1
|
Scholand KK, Schaefer L, Govindarajan G, Yu Z, Galletti JG, de Paiva CS. Aged regulatory T cells fail to control autoimmune lacrimal gland pathogenic CD4 + T cells. GeroScience 2025:10.1007/s11357-025-01576-y. [PMID: 40053297 DOI: 10.1007/s11357-025-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/12/2025] Open
Abstract
CD25KO mice are a model of Sjögren disease. CD25KO mice have severe inflammation and infiltrating lymphocytes to the lacrimal glands (LG). Whether the pathogenicity of CD25KO CD4+ T cells can be controlled in vivo by Tregs is unknown. Eight-week-old B6 and CD25KO mice LGs were submitted for RNA bulk sequencing. A total of 3481 genes were differentially expressed in CD25KO LG compared to B6. Tear washing analysis identified CD25KO mice had elevated protein levels of TNF, IFN-γ, and CCL5 and decreased protein levels of IL-12p40 and VEGF-A. Co-adoptive transfer of CD25KO CD4+ T cells with either young or aged B6 Tregs was performed in RAG1KO mice. Recipients of CD25KO CD4+ T cells alone had higher LG inflammation than naive mice. However, in recipients of young B6 Tregs plus CD25KO CD4+ T cells, LGs had significantly reduced inflammation. Recipients of CD25KO CD4+ T cells with aged B6 Tregs had more inflamed LGs than young Tregs, suggesting aged Tregs have less suppressive capacity in vivo. Altogether, CD25KO mice have phenotypic and genetic changes resulting in increased inflammation and severe lymphocytic infiltration in the LGs. However, this autoimmunity can be controlled by the addition of young, but not aged, Tregs, suggesting that aging Tregs have dysfunctional suppression.
Collapse
Affiliation(s)
- Kaitlin K Scholand
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Gowthaman Govindarajan
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jeremias G Galletti
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Ma D, Feng Y, Lin X. Immune and non-immune mediators in the fibrosis pathogenesis of salivary gland in Sjögren's syndrome. Front Immunol 2024; 15:1421436. [PMID: 39469708 PMCID: PMC11513355 DOI: 10.3389/fimmu.2024.1421436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sjögren's syndrome (SS) or Sjögren's disease (SjD) is a systemic autoimmune disease clinically manifested as sicca symptoms. This disease primarily impacts the functionality of exocrine glands, specifically the lacrimal and salivary glands (SG). SG fibrosis, an irreversible morphological change, is a severe consequence that occurs in the later stages of the disease due to sustained inflammation. However, the mechanism underlying SG fibrosis in SS remains under-investigated. Glandular fibrosis may arise from chronic sialadenitis, in which the interactions between infiltrating lymphocytes and epithelial cells potentially contributes to fibrotic pathogenesis. Thus, both immune and non-immune cells are closely involved in this process, while their interplays are not fully understood. The molecular mechanism of tissue fibrosis is partly associated with an imbalance of immune responses, in which the transforming growth factor-beta (TGF-β)-dependent epithelial-mesenchymal transition (EMT) and extracellular matrix remodeling are recently investigated. In addition, viral infection has been implicated in the pathogenesis of SS. Viral-specific innate immune response could exacerbate the autoimmune progression, resulting in overt inflammation in SG. Notably, post-COVID patients exhibit typical SS symptoms and severe inflammatory sialadenitis, which are positively correlated with SG damage. In this review, we discuss the immune and non-immune risk factors in SG fibrosis and summarize the evidence to understand the mechanisms upon autoimmune progression in SS.
Collapse
Affiliation(s)
- Danbao Ma
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
3
|
Zhou J, Felix FA, Jiang Y, Li D, Kim MC, Jang D, Cha S, Yu Q. Altered characteristics of regulatory T cells in target tissues of Sjögren's syndrome in murine models. Mol Immunol 2024; 174:47-56. [PMID: 39197397 PMCID: PMC11500054 DOI: 10.1016/j.molimm.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Sjӧgren's syndrome (SS), also known as Sjögren's disease, is a chronic autoimmune condition predominantly affecting the salivary and lacrimal glands. The disease is driven by autoimmune responses involving the activation and actions of major innate- and adaptive immune cell subsets. However, the specific characteristics and roles of regulatory T cells (Tregs) in SS remain elusive. This study seeks to clarify the main phenotypic and functional attributes of Tregs in the salivary glands and their draining lymph nodes in murine models of SS. Our flow cytometric analysis revealed that Tregs in the salivary gland-draining lymph nodes of female non-obese diabetic (NOD) mice, a spontaneous model of SS, exhibited a greater proportion of activated Tregs and fewer resting Tregs compared to Balb/c mice. Furthermore, Tregs from the salivary gland-draining lymph nodes of female C57BL/6.NOD-Aec1Aec2 (B6.NOD-Aec) mice, a model for primary SS, demonstrated significantly lower IL-10 production but markedly higher IFNγ- and IL-17 production than their C57BL/6 counterparts. Additionally, treatment of C57BL/6 Tregs with IL-7, a cytokine critical for SS pathogenesis, resulted in diminished IL-10 production and enhanced IFNγ and IL-17 production in these cells. Notably, the alterations in B6.NOD-Aec Tregs also included an increased expression of the immune-inhibitory molecule CTLA-4 compared to the C57BL/6 Tregs. Intriguingly, in vitro co-cultures of Tregs with conventional CD4 T cells and other key immune populations from lymph nodes indicated that Tregs from salivary gland-draining lymph nodes of both B6.NOD-Aec and C57BL/6 strains exhibited comparable and limited immunosuppressive effects on the proliferation and function of conventional CD4 T cells. The ability of B6.NOD-Aec Tregs to directly inflict damages to salivary gland epithelial tissues and contribute to SS pathologies through IFNγ and IL-17 that they produce warrants further investigations. In addition, enhancing the relatively weak immunosuppressive capacities of these Tregs may also serve as a viable strategy to alleviate the SS phenotype in the mouse models and potentially in patients.
Collapse
Affiliation(s)
- Jing Zhou
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Fernanda Aragão Felix
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Yuqiao Jiang
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Dongfang Li
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Myung-Chul Kim
- Veterinary Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
| | - Daesong Jang
- Department of Oral & Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; Center for Orphaned Autoimmune Disorders, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Seunghee Cha
- Department of Oral & Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; Center for Orphaned Autoimmune Disorders, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Qing Yu
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Chatterjee P, Stevens HY, Kippner LE, Bowles-Welch AC, Drissi H, Mautner K, Yeago C, Gibson G, Roy K. Single-cell transcriptome and crosstalk analysis reveals immune alterations and key pathways in the bone marrow of knee OA patients. iScience 2024; 27:110827. [PMID: 39310769 PMCID: PMC11416684 DOI: 10.1016/j.isci.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Knee osteoarthritis (OA) is a significant medical and economic burden. To understand systemic immune effects, we performed deep exploration of bone marrow aspirate concentrates (BMACs) from knee-OA patients via single-cell RNA sequencing and proteomic analyses from a randomized clinical trial (MILES: NCT03818737). We found significant cellular and immune alterations in the bone marrow, specifically in MSCs, T cells and NK cells, along with changes in intra-tissue cellular crosstalk during OA progression. Unlike previous studies focusing on injury sites or peripheral blood, our probe into the bone marrow-an inflammation and immune regulation hub-highlights remote organ impact of OA, identifying cell types and pathways for potential therapeutic targeting. Our findings highlight increased cellular senescence and inflammatory pathways, revealing key upstream genes, transcription factors, and ligands. Additionally, we identified significant enrichment in key biological pathways like PI3-AKT-mTOR signaling and IFN responses, showing their potentially crucial role in OA onset and progression.
Collapse
Affiliation(s)
- Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Linda E. Kippner
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Mautner
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carolyn Yeago
- The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Yang L, Liang Y, Pu J, Cai L, Gao R, Han F, Chang K, Pan S, Wu Z, Zhang Y, Wang Y, Song J, Wu H, Tang J, Wang X. Dysregulated serum lipid profile is associated with inflammation and disease activity in primary Sjögren's syndrome: a retrospective study in China. Immunol Lett 2024; 267:106865. [PMID: 38705483 DOI: 10.1016/j.imlet.2024.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To investigate the relationship between the lipid profiles of patients with primary Sjögren's syndrome (pSS) and other clinical characteristics, laboratory examination, disease activity, and inflammatory factors. In addition, the risk factors for hyperlipidemia-related complications of pSS and the effect of hydroxychloroquine (HCQ) usage on the lipid profile were incorporated into this study. METHODS This is a single-center, retrospective study that included 367 patients who were diagnosed with pSS at Tongji Hospital, School of Medicine, Tongji University, China from January 2010 to March 2022. Initially, demographic information, clinical characteristics, medication records, and complications of the patients were gathered. A case-control analysis compared the 12 systems involvement (ESSDAI domain), clinical symptoms, and laboratory tests between pSS patients with and without dyslipidemia. A simple linear regression model was employed to investigate the relationship between serum lipid profile and inflammatory factors. Logistics regression analysis was performed to assess variables for hyperlipidemia-related complications of pSS. The paired t-test was then used to evaluate the improvement in lipid profile among pSS patients. RESULTS 48.7 % of all pSS patients had dyslipidemia, and alterations in lipid levels were related to gender, age, and smoking status but not body mass index (BMI). Dyslipidemia is more prevalent in pSS patients who exhibit heightened autoimmunity and elevated levels of inflammation. Higher concentrations of multiple highly inflammatory factors correlate with a more severe form of dyslipidemia. Non-traditional cardiovascular risk factors may contribute to hyperlipidemia-related complications of pSS, such as increased, low complement 3 (C3) and low C4. According to our study, HCQ usage may protect against lipid-related disease in pSS. CONCLUSION Attention should be paid to the dyslipidemia of pSS. This research aims to clarify the population portrait of pSS patients with abnormal lipid profiles and provides insights into the correlation between metabolism and inflammation in individuals with pSS and the potential role they play in the advancement of the disease. These findings provide novel avenues for further understanding the underlying mechanisms of pSS pathogenesis.
Collapse
Affiliation(s)
- Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Li Cai
- Department of Science and Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Keni Chang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China..
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China..
| |
Collapse
|
6
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
7
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
8
|
Akgul A, Freguia CF, Maddaloni M, Hoffman C, Voigt A, Nguyen CQ, Fanger NA, Fanger GR, Pascual DW. Treatment with a Lactococcus lactis that chromosomally express E. coli cfaI mitigates salivary flow loss in a Sjögren's syndrome-like disease. Sci Rep 2023; 13:19489. [PMID: 37945636 PMCID: PMC10636062 DOI: 10.1038/s41598-023-46557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-β+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | - Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | | | - David W Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Ming B, Zhu Y, Zhong J, Dong L. Regulatory T cells: a new therapeutic link for Sjögren syndrome? Rheumatology (Oxford) 2023; 62:2963-2970. [PMID: 36790059 DOI: 10.1093/rheumatology/kead070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Great advancements have been made in understanding the pathogenesis of SS, but there remain unmet needs for effective and targeted treatments. Glandular and extraglandular dysfunction in SS is associated with autoimmune lymphocytic infiltration that invades the epithelial structures of affected organs. Regulatory T (Treg) cells are a subset of CD4+ T lymphocytes that maintain self-tolerance during physiological conditions. Besides inhibiting excessive inflammation and autoimmune response by targeting various immune cell subsets and tissues, Treg cells have also been shown to promote tissue repair and regeneration in pathogenic milieus. The changes of quantity and function of Treg cells in various autoimmune and chronic inflammatory disorders have been reported, owing to their effects on immune regulation. Here we summarize the recent findings from murine models and clinical data about the dysfunction of Treg cells in SS pathogenesis and discuss the therapeutic strategies of direct or indirect targeting of Treg cells in SS. Understanding the current knowledge of Treg cells in the development of SS will be important to elucidate disease pathogenesis and may guide research for successful therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Kuklinski EJ, Yu Y, Ying GS, Asbell PA, for the DREAM Study Research Group. Association of Ocular Surface Immune Cells With Dry Eye Signs and Symptoms in the Dry Eye Assessment and Management (DREAM) Study. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37669063 PMCID: PMC10484021 DOI: 10.1167/iovs.64.12.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose Dry eye disease (DED) is a multifactorial, heterogeneous disease of the ocular surface with one etiology being ocular surface inflammation. Studies using animal models demonstrate the role of ocular surface immune cells in the inflammatory pathway leading to DED, but few have evaluated humans. This study described the white blood cell population from the ocular surface of patients with DED and assessed its association with DED signs and symptoms in participants of the Dry Eye Assessment and Management (DREAM) study. Methods Participants were assessed for symptoms using the Ocular Surface Disease Index, signs via corneal staining, conjunctival staining, tear break-up time, and Schirmer test, and Sjögren's syndrome (SS) based on the 2012 American College of Rheumatology classification criteria. Impression cytology of conjunctival cells from each eye was evaluated using flow cytometry: T cells, helper T cells (Th), regulatory T cells (Tregs), cytotoxic T cells, and dendritic cells. Results We assessed 1049 eyes from 527 participants. White blood cell subtype percentages varied widely across participants. Significant positive associations were found for Th and conjunctival staining (mean score of 2.8 for 0% Th and 3.1 for >4.0% Th; P = 0.007), and corneal staining (mean score of 3.5 for 0% Th and 4.3 for >4.0% Th; P = 0.01). SS was associated with higher percent of Tregs (median 0.1 vs. 0.0; P = 0.01). Conclusions Th were associated with more severe conjunctival and corneal staining, possibly indicating their role in inflammation leading to damage of the ocular surface. There is no consistent conclusion about Tregs in SS, but these results support that Tregs are elevated in SS.
Collapse
Affiliation(s)
- Eric J. Kuklinski
- Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Yinxi Yu
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui-Shuang Ying
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - for the DREAM Study Research Group
- Rutgers New Jersey Medical School, Newark, New Jersey, United States
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
- University of Memphis, Memphis, Tennessee, United States
| |
Collapse
|
11
|
Lindrova I, Kolackova M, Svadlakova T, Vankova R, Chmelarova M, Rosecka M, Jozifkova E, Sembera M, Krejsek J, Slezak R. Unsolved mystery of Fas: mononuclear cells may have trouble dying in patients with Sjögren's syndrome. BMC Immunol 2023; 24:12. [PMID: 37353767 PMCID: PMC10288785 DOI: 10.1186/s12865-023-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Patients with Sjögren's syndrome, like other patients with autoimmune disorders, display dysregulation in the function of their immune system. Fas and Fas Ligand (FasL) are among the dysregulated proteins. METHODS We studied Fas and FasL on IL-2Rα+ cells and in serum of patients with Sjögren's syndrome (n = 16) and healthy individuals (n = 16); both from same ethnic and geographical background. We used flow cytometry and enzyme-linked immunosorbent for this purpose. We also measured the expression of Bcl-2 and Bax by reverse transcription quantitative real-time PCR (RT-qPCR) and percentage of apoptotic and dead cells using Annexin V and 7-AAD staining in lymphocytes. RESULTS FasL was increased in patients' T and B cells while Fas was increased in patients' monocytes, T and B cells. No signs of increased apoptosis were found. sFas and sFasL in patients' serum were increased, although the increase in sFasL was not significant. We suspect an effect of non-steroidal anti-inflammatory therapy on B cells, explaining the decrease of the percentage Fas+ B cells found within our samples. In healthy individuals, there was a noticeable pattern in the expression of FasL which mutually correlated to populations of mononuclear cells; this correlation was absent in the patients with Sjögren's syndrome. CONCLUSIONS Mononuclear cells expressing IL-2Rα+ had upregulated Fas in Sjögren's syndrome. However, the rate of apoptosis based on Annexin V staining and the Bcl-2/Bax expression was not observed in mononuclear cells. We suspect a functional role of abnormal levels of Fas and FasL which has not been cleared yet.
Collapse
Affiliation(s)
- Irena Lindrova
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic.
| | - Tereza Svadlakova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Radka Vankova
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Eva Jozifkova
- Department of Biology, Jan Evangelista Purkyne University, Za Valcovnou 1000/8, 400 96, Usti and Labem, Czech Republic
| | - Martin Sembera
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Radovan Slezak
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University and University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Sisto M, Lisi S. Immune and Non-Immune Inflammatory Cells Involved in Autoimmune Fibrosis: New Discoveries. J Clin Med 2023; 12:jcm12113801. [PMID: 37297996 DOI: 10.3390/jcm12113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fibrosis is an important health problem and its pathogenetic activation is still largely unknown. It can develop either spontaneously or, more frequently, as a consequence of various underlying diseases, such as chronic inflammatory autoimmune diseases. Fibrotic tissue is always characterized by mononuclear immune cells infiltration. The cytokine profile of these cells shows clear proinflammatory and profibrotic characteristics. Furthermore, the production of inflammatory mediators by non-immune cells, in response to several stimuli, can be involved in the fibrotic process. It is now established that defects in the abilities of non-immune cells to mediate immune regulation may be involved in the pathogenicity of a series of inflammatory diseases. The convergence of several, not yet well identified, factors results in the aberrant activation of non-immune cells, such as epithelial cells, endothelial cells, and fibroblasts, that, by producing pro-inflammatory molecules, exacerbate the inflammatory condition leading to the excessive and chaotic secretion of extracellular matrix proteins. However, the precise cellular mechanisms involved in this process have not yet been fully elucidated. In this review, we explore the latest discoveries on the mechanisms that initiate and perpetuate the vicious circle of abnormal communications between immune and non-immune cells, responsible for fibrotic evolution of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
13
|
Tan Z, Wang L, Li X. Composition and regulation of the immune microenvironment of salivary gland in Sjögren’s syndrome. Front Immunol 2022; 13:967304. [PMID: 36177010 PMCID: PMC9513852 DOI: 10.3389/fimmu.2022.967304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized by exocrine gland dysfunction and inflammation. Patients often have dry mouth and dry eye symptoms, which seriously affect their lives. Improving dry mouth and eye symptoms has become a common demand from patients. For this reason, researchers have conducted many studies on external secretory glands. In this paper, we summarize recent studies on the salivary glands of pSS patients from the perspective of the immune microenvironment. These studies showed that hypoxia, senescence, and chronic inflammation are the essential characteristics of the salivary gland immune microenvironment. In the SG of pSS, genes related to lymphocyte chemotaxis, antigen presentation, and lymphocyte activation are upregulated. Interferon (IFN)-related genes, DNA methylation, sRNA downregulation, and mitochondrial-related differentially expressed genes are also involved in forming the immune microenvironment of pSS, while multiple signaling pathways are involved in regulation. We further elucidated the regulation of the salivary gland immune microenvironment in pSS and relevant, targeted treatments.
Collapse
|