1
|
Hale OF, Yin M, Behringer MG. Elevated rates and biased spectra of mutations in anaerobically cultured lactic acid bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.639667. [PMID: 40060621 PMCID: PMC11888475 DOI: 10.1101/2025.02.28.639667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The rate, spectrum, and biases of mutations represent a fundamental force shaping biological evolution. Convention often attributes oxidative DNA damage as a major driver of spontaneous mutations. Yet, despite the contribution of oxygen to mutagenesis and the ecological, industrial, and biomedical importance of anaerobic organisms, relatively little is known about the mutation rates and spectra of anaerobic species. Here, we present the rates and spectra of spontaneous mutations assessed anaerobically over 1000 generations for three fermentative lactic acid bacteria species with varying levels of aerotolerance: Lactobacillus acidophilus, Lactobacillus crispatus, and Lactococcus lactis. Our findings reveal highly elevated mutation rates compared to the average rates observed in aerobically respiring bacteria with mutations strongly biased towards transitions, emphasizing the prevalence of spontaneous deamination in these anaerobic species and highlighting the inherent fragility of purines even under conditions that minimize oxidative stress. Beyond these overarching patterns, we identify several novel mutation dynamics: positional mutation bias around the origin of replication in Lb. acidophilus, a significant disparity between observed and equilibrium GC content in Lc. lactis, and repeated independent deletions of spacer sequences from within the CRISPR locus in Lb. crispatus providing mechanistic insights into the evolution of bacterial adaptive immunity. Overall, our study provides new insights into the mutational landscape of anaerobes, revealing how non-oxygenic factors shape mutation rates and influence genome evolution.
Collapse
Affiliation(s)
- Owen F. Hale
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Michelle Yin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Jespersen M, Hayes A, Tong SC, Davies M. Insertion sequence elements and unique symmetrical genomic regions mediate chromosomal inversions in Streptococcus pyogenes. Nucleic Acids Res 2024; 52:13128-13137. [PMID: 39460626 PMCID: PMC11602124 DOI: 10.1093/nar/gkae948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Chromosomal inversions are a phenomenon in many bacterial species, often across the axis of replication. Inversions have been shown to alter gene expression, changing persistence of colonisation and infection following environmental stresses. In Streptococcus pyogenes, inversions have been reported. However, frequency and molecular markers of inversions have not been systematically examined. Here, 249 complete S.pyogenes genomes were analysed using a pangenomic core gene synteny framework to identify sequences associated with inversions. 47% of genomes (118/249) contained at least one inversion, from 23 unique inversion locations. Chromosomal locations enabling inversions were usually associated with mobile elements (insertion sequences n = 9 and prophages n = 7). Two insertion sequences, IS1548 and IS1239, accounted for >80% of insertion sequences and were the only insertion sequences associated with inversions. The most observed inversion location (n = 104 genomes, 88% of genomes with an inversion) occurs between two conserved regions encoding rRNAs, tRNAs and sigma factor genes. The regions are symmetrically placed around the origin of replication forming a unique chromosomal structure in S. pyogenes, relative to other streptococci. Cataloging of the chromosomal location and frequency of inversions can direct dissection of phenotypic changes following chromosomal inversions. The framework used here can be transferred to other bacterial species to characterise chromosomal inversions.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Yun S, Min J, Han S, Sim HS, Kim SK, Lee JB, Yoon JW, Yeom J, Park W. Experimental evolution under different nutritional conditions changes the genomic architecture and virulence of Acinetobacter baumannii. Commun Biol 2024; 7:1274. [PMID: 39369115 PMCID: PMC11455985 DOI: 10.1038/s42003-024-06978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
This study uncovers the molecular processes governing the adaptive evolution of multidrug-resistant (MDR) pathogens without antibiotic pressure. Genomic analysis of MDR Acinetobacter baumannii cells cultured for 8000 generations under starvation conditions (EAB1) or nutrient-rich conditions (EAB2) revealed significant genomic changes, primarily by insertion sequence (IS)-mediated insertions and deletions. Only two Acinetobacter-specific prophage-related deletions and translocations were observed in the EAB1 strain. Both evolved strains exhibited higher virulence in mouse infection studies, each with different modes of action. The EAB1 strain displayed a heightened ability to cross the epithelial barrier of human lung tissue, evade the immune system, and spread to lung tissues, ultimately resulting in cellular mortality. In contrast, the EAB2 strain strongly attached to epithelial cells, leading to increased synthesis of proinflammatory cytokines and chemokines. The genomic alterations and increased virulence observed in evolved strains during short-term evolution underscore the need for caution when handling these pathogens, as these risks persist even without antibiotic exposure.
Collapse
Affiliation(s)
- Sohyeon Yun
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Sunyong Han
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Ho Seok Sim
- Department of Microbiology and Immunology, Department of Biomedical Science, and Cancer Research Institute, College of Medicine, Seoul National University, Jongno-gu, Seoul, Republic of Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jinki Yeom
- Department of Microbiology and Immunology, Department of Biomedical Science, and Cancer Research Institute, College of Medicine, Seoul National University, Jongno-gu, Seoul, Republic of Korea.
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. Cell Host Microbe 2024; 32:739-754.e4. [PMID: 38565143 PMCID: PMC11081829 DOI: 10.1016/j.chom.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561241. [PMID: 37873088 PMCID: PMC10592638 DOI: 10.1101/2023.10.06.561241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to insertion "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
6
|
Sim EM, Wang Q, Howard P, Kim R, Lim L, Hope K, Sintchenko V. Persistent Salmonella enterica serovar Typhi sub-populations within host interrogated by whole genome sequencing and metagenomics. PLoS One 2023; 18:e0289070. [PMID: 37611017 PMCID: PMC10446203 DOI: 10.1371/journal.pone.0289070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever and, in some cases, chronic carriage after resolution of acute disease. This study examined sequential isolates of S. Typhi from a single host with persistent asymptomatic infection. These isolates, along with another S. Typhi isolate recovered from a household contact with typhoid fever, were subjected to whole genome sequencing and analysis. In addition, direct sequencing of the bile fluid from the host with persistent infection was also performed. Comparative analysis of isolates revealed three sub-populations of S. Typhi with distinct genetic patterns. Metagenomic sequencing recognised only two of the three sub-populations within the bile fluid. The detection and investigation of insertion sequences IS10R and associated deletions complemented analysis of single nucleotide polymorphisms. These findings improve our understanding of within-host dynamics of S. Typhi in cases of persistent infection and inform epidemiological investigations of transmission events associated with chronic carriers.
Collapse
Affiliation(s)
- Eby M. Sim
- Sydney Institute for Infectious Diseases, The University of Sydney, Westmead, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Westmead, New South Wales, Australia
| | - Qinning Wang
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, New South Wales, Australia
| | - Peter Howard
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, New South Wales, Australia
| | - Rady Kim
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, New South Wales, Australia
| | - Ling Lim
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, New South Wales, Australia
| | - Kirsty Hope
- Health Protection, New South Wales Ministry of Health, North Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, The University of Sydney, Westmead, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
7
|
Nukagawa Y, Wakinaka T, Mogi Y, Watanabe J. Targeted Screening for Spontaneous Insertion Mutations in a Lactic Acid Bacterium, Tetragenococcus halophilus. Appl Environ Microbiol 2023; 89:e0200522. [PMID: 36809065 PMCID: PMC10056959 DOI: 10.1128/aem.02005-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Studies on the microorganisms used in food production are of interest because microbial genotypes are reflected in food qualities such as taste, flavor, and yield. However, several microbes are nonmodel organisms, and their analysis is often limited by the lack of genetic tools. Tetragenococcus halophilus, a halophilic lactic acid bacterium used in soy sauce fermentation starter culture, is one such microorganism. The lack of DNA transformation techniques for T. halophilus makes gene complementation and disruption assays difficult. Here, we report that the endogenous insertion sequence ISTeha4, belonging to the IS4 family, is translocated at an extremely high frequency in T. halophilus and causes insertional mutations at various loci. We developed a method named targeting spontaneous insertional mutations in genomes (TIMING), which combines high-frequency insertional mutations and efficient PCR screening, enabling the isolation of gene mutants of interest from a library. The method provides a reverse genetics and strain improvement tool, does not require the introduction of exogenous DNA constructs, and enables the analysis of nonmodel microorganisms lacking DNA transformation techniques. Our results highlight the important role of insertion sequences as a source of spontaneous mutagenesis and genetic diversity in bacteria. IMPORTANCE Genetic and strain improvement tools to manipulate a gene of interest are required for the nontransformable lactic acid bacterium Tetragenococcus halophilus. Here, we demonstrate that an endogenous transposable element, ISTeha4, is transposed into the host genome at an extremely high frequency. A genotype-based and non-genetically engineered screening system was constructed to isolate knockout mutants using this transposable element. The method described enables a better understanding of the genotype-phenotype relationship and serves as a tool to develop food-grade-appropriate mutants of T. halophilus.
Collapse
Affiliation(s)
- Yuya Nukagawa
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | | | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Jun Watanabe
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
- Institute of Fermentation Sciences, Fukushima University, Fukushima, Japan
| |
Collapse
|
8
|
Udaondo Z, Abram KZ, Kothari A, Jun SR. Insertion sequences and other mobile elements associated with antibiotic resistance genes in Enterococcus isolates from an inpatient with prolonged bacteraemia. Microb Genom 2022; 8. [PMID: 35921144 PMCID: PMC9484755 DOI: 10.1099/mgen.0.000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insertion sequences (ISs) and other transposable elements are associated with the mobilization of antibiotic resistance determinants and the modulation of pathogenic characteristics. In this work, we aimed to investigate the association between ISs and antibiotic resistance genes, and their role in the dissemination and modification of the antibiotic-resistant phenotype. To that end, we leveraged fully resolved Enterococcus faecium and Enterococcus faecalis genomes of isolates collected over 5 days from an inpatient with prolonged bacteraemia. Isolates from both species harboured similar IS family content but showed significant species-dependent differences in copy number and arrangements of ISs throughout their replicons. Here, we describe two inter-specific IS-mediated recombination events and IS-mediated excision events in plasmids of E. faecium isolates. We also characterize a novel arrangement of the ISs in a Tn1546-like transposon in E. faecalis isolates likely implicated in a vancomycin genotype–phenotype discrepancy. Furthermore, an extended analysis revealed a novel association between daptomycin resistance mutations in liaSR genes and a putative composite transposon in E. faecium, offering a new paradigm for the study of daptomycin resistance and novel insights into its dissemination. In conclusion, our study highlights the role ISs and other transposable elements play in the rapid adaptation and response to clinically relevant stresses such as aggressive antibiotic treatment in enterococci.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Z Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Dept of Health, Healthcare Associated Infections and Outbreak Response Sections, Little Rock, AR 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Entfellner E, Li R, Jiang Y, Ru J, Blom J, Deng L, Kurmayer R. Toxic/Bioactive Peptide Synthesis Genes Rearranged by Insertion Sequence Elements Among the Bloom-Forming Cyanobacteria Planktothrix. Front Microbiol 2022; 13:901762. [PMID: 35966708 PMCID: PMC9366434 DOI: 10.3389/fmicb.2022.901762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
It has been generally hypothesized that mobile elements can induce genomic rearrangements and influence the distribution and functionality of toxic/bioactive peptide synthesis pathways in microbes. In this study, we performed in depth genomic analysis by completing the genomes of 13 phylogenetically diverse strains of the bloom-forming freshwater cyanobacteria Planktothrix spp. to investigate the role of insertion sequence (IS) elements in seven pathways. Chromosome size varied from 4.7-4.8 Mbp (phylogenetic Lineage 1 of P. agardhii/P. rubescens thriving in shallow waterbodies) to 5.4-5.6 Mbp (Lineage 2 of P. agardhii/P. rubescens thriving in deeper physically stratified lakes and reservoirs) and 6.3-6.6 Mbp (Lineage 3, P. pseudagardhii/P. tepida including planktic and benthic ecotypes). Although the variation in chromosome size was positively related to the proportion of IS elements (1.1-3.7% on chromosome), quantitatively, IS elements and other paralogs only had a minor share in chromosome size variation. Thus, the major part of genomic variation must have resulted from gene loss processes (ancestor of Lineages 1 and 2) and horizontal gene transfer (HGT). Six of seven peptide synthesis gene clusters were found located on the chromosome and occurred already in the ancestor of P. agardhii/P. rubescens, and became partly lost during evolution of Lineage 1. In general, no increased IS element frequency in the vicinity of peptide synthesis gene clusters was observed. We found a higher proportion of IS elements in ten breaking regions related to chromosomal rearrangements and a tendency for colocalization of toxic/bioactive peptide synthesis gene clusters on the chromosome.
Collapse
Affiliation(s)
| | - Ruibao Li
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Yiming Jiang
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
10
|
Tempel S, Bedo J, Talla E. From a large-scale genomic analysis of insertion sequences to insights into their regulatory roles in prokaryotes. BMC Genomics 2022; 23:451. [PMID: 35725380 PMCID: PMC9208149 DOI: 10.1186/s12864-022-08678-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background Insertion sequences (ISs) are mobile repeat sequences and most of them can copy themselves to new host genome locations, leading to genome plasticity and gene regulation in prokaryotes. In this study, we present functional and evolutionary relationships between IS and neighboring genes in a large-scale comparative genomic analysis. Results IS families were located in all prokaryotic phyla, with preferential occurrence of IS3, IS4, IS481, and IS5 families in Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria and Firmicutes as well as in eukaryote host-associated organisms and autotrophic opportunistic pathogens. We defined the concept of the IS-Gene couple (IG), which allowed to highlight the functional and regulatory impacts of an IS on the closest gene. Genes involved in transcriptional regulation and transport activities were found overrepresented in IG. In particular, major facilitator superfamily (MFS) transporters, ATP-binding proteins and transposases raised as favorite neighboring gene functions of IS hotspots. Then, evolutionary conserved IS-Gene sets across taxonomic lineages enabled the classification of IS-gene couples into phylum, class-to-genus, and species syntenic IS-Gene couples. The IS5, IS21, IS4, IS607, IS91, ISL3 and IS200 families displayed two to four times more ISs in the phylum and/or class-to-genus syntenic IGs compared to other IS families. This indicates that those families were probably inserted earlier than others and then subjected to horizontal transfer, transposition and deletion events over time. In phylum syntenic IG category, Betaproteobacteria, Crenarchaeota, Calditrichae, Planctomycetes, Acidithiobacillia and Cyanobacteria phyla act as IS reservoirs for other phyla, and neighboring gene functions are mostly related to transcriptional regulators. Comparison of IS occurrences with predicted regulatory motifs led to ~ 26.5% of motif-containing ISs with 2 motifs per IS in average. These results, concomitantly with short IS-Gene distances, suggest that those ISs would interfere with the expression of neighboring genes and thus form strong candidates for an adaptive pairing. Conclusions All together, our large-scale study provide new insights into the IS genetic context and strongly suggest their regulatory roles. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08678-3.
Collapse
Affiliation(s)
- Sebastien Tempel
- Aix Marseille University, CNRS, LCB, Laboratoire de Chimie Bactérienne, 13009, Marseille, France.
| | - Justin Bedo
- Bioinformatics Division, the Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,School of Computing and Information Systems, the University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emmanuel Talla
- Aix Marseille University, CNRS, LCB, Laboratoire de Chimie Bactérienne, 13009, Marseille, France.
| |
Collapse
|
11
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
12
|
Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most widely distributed blaCTX-M gene on a global scale is blaCTX-M-15. The dissemination has been associated with clonal spread and different types of mobile genetic elements. The objective of this review was to describe the genetic environments of the blaCTX-M-15 gene detected from Enterobacteriaceae in published literature from Africa. A literature search for relevant articles was performed through PubMed, AJOL, and Google Scholar electronic databases; 43 articles from 17 African countries were included in the review based on the eligibility criteria. Insertion sequences were reported as part of the genetic environment of blaCTX-M-15 gene in 32 studies, integrons in 13 studies, and plasmids in 23 studies. In this review, five insertion sequences including ISEcp1, IS26, orf447, IS903, and IS3 have been detected which are associated with the genetic environment of blaCTX-M-15 in Africa. Seven different genetic patterns were seen in the blaCTX-M-15 genetic environment. Insertion sequence ISEcp1 was commonly located upstream of the end of the blaCTX-M-15 gene, while the insertion sequence orf477 was located downstream. In some studies, ISEcp1 was truncated upstream of blaCTX-M-15 by insertion sequences IS26 and IS3. The class 1 integron (Intl1) was most commonly reported to be associated with blaCTX-M-15 (13 studies), with Intl1/dfrA17–aadA5 being the most common gene cassette array. IncFIA-FIB-FII multi-replicons and IncHI2 replicon types were the most common plasmid replicon types that horizontally transferred the blaCTX-M-15 gene. Aminoglycoside-modifying enzymes, and plasmid-mediated quinolone resistance genes were commonly collocated with the blaCTX-M-15 gene on plasmids. This review revealed the predominant role of ISEcp1, Intl1 and IncF plasmids in the mobilization and continental dissemination of the blaCTX-M-15 gene in Africa.
Collapse
|
13
|
Sun L, Qu T, Wang D, Chen Y, Fu Y, Yang Q, Yu Y. Characterization of vanM carrying clinical Enterococcus isolates and diversity of the suppressed vanM gene cluster. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 68:145-152. [PMID: 30553064 DOI: 10.1016/j.meegid.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Here we report the prevalence of the suppressed vanM gene cluster as a reservoir of vancomycin resistance genes. Among 1284 clinical isolates of enterococci from four hospitals in Hangzhou, China, 55 isolates of Enterococcus faecium and one isolate of Enterococcus faecalis were screened positive for the vanM genotype. Antimicrobial susceptibility testing showed that 55 of the 56 vanM-positive isolates were susceptible to vancomycin and teicoplanin. Most of them (54/56) belonged to the main epidemic lineage CC17, mostly the ST78 type. The vanM gene clusters in the 55 vancomycin-susceptible isolates showed sequence diversity owing to different insertion locations of IS1216E. The vanM transposons could be classified into five types and they all carried two or more IS1216E elements, leading to complete or partial deletions of vanR, vanS, or vanX. Quantitative reverse transcription polymerase chain reaction showed that the expression level of vanM was significantly lower in the vancomycin-susceptible isolates than in the vancomycin-resistant isolate. Considering the prevalence of the vanM genotype and the potential for conversion to a resistant phenotype, vanM might act as an important determinant of glycopeptide resistance in the future. It is essential to strengthen the surveillance of vanM-containing enterococci to control the dissemination of vancomycin resistance.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Danying Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ying Fu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
The Genome Sequence of M228, a Chinese Isolate of Pseudomonas syringae pv. actinidiae, Illustrates Insertion Sequence Element Mobility. Microbiol Resour Announc 2019; 8:MRA01427-18. [PMID: 30637393 PMCID: PMC6318364 DOI: 10.1128/mra.01427-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/21/2018] [Indexed: 11/24/2022] Open
Abstract
We present here the complete genome sequence of M228, a Chinese biovar 3 strain of Pseudomonas syringae pv. actinidiae, a bacterial pathogen of kiwifruit. We present here the complete genome sequence of M228, a Chinese biovar 3 strain of Pseudomonas syringae pv. actinidiae, a bacterial pathogen of kiwifruit. A comparison of the insertion sequence (IS) profile of M228 with that of ICMP18708, a New Zealand isolate of P. syringae pv. actinidiae, provided insight into the evolutionary history of IS elements within biovar 3.
Collapse
|