocyte injury in the PAN nephropathy model, with amiloride having podocyte-protective properties. In one of the largest glomerular disease cohorts to study plasminogen, we validated previous findings while suggesting a potentially novel relationship between plasmin (ogen) uria and estimated glomerular filtration rate (eGFR). Together, these findings suggest a role for plasmin (ogen) in mediating glomerular injury and as a viable targetable biomarker for podocyte-sparing treatments.
Collapse
Affiliation(s)
- Marc A. Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Jenny S. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Tian Runxia
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | | | | | - Nicholas J. Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Emilia Bagiella
- Center for Biostatistics, Department of Population health Science and Policy, Icahn School of Medicine at Mount Sinai
| | - Fadi Salem
- Department of Pathology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School
| | - Evren U. Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine
| |
Collapse
|
13
|
Humphries TLR, Johnson LA, Masci PP, Gobe GC, Vesey DA. Progress curve analysis of microtitre plate plasma clotting assays. Assessment of tissue factor levels. Anal Biochem 2020; 614:114060. [PMID: 33271154 DOI: 10.1016/j.ab.2020.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
MTP plasma clotting assays monitor the time course of fibrin formation in re-calcified plasma by absorbance measurements and are increasingly used as alternatives to traditional one-point clot time assays employed in clinical laboratories to detect thrombotic disorders. The parameters derived from these analyses are analogous to thromboelastography viz. time, rate and maximum extent of clot formation. The derived parameters, based on the whole course of the clotting reaction are more robust, informative and quantitative than single-point clot time assays. However, the parameters themselves are usually obtained arbitrarily by crude graphical analysis of subjectively selected points of progress curves. The current work aimed to investigate the sensitivity and reproducibility of an MTP clotting assay and examine its suitability for measuring tissue factor (TF) levels in cell culture medium and patient urine. The results demonstrate that progress curves can be analysed by fitting a logistic equation, derived from a simplified autocatalytic clot formation model. The parameters, maximum amplitude (Fm), rate constant (k), time to half-maximum amplitude (tm) and maximum rate of clot formation (vm), fit a power curve showing limiting effects with increasing TF concentration. Log/log plots of tm and k against TF concentration provide standard curves for assessment of unknowns.
Collapse
Affiliation(s)
- Tyrone L R Humphries
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Lambro A Johnson
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Paul P Masci
- Centre for Venomics Research, School of Medicine, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Kidney Disease Research Collaborative, Princess Alexandra Hospital, University of Queensland and Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
14
|
Skopelja-Gardner S, Colonna L, Hermanson P, Sun X, Tanaka L, Tai J, Nguyen Y, Snyder JM, Alpers CE, Hudkins KL, Salant DJ, Peng Y, Elkon KB. Complement Deficiencies Result in Surrogate Pathways of Complement Activation in Novel Polygenic Lupus-like Models of Kidney Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2627-2640. [PMID: 32238460 PMCID: PMC7365257 DOI: 10.4049/jimmunol.1901473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/15/2020] [Indexed: 12/27/2022]
Abstract
Lupus nephritis (LN) is a major contributor to morbidity and mortality in lupus patients, but the mechanisms of kidney damage remain unclear. In this study, we introduce, to our knowledge, novel models of LN designed to resemble the polygenic nature of human lupus by embodying three key genetic alterations: the Sle1 interval leading to anti-chromatin autoantibodies; Mfge8-/- , leading to defective clearance of apoptotic cells; and either C1q-/- or C3-/- , leading to low complement levels. We report that proliferative glomerulonephritis arose only in the presence of all three abnormalities (i.e., in Sle1.Mfge8 -/- C1q -/- and Sle1.Mfge8 -/- C3 -/- triple-mutant [TM] strains [C1q -/-TM and C3-/- TM, respectively]), with structural kidney changes resembling those in LN patients. Unexpectedly, both TM strains had significant increases in autoantibody titers, Ag spread, and IgG deposition in the kidneys. Despite the early complement component deficiencies, we observed assembly of the pathogenic terminal complement membrane attack complex in both TM strains. In C1q-/- TM mice, colocalization of MASP-2 and C3 in both the glomeruli and tubules indicated that the lectin pathway likely contributed to complement activation and tissue injury in this strain. Interestingly, enhanced thrombin activation in C3-/- TM mice and reduction of kidney injury following attenuation of thrombin generation by argatroban in a serum-transfer nephrotoxic model identified thrombin as a surrogate pathway for complement activation in C3-deficient mice. These novel mouse models of human lupus inform the requirements for nephritis and provide targets for intervention.
Collapse
Affiliation(s)
| | - Lucrezia Colonna
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Xizhang Sun
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Lena Tanaka
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Joyce Tai
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Yenly Nguyen
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109
| | - Charles E Alpers
- Department of Nephrology, University of Washington, Seattle, WA 98109
| | - Kelly L Hudkins
- Department of Nephrology, University of Washington, Seattle, WA 98109
| | - David J Salant
- Division of Nephrology, Boston University, Boston, MA 02215; and
| | - YuFeng Peng
- Division of Rheumatology, University of Washington, Seattle, WA 98109;
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA 98109;
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
15
|
Stanley S, Vanarsa K, Soliman S, Habazi D, Pedroza C, Gidley G, Zhang T, Mohan S, Der E, Suryawanshi H, Tuschl T, Buyon J, Putterman C, Mok CC, Petri M, Saxena R, Mohan C. Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat Commun 2020; 11:2197. [PMID: 32366845 PMCID: PMC7198599 DOI: 10.1038/s41467-020-15986-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Emerging urinary biomarkers continue to show promise in evaluating lupus nephritis (LN). Here, we screen urine from active LN patients for 1129 proteins using an aptamer-based platform, followed by ELISA validation in two independent cohorts comprised of 127 inactive lupus, 107 active LN, 67 active non-renal lupus patients and 74 healthy controls, of three different ethnicities. Urine proteins that best distinguish active LN from inactive disease are ALCAM, PF-4, properdin, and VCAM-1 among African-Americans, sE-selectin, VCAM-1, BFL-1 and Hemopexin among Caucasians, and ALCAM, VCAM-1, TFPI and PF-4 among Asians. Most of these correlate significantly with disease activity indices in the respective ethnic groups, and surpass conventional metrics in identifying active LN, with better sensitivity, and negative/positive predictive values. Several elevated urinary molecules are also expressed within the kidneys in LN, based on single-cell RNAseq analysis. Longitudinal studies are warranted to assess the utility of these biomarkers in tracking lupus nephritis.
Collapse
Affiliation(s)
- Samantha Stanley
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Samar Soliman
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Minia University, Minya, Egypt
| | - Deena Habazi
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriel Gidley
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ting Zhang
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shree Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Evan Der
- Department of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hemant Suryawanshi
- Department of Molecular Biology, Rockefeller University, New York, NY, USA
| | - Thomas Tuschl
- Department of Molecular Biology, Rockefeller University, New York, NY, USA
| | - Jill Buyon
- Department of Rheumatology, New York University, New York, NY, USA
| | - Chaim Putterman
- Department of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, New Territories, Hong Kong, China
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramesh Saxena
- University Hospital Kidney & Liver Clinic, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
16
|
Qin L, Stanley S, Ding H, Zhang T, Truong VTT, Celhar T, Fairhurst AM, Pedroza C, Petri M, Saxena R, Mohan C. Correction to: Urinary pro-thrombotic, anti-thrombotic, and fibrinolytic molecules as biomarkers of lupus nephritis. Arthritis Res Ther 2019; 21:185. [PMID: 31391123 PMCID: PMC6685224 DOI: 10.1186/s13075-019-1966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ling Qin
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX, 77204, USA
| | - Samantha Stanley
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX, 77204, USA
| | - Huihua Ding
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX, 77204, USA
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX, 77204, USA
| | | | - Teja Celhar
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | | | - Michelle Petri
- Department of Rheumatology, John Hopkins Medical University, Baltimore, MD, USA
| | - Ramesh Saxena
- Department of Nephrology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX, 77204, USA.
| |
Collapse
|