1
|
Perricone C, Bruno L, Cafaro G, Latini A, Ceccarelli F, Borgiani P, Ciccacci C, Bogdanos D, Novelli G, Gerli R, Bartoloni E. Sjogren's syndrome: Everything you always wanted to know about genetic and epigenetic factors. Autoimmun Rev 2024; 23:103673. [PMID: 39490751 DOI: 10.1016/j.autrev.2024.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease characterized by a wide spectrum of glandular and extra-glandular features. Genetic and epigenetic factors play an important role in the disease susceptibility and phenotype. There are a multitude of genes that have been identified as implicated in the pathogenesis of pSS, both in HLA and extra-HLA regions with a strong contribution given by genes in interferon signalling pathways. Among the HLA alleles, the most consistent associations have been found with DR2 and DR3 alleles at the DRB1 locus. Moreover, several gene variants outside the MHC locus are in genes involved in NF-κB signalling, B- and T-cell function and methylation processes possibly responsible for lymphomagenesis. There is still a lack of knowledge on precise genetic patterns and prediction models of diseases, and data on pharmacogenetics is scarce. A comprehensive summary of the common genetic factors and an extensive analysis of novel epigenetic aspects is provided, together with a view on the relationships between novel therapeutic agents for pSS and genetic targets in signalling pathways, aiming at improving tailored treatment strategies in the view of a more personalized medicine.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy.
| | - Lorenza Bruno
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fulvia Ceccarelli
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| |
Collapse
|
2
|
Gandolfo S, Bombardieri M, Pers JO, Mariette X, Ciccia F. Precision medicine in Sjögren's disease. THE LANCET. RHEUMATOLOGY 2024; 6:e636-e647. [PMID: 38723653 DOI: 10.1016/s2665-9913(24)00039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 08/23/2024]
Abstract
Sjögren's disease is a clinically and pathophysiologically heterogeneous disease to which precision medicine, on the basis of clinical and biological heterogeneity, has been not always applicable. In patients with Sjögren's disease, the relationship between dysregulated biological pathways and symptoms such as fatigue and pain or clinical manifestations is often difficult to establish. This clinical and biological dissociation also poses challenges when defining appropriate clinical endpoints for clinical trials. In the last few years, however, research efforts have been focused on gaining a better understanding of the considerable heterogeneity of Sjögren's disease by developing stratification models aimed at clustering patients with this condition into homogenous subgroups characterised by distinctive molecular signatures, biomarkers, clinical features, and outcomes. In this Review, we discuss current evidence regarding clinical, laboratory, histological, and biomolecular stratification in Sjögren's disease and examine how available stratification data can guide precision medicine and inform the design of future clinical trials.
Collapse
Affiliation(s)
- Saviana Gandolfo
- Rheumatology Section, Ospedale San Giovanni Bosco, Naples, Italy.
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jacques-Olivier Pers
- Lymphocytes B Autoimmunité et Immunothérapies, UMR1227, INSERM, CHU de Brest, University of Brest, Brest, France
| | - Xavier Mariette
- Rheumatology Department, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, Paris, France
| | - Francesco Ciccia
- Rheumatology Section, Department of Precision Medicine, University della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
3
|
Kim MC, De U, Borcherding N, Wang L, Paek J, Bhattacharyya I, Yu Q, Kolb R, Drashansky T, Thatayatikom A, Zhang W, Cha S. Single-cell transcriptomics unveil profiles and interplay of immune subsets in rare autoimmune childhood Sjögren's disease. Commun Biol 2024; 7:481. [PMID: 38641668 PMCID: PMC11031574 DOI: 10.1038/s42003-024-06124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
Childhood Sjögren's disease represents critically unmet medical needs due to a complete lack of immunological and molecular characterizations. This study presents key immune cell subsets and their interactions in the periphery in childhood Sjögren's disease. Here we show that single-cell RNA sequencing identifies the subsets of IFN gene-enriched monocytes, CD4+ T effector memory, and XCL1+ NK cells as potential key players in childhood Sjögren's disease, and especially in those with recurrent parotitis, which is the chief symptom prompting clinical visits from young children. A unique cluster of monocytes with type I and II IFN-related genes is identified in childhood Sjögren's disease, compared to the age-matched control. In vitro regulatory T cell functional assay demonstrates intact functionality in childhood Sjögren's disease in contrast to reduced suppression in adult Sjögren's disease. Mapping this transcriptomic landscape and interplay of immune cell subsets will expedite the understanding of childhood Sjögren's disease pathogenesis and set the foundation for precision medicine.
Collapse
Affiliation(s)
- Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Umasankar De
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas Borcherding
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St Louis, MO, 63110, USA
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Joon Paek
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St Louis, MO, 63110, USA
| | - Indraneel Bhattacharyya
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
- Department of Oral & Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Qing Yu
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | | | | | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Seunghee Cha
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA.
- Department of Oral & Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
He W, Lu Y, Shi R, An Q, Zhao J, Gao X, Zhang L, Ma D. Application of omics in Sjögren's syndrome. Inflamm Res 2023; 72:2089-2109. [PMID: 37878024 DOI: 10.1007/s00011-023-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE The pathogenesis, diagnosis, and treatment of Sjögren's syndrome (SS) face many challenges, and there is an urgent need to develop new technologies to improve our understanding of SS. METHODS By searching the literature published domestically and internationally in the past 20 years, this artical reviewed the research of various omics techniques in SS. RESULTS Omics technology provided valuable insights into the pathogenesis, early diagnosis, condition and efficacy evaluation of SS. It is helpful to reveal the pathogenesis of the disease and explore new treatment schemes, which will open a new era for the study of SS. CONCLUSION At present, omics research has made some gratifying achievements, but there are still many uncertainties. Therefore, in the future, we should improve research techniques, standardize the collection of samples, and adopt a combination of multi-omics techniques to jointly study the pathogenesis of SS and provide new schemes for its treatment.
Collapse
Affiliation(s)
- Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China.
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
5
|
Yoon J, Lee M, Ali AA, Oh YR, Choi YS, Kim S, Lee N, Jang SG, Park S, Chung JH, Kwok SK, Hyon JY, Cha S, Lee YJ, Im SG, Kim Y. Mitochondrial double-stranded RNAs as a pivotal mediator in the pathogenesis of Sjӧgren's syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:257-269. [PMID: 36284513 PMCID: PMC9576540 DOI: 10.1016/j.omtn.2022.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 05/13/2023]
Abstract
Sjӧgren's syndrome (SS) is a systemic autoimmune disease that targets the exocrine glands, resulting in impaired saliva and tear secretion. To date, type I interferons (I-IFNs) are increasingly recognized as pivotal mediators in SS, but their endogenous drivers have not been elucidated. Here, we investigate the role of mitochondrial double-stranded RNAs (mt-dsRNAs) in regulating I-IFNs and other glandular phenotypes of SS. We find that mt-dsRNAs are elevated in the saliva and tears of SS patients (n = 73 for saliva and n = 16 for tears) and in salivary glands of non-obese diabetic mice with salivary dysfunction. Using the in-house-developed 3D culture of immortalized human salivary gland cells, we show that stimulation by exogenous dsRNAs increase mt-dsRNAs, activate the innate immune system, trigger I-IFNs, and promote glandular phenotypes. These responses are mediated via the Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT) pathway. Indeed, a small chemical inhibitor of JAK1 attenuates mtRNA elevation and immune activation. We further show that muscarinic receptor ligand acetylcholine ameliorates autoimmune characteristics by preventing mt-dsRNA-mediated immune activation. Last, direct suppression of mt-dsRNAs reverses the glandular phenotypes of SS. Altogether, our study underscores the significance of mt-dsRNA upregulation in the pathogenesis of SS and suggests mt-dsRNAs as propagators of a pseudo-viral signal in the SS target tissue.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ahsan Ausaf Ali
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ye Rim Oh
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Namseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Gwang Jang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seonghyeon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Corresponding author Seunghee Cha, Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Internal Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Corresponding author Yun Jong Lee: Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), KAIST, Daejeon 34141, Republic of Korea
- Corresponding author Sung Gap Im, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Republic of Korea
- KAIST Institute for BioCentury (KIB), KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Corresponding author Yoosik Kim, KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Jung SM, Baek IW, Park KS, Kim KJ. De novo molecular subtyping of salivary gland tissue in the context of Sjögren's syndrome heterogeneity. Clin Immunol 2022; 245:109171. [DOI: 10.1016/j.clim.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
|
7
|
de Paiva CS, Trujillo-Vargas CM, Schaefer L, Yu Z, Britton RA, Pflugfelder SC. Differentially Expressed Gene Pathways in the Conjunctiva of Sjögren Syndrome Keratoconjunctivitis Sicca. Front Immunol 2021; 12:702755. [PMID: 34349764 PMCID: PMC8326832 DOI: 10.3389/fimmu.2021.702755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune condition that targets the salivary and lacrimal glands, with cardinal clinical signs of dry eye (keratoconjunctivitis sicca, KCS) and dry mouth. The conjunctiva of SS patients is often infiltrated by immune cells that participate in the induction and maintenance of local inflammation. The purpose of this study was to investigate immune-related molecular pathways activated in the conjunctiva of SS patients. Female SS patients (n=7) and controls (n=19) completed a series of oral, ocular surface exams. Symptom severity scores were evaluated using validated questionnaires (OSDI and SANDE). All patients fulfilled the ACR/EULAR criteria for SS and the criteria for KCS. Fluorescein and lissamine green dye staining evaluated tear-break-up time (TBUT), corneal and conjunctival disease, respectively. Impression cytology of the temporal bulbar conjunctiva was performed to collect cells lysed and subjected to gene expression analysis using the NanoString Immunology Panel. 53/594 differentially expressed genes (DEGs) were observed between SS and healthy controls; 49 DEGs were upregulated, and 4 were downregulated (TRAF5, TGFBI, KLRAP1, and CMKLRI). The top 10 DEGs in descending order were BST2, IFITM1, LAMP3, CXCL1, IL19, CFB, LY96, MX1, IL4R, CDKN1A. Twenty pathways had a global significance score greater or equal to 2. Spearman correlations showed that 29/49 upregulated DEGs correlated with either TBUT (inverse) or OSDI or conjunctival staining score (positive correlations). Venn diagrams identified that 26/29 DEGs correlated with TBUT, 5/26 DEGs correlated with OSDI, and 16/26 correlated with conjunctival staining scores. Five upregulated DEGs (CFB, CFI, IL1R1, IL2RG, IL4R) were uniquely negatively correlated with TBUT. These data indicate that the conjunctiva of SS patients exhibits a phenotype of immune activation, although some genes could be inhibitory. Some of the DEGs and pathways overlap with previous DEGs in salivary gland biopsies, but new DEGs were identified, and some of these correlated with symptoms and signs of dry eye. Our results indicate that gene analysis of conjunctiva imprints is a powerful tool to understand the pathogenesis of SS and develop new therapeutic targets.
Collapse
Affiliation(s)
- Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Laura Schaefer
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
8
|
Verstappen GM, Gao L, Pringle S, Haacke EA, van der Vegt B, Liefers SC, Patel V, Hu Y, Mukherjee S, Carman J, Menard LC, Spijkervet FKL, Vissink A, Bootsma H, Kroese FGM. The Transcriptome of Paired Major and Minor Salivary Gland Tissue in Patients With Primary Sjögren's Syndrome. Front Immunol 2021; 12:681941. [PMID: 34295332 PMCID: PMC8291032 DOI: 10.3389/fimmu.2021.681941] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background While all salivary glands (SGs) can be involved in primary Sjögren's syndrome (pSS), their respective role in pathogenesis remains unclear. Our objective was to assess immunopathway activation in paired parotid and labial gland tissue from biopsy-positive and biopsy-negative pSS and non-SS sicca patients. Methods Paraffin-embedded, paired parotid and labial salivary gland tissue and peripheral blood mononuclear cells were obtained from 39 pSS and 20 non-SS sicca patients. RNA was extracted, complementary DNA libraries were prepared and sequenced. For analysis of differentially expressed genes (DEGs), patients were subdivided based on fulfillment of ACR-EULAR criteria and histopathology. Results With principal component analysis, only biopsy-positive pSS could be separated from non-SS sicca patients based on SG gene expression. When comparing the transcriptome of biopsy-positive pSS and biopsy-negative non-SS sicca patients, 1235 and 624 DEGs (FDR<0.05, log2FC<-1 or >1) were identified for parotid and labial glands, respectively. The number of DEGs between biopsy-negative pSS and non-SS sicca patients was scarce. Overall, transcript expression levels correlated strongly between parotid and labial glands (R2 = 0.86, p-value<0.0001). Gene signatures present in both glands of biopsy-positive pSS patients included IFN-α signaling, IL-12/IL-18 signaling, CD3/CD28 T-cell activation, CD40 signaling in B-cells, DN2 B-cells, and FcRL4+ B-cells. Signature scores varied considerably amongst pSS patients. Conclusion Transcriptomes of paired major and minor SGs in pSS were overall comparable, although significant inter-individual heterogeneity in immunopathway activation existed. The SG transcriptome of biopsy-negative pSS was indistinguishable from non-SS sicca patients. Different patterns of SG immunopathway activation in pSS argue for personalized treatment approaches.
Collapse
Affiliation(s)
- Gwenny M. Verstappen
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lu Gao
- Immunology, Cardiovascular, Fibrosis Thematic Research Center, Translational Early Development, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Sarah Pringle
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erlin A. Haacke
- Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bert van der Vegt
- Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Silvia C. Liefers
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vishal Patel
- Immunology, Cardiovascular, Fibrosis Thematic Research Center, Translational Early Development, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Yanhua Hu
- Immunology, Cardiovascular, Fibrosis Thematic Research Center, Translational Early Development, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Sumanta Mukherjee
- Immunology, Cardiovascular, Fibrosis Thematic Research Center, Translational Early Development, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Julie Carman
- Immunology, Cardiovascular, Fibrosis Thematic Research Center, Translational Early Development, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Laurence C. Menard
- Immunology, Cardiovascular, Fibrosis Thematic Research Center, Translational Early Development, Bristol-Myers Squibb, Princeton, NJ, United States
| | - Frederik K. L. Spijkervet
- Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Vissink
- Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hendrika Bootsma
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Frans G. M. Kroese
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Ding J, Blencowe M, Nghiem T, Ha SM, Chen YW, Li G, Yang X. Mergeomics 2.0: a web server for multi-omics data integration to elucidate disease networks and predict therapeutics. Nucleic Acids Res 2021; 49:W375-W387. [PMID: 34048577 PMCID: PMC8262738 DOI: 10.1093/nar/gkab405] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
The Mergeomics web server is a flexible online tool for multi-omics data integration to derive biological pathways, networks, and key drivers important to disease pathogenesis and is based on the open source Mergeomics R package. The web server takes summary statistics of multi-omics disease association studies (GWAS, EWAS, TWAS, PWAS, etc.) as input and features four functions: Marker Dependency Filtering (MDF) to correct for known dependency between omics markers, Marker Set Enrichment Analysis (MSEA) to detect disease relevant biological processes, Meta-MSEA to examine the consistency of biological processes informed by various omics datasets, and Key Driver Analysis (KDA) to identify essential regulators of disease-associated pathways and networks. The web server has been extensively updated and streamlined in version 2.0 including an overhauled user interface, improved tutorials and results interpretation for each analytical step, inclusion of numerous disease GWAS, functional genomics datasets, and molecular networks to allow for comprehensive omics integrations, increased functionality to decrease user workload, and increased flexibility to cater to user-specific needs. Finally, we have incorporated our newly developed drug repositioning pipeline PharmOmics for prediction of potential drugs targeting disease processes that were identified by Mergeomics. Mergeomics is freely accessible at http://mergeomics.research.idre.ucla.edu and does not require login.
Collapse
Affiliation(s)
- Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Thien Nghiem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Sung-min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Gaoyan Li
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Lin Y, Yao X, Yan M, Zhou L, Huang W, Xiao Y, Wu D, Chen J. Integrated analysis of transcriptomics to identify hub genes in primary Sjögren's syndrome. Oral Dis 2021; 28:1831-1845. [PMID: 34145926 DOI: 10.1111/odi.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The treatment of patients with primary Sjögren's syndrome is a clinical challenge. Gene expression profile analysis and comprehensive network methods for complex diseases can provide insight into molecular characteristics in the clinical context. MATERIALS AND METHODS We downloaded gene expression datasets from the Gene Expression Omnibus (GEO) database. We screened differentially expressed genes (DEG) between the pSS patients and the controls by the robust rank aggregation (RRA) method. We explored DEGs' potential function using gene function annotation and PPI network analysis. RESULTS GSE23117 GSE40611 GSE80805 and GSE127952were included, including 38 patients and 30 controls. The RRA integrated analysis determined 294 significant DEGs (241 upregulated and 53 downregulated), and the most significant gene aberrantly expressed in SS was CXCL9 (p = 6.39E-15), followed by CXCL13 (p = 1.53E-13). Immune response (GO:0006955; p = 4.29E-32) was the most significantly enriched biological process in GO (gene ontology) analysis. KEGG pathway enrichment analysis showed that cytokine-cytokine receptor interaction (hsa04060; p = 6.46E-10) and chemokine signaling pathway (hsa04062; p = 9.54E-09) were significantly enriched. We defined PTPRC, CD86, and LCP2 as the hub genes based on the PPI results. CONCLUSION Our integrated analysis identified gene signatures and helped understand molecular changes in pSS.
Collapse
Affiliation(s)
- Yanjun Lin
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, China.,Stomatological Key Lab of Fujian College and University, Fuzhou, Fujian, China.,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingdong Yan
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Laboratory of Oral Tissue Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiu Huang
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanjun Xiao
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Dong Wu
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiang Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Huijser E, Versnel MA. Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. J Clin Med 2021; 10:532. [PMID: 33540529 PMCID: PMC7867173 DOI: 10.3390/jcm10030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune rheumatic disease characterized by dryness of the eyes and mucous membranes, which can be accompanied by various extraglandular autoimmune manifestations. The majority of patients exhibit persistent systemic activation of the type I interferon (IFN) system, a feature that is shared with other systemic autoimmune diseases. Type I IFNs are integral to anti-viral immunity and are produced in response to stimulation of pattern recognition receptors, among which nucleic acid (NA) receptors. Dysregulated detection of endogenous NAs has been widely implicated in the pathogenesis of systemic autoimmune diseases. Stimulation of endosomal Toll-like receptors by NA-containing immune complexes are considered to contribute to the systemic type I IFN activation. Accumulating evidence suggest additional roles for cytosolic NA-sensing pathways in the pathogenesis of systemic autoimmune rheumatic diseases. In this review, we will provide an overview of the functions and signaling of intracellular RNA- and DNA-sensing receptors and summarize the evidence for a potential role of these receptors in the pathogenesis of pSS and the sustained systemic type I IFN activation.
Collapse
Affiliation(s)
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
12
|
Oyelakin A, Horeth E, Song EAC, Min S, Che M, Marzullo B, Lessard CJ, Rasmussen A, Radfar L, Scofield RH, Lewis DM, Stone DU, Grundahl K, De Rossi SS, Kurago Z, Farris AD, Sivils KL, Sinha S, Kramer JM, Romano RA. Transcriptomic and Network Analysis of Minor Salivary Glands of Patients With Primary Sjögren's Syndrome. Front Immunol 2021; 11:606268. [PMID: 33488608 PMCID: PMC7821166 DOI: 10.3389/fimmu.2020.606268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized primarily by immune-mediated destruction of exocrine tissues, such as those of the salivary and lacrimal glands, resulting in the loss of saliva and tear production, respectively. This disease predominantly affects middle-aged women, often in an insidious manner with the accumulation of subtle changes in glandular function occurring over many years. Patients commonly suffer from pSS symptoms for years before receiving a diagnosis. Currently, there is no effective cure for pSS and treatment options and targeted therapy approaches are limited due to a lack of our overall understanding of the disease etiology and its underlying pathology. To better elucidate the underlying molecular nature of this disease, we have performed RNA-sequencing to generate a comprehensive global gene expression profile of minor salivary glands from an ethnically diverse cohort of patients with pSS. Gene expression analysis has identified a number of pathways and networks that are relevant in pSS pathogenesis. Moreover, our detailed integrative analysis has revealed a primary Sjögren’s syndrome molecular signature that may represent important players acting as potential drivers of this disease. Finally, we have established that the global transcriptomic changes in pSS are likely to be attributed not only to various immune cell types within the salivary gland but also epithelial cells which are likely playing a contributing role. Overall, our comprehensive studies provide a database-enriched framework and resource for the identification and examination of key pathways, mediators, and new biomarkers important in the pathogenesis of this disease with the long-term goals of facilitating earlier diagnosis of pSS and to mitigate or abrogate the progression of this debilitating disease.
Collapse
Affiliation(s)
- Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Brandon Marzullo
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christopher J Lessard
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Lida Radfar
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - R Hal Scofield
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Veteran's Affairs Medical Center, Oklahoma City, OK, United States
| | - David M Lewis
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donald U Stone
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kiely Grundahl
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Scott S De Rossi
- Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Zoya Kurago
- Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - A Darise Farris
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kathy L Sivils
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
13
|
Contributions of Major Cell Populations to Sjögren's Syndrome. J Clin Med 2020; 9:jcm9093057. [PMID: 32971904 PMCID: PMC7564211 DOI: 10.3390/jcm9093057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin’s B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.
Collapse
|