1
|
de Oliveira FS, Brann T, Wolf IR, Nogaroto V, Martins C, Protasio AV, Vicari MR. The landscape of transposable element distribution in the genome of Neotropical fish Apareiodon sp. (Characiformes: Parodontidae). Chromosome Res 2025; 33:6. [PMID: 40186682 DOI: 10.1007/s10577-025-09765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Transposable elements (TEs) are widely present in eukaryotic genomes, where they can contribute to genome size and functional modifications. As new genomes are sequenced and annotated, more studies can be conducted regarding TE content, distribution, and genome evolution. TEs are extensively diversified in fish genomes resulting in an important role in genome and chromosome evolution. However, curated TE libraries are still scarce in non-model organisms, making it difficult to evaluate TE's impact on genomic modifications thoroughly. Here, we aimed to obtain a curated TE library from the neotropical fish Apareiodon sp. genome. The prospection and curation of the TE library resulted in 244 families from 18 superfamilies of DNA transposons and retrotransposons, which comprise about 10% of the genome, with most insertions fitting in one or a few families. A greater diversity of retrotransposon families is present, especially for Ty3 superfamily. Despite the greater number of retrotransposon families, DNA transposons are the most abundant in the genome, with 37% of all TE insertions belonging to the Tc1-Mariner superfamily. Complete TE copies were observed for almost all superfamilies, with most of the sequences on the Tc1-Mariner group. DNA transposons and SINEs presented older insertions in the genome, followed by LINEs and LTR retrotransposons. TE genome density is highest in the cs25 scaffold, and enriched for Helitron elements. With these data, allied to previous studies on chromosome evolution, we suggest that cs25 bears the W chromosome specific region of the Apareiodon sp. genome, with the presence of significant amount of Helitron insertions.
Collapse
Affiliation(s)
- Fernanda Souza de Oliveira
- Programa de Pós-Graduação Em Genética, Universidade Federal Do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Toby Brann
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, CB2 1QP, UK
| | - Ivan Rodrigo Wolf
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Anna Victoria Protasio
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, CB2 1QP, UK
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação Em Genética, Universidade Federal Do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil.
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
2
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Kelleher ES. Jack of all trades versus master of one: how generalist versus specialist strategies of transposable elements relate to their horizontal transfer between lineages. Curr Opin Genet Dev 2023; 81:102080. [PMID: 37459818 PMCID: PMC11062761 DOI: 10.1016/j.gde.2023.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 08/15/2023]
Abstract
Transposable elements (TEs) are obligate genomic parasites, relying on host germline cells to ensure their replication and passage to future generations. While some TEs exhibit high fidelity to their host genome, being passed from parent to offspring through vertical transmission for millions of years, others frequently invade new and distantly related hosts through horizontal transfer. In this review, I highlight how the complexity of interactions between TE and host required for transposition may be an important determinant of horizontal transfer: with TEs with more complex regulatory requirements being less able to invade new host genomes.
Collapse
Affiliation(s)
- Erin S Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA.
| |
Collapse
|
4
|
Paulat NS, Storer JM, Moreno-Santillán DD, Osmanski AB, Sullivan KAM, Grimshaw JR, Korstian J, Halsey M, Garcia CJ, Crookshanks C, Roberts J, Smit AFA, Hubley R, Rosen J, Teeling EC, Vernes SC, Myers E, Pippel M, Brown T, Hiller M, Rojas D, Dávalos LM, Lindblad-Toh K, Karlsson EK, Ray DA. Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia. Mol Biol Evol 2023; 40:msad092. [PMID: 37071810 PMCID: PMC10162687 DOI: 10.1093/molbev/msad092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Abstract
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
Collapse
Affiliation(s)
- Nicole S Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | | | - Austin B Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Jenna R Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Jennifer Korstian
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Michaela Halsey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Carlos J Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Jaquelyn Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | | | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- School of Biology, The University of St Andrews, Fife, United Kingdom
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Danny Rojas
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Valle del Cauca, Colombia
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University Stony Brook, NY
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
5
|
Boman J, Arnqvist G. Larger genomes show improved buffering of adult fitness against environmental stress in seed beetles. Biol Lett 2023; 19:20220450. [PMID: 36693428 PMCID: PMC9873469 DOI: 10.1098/rsbl.2022.0450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Our general understanding of the evolution of genome size (GS) is incomplete, and it has long been clear that GS does not reflect organismal complexity. Here, we assess the hypothesis that larger genomes may allow organisms to better cope with environmental variation. It is, for example, possible that genome expansion due to proliferation of transposable elements or gene duplications may affect the ability to regulate and fine-tune transcriptional profiles. We used 18 populations of the seed beetle Callosobruchus maculatus, which differ in GS by up to 4.5%, and exposed adults and juveniles to environmental stress in a series of experiments where stage-specific fitness was assayed. We found that populations with larger genomes were indeed better buffered against environmental stress for adult, but not for juvenile, fitness. The genetic correlation across populations between GS and canalization of adult fitness is consistent with a role for natural selection in the evolution of GS.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Gonçalves P, Gonçalves C. Horizontal gene transfer in yeasts. Curr Opin Genet Dev 2022; 76:101950. [PMID: 35841879 DOI: 10.1016/j.gde.2022.101950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Horizontal gene transfer (HGT), defined as the exchange of genetic material other than from parent to progeny, is very common in bacteria and appears to constitute the most important mechanism contributing to enlarge a species gene pool. However, in eukaryotes, HGT is certainly much less common and some early insufficiently consubstantiated cases involving bacterial donors led some to consider that it was unlikely to occur in eukaryotes outside the host/endosymbiont relationship. More recently, plenty of reports of interdomain HGT have seen the light based on the strictest criteria, many concerning filamentous fungi and yeasts. Here, we attempt to summarize the most prominent instances of HGT reported in yeasts as well as what we have been able to learn so far concerning frequency and distribution, mechanisms, barriers, function of horizontally acquired genes, and the role of HGT in domestication.
Collapse
Affiliation(s)
- Paula Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Carla Gonçalves
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America; Evolutionary Studies Initiative, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, United States of America. https://twitter.com/@ciggoncalves
| |
Collapse
|
8
|
Chang NC, Rovira Q, Wells J, Feschotte C, Vaquerizas JM. Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression. Genome Res 2022; 32:1408-1423. [PMID: 34987056 PMCID: PMC9341512 DOI: 10.1101/gr.275655.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/30/2021] [Indexed: 12/02/2022]
Abstract
There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos and by the relative scarcity of active TEs in these organisms. The zebrafish is an outstanding model for the study of vertebrate development, and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whereas short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. Although two-thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage- and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched among transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.
Collapse
Affiliation(s)
- Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Quirze Rovira
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | - Jonathan Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
9
|
Palazzo A, Caizzi R, Moschetti R, Marsano RM. What Have We Learned in 30 Years of Investigations on Bari Transposons? Cells 2022; 11:583. [PMID: 35159391 PMCID: PMC8834629 DOI: 10.3390/cells11030583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) have been historically depicted as detrimental genetic entities that selfishly aim at perpetuating themselves, invading genomes, and destroying genes. Scientists often co-opt "special" TEs to develop new and powerful genetic tools, that will hopefully aid in changing the future of the human being. However, many TEs are gentle, rarely unleash themselves to harm the genome, and bashfully contribute to generating diversity and novelty in the genomes they have colonized, yet they offer the opportunity to develop new molecular tools. In this review we summarize 30 years of research focused on the Bari transposons. Bari is a "normal" transposon family that has colonized the genomes of several Drosophila species and introduced genomic novelties in the melanogaster species. We discuss how these results have contributed to advance the field of TE research and what future studies can still add to the current knowledge.
Collapse
|
10
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
11
|
Berloco MF, Minervini CF, Moschetti R, Palazzo A, Viggiano L, Marsano RM. Evidence of the Physical Interaction between Rpl22 and the Transposable Element Doc5, a Heterochromatic Transposon of Drosophila melanogaster. Genes (Basel) 2021; 12:1997. [PMID: 34946947 PMCID: PMC8701128 DOI: 10.3390/genes12121997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Chromatin is a highly dynamic biological entity that allows for both the control of gene expression and the stabilization of chromosomal domains. Given the high degree of plasticity observed in model and non-model organisms, it is not surprising that new chromatin components are frequently described. In this work, we tested the hypothesis that the remnants of the Doc5 transposable element, which retains a heterochromatin insertion pattern in the melanogaster species complex, can be bound by chromatin proteins, and thus be involved in the organization of heterochromatic domains. Using the Yeast One Hybrid approach, we found Rpl22 as a potential interacting protein of Doc5. We further tested in vitro the observed interaction through Electrophoretic Mobility Shift Assay, uncovering that the N-terminal portion of the protein is sufficient to interact with Doc5. However, in situ localization of the native protein failed to detect Rpl22 association with chromatin. The results obtained are discussed in the light of the current knowledge on the extra-ribosomal role of ribosomal protein in eukaryotes, which suggests a possible role of Rpl22 in the determination of the heterochromatin in Drosophila.
Collapse
Affiliation(s)
- Maria Francesca Berloco
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Roberta Moschetti
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Antonio Palazzo
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | - Luigi Viggiano
- Department of Biology, University of Bari “Aldo Moro”, 70126 Bari, Italy; (M.F.B.); (R.M.); (A.P.)
| | | |
Collapse
|
12
|
Skern-Mauritzen R, Malde K, Eichner C, Dondrup M, Furmanek T, Besnier F, Komisarczuk AZ, Nuhn M, Dalvin S, Edvardsen RB, Klages S, Huettel B, Stueber K, Grotmol S, Karlsbakk E, Kersey P, Leong JS, Glover KA, Reinhardt R, Lien S, Jonassen I, Koop BF, Nilsen F. The salmon louse genome: Copepod features and parasitic adaptations. Genomics 2021; 113:3666-3680. [PMID: 34403763 DOI: 10.1016/j.ygeno.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.
Collapse
Affiliation(s)
| | - Ketil Malde
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Christiane Eichner
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Dondrup
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Francois Besnier
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Anna Zofia Komisarczuk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Nuhn
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Sussie Dalvin
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Kurt Stueber
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sindre Grotmol
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Egil Karlsbakk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Paul Kersey
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Kevin A Glover
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433 Ås, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Frank Nilsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway.
| |
Collapse
|
13
|
Wanner NM, Faulk C. Suggested Absence of Horizontal Transfer of Retrotransposons between Humans and Domestic Mammal Species. Genes (Basel) 2021; 12:1223. [PMID: 34440397 PMCID: PMC8391136 DOI: 10.3390/genes12081223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/01/2023] Open
Abstract
Transposable element sequences are usually vertically inherited but have also spread across taxa via horizontal transfer. Previous investigations of ancient horizontal transfer of transposons have compared consensus sequences, but this method resists detection of recent single or low copy number transfer events. The relationship between humans and domesticated animals represents an opportunity for potential horizontal transfer due to the consistent shared proximity and exposure to parasitic insects, which have been identified as plausible transfer vectors. The relatively short period of extended human-animal contact (tens of thousands of years or less) makes horizontal transfer of transposons between them unlikely. However, the availability of high-quality reference genomes allows individual element comparisons to detect low copy number events. Using pairwise all-versus-all megablast searches of the complete suite of retrotransposons of thirteen domestic animals against human, we searched a total of 27,949,823 individual TEs. Based on manual comparisons of stringently filtered BLAST search results for evidence of vertical inheritance, no plausible instances of HTT were identified. These results indicate that significant recent HTT between humans and domesticated animals has not occurred despite the close proximity, either due to the short timescale, inhospitable recipient genomes, a failure of vector activity, or other factors.
Collapse
Affiliation(s)
- Nicole M. Wanner
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 301 Veterinary Science Building, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA;
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, 277 Coffey Hall, 1420 Eckles Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|
15
|
Wang S, Diaby M, Puzakov M, Ullah N, Wang Y, Danley P, Chen C, Wang X, Gao B, Song C. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Mol Phylogenet Evol 2021; 161:107143. [PMID: 33713798 DOI: 10.1016/j.ympev.2021.107143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
DNA transposons play a significant role in shaping the size and structure of eukaryotic genomes. The Tc1/mariner transposons are the most diverse and widely distributed superfamily of DNA transposons and the structure and distribution of several Tc1/mariner families, such as DD35E/TR, DD36E/IC, DD37E/TRT, and DD41D/VS, have been well studied. Nonetheless, a greater understanding of the structure and diversity of Tc1/mariner transposons will provide insight into the evolutionary history of eukaryotic genomes. Here, we conducted further analysis of DD37D/maT and DD39D (named Guest, GT), which were identified by the specific catalytic domains DD37D and DD39D. Most transposons of the maT family have a total length of approximately 1.3 kb and harbor a single open reading frame encoding a ~ 346 amino acid (range 302-398 aa) transposase protein, flanked by short terminal inverted repeats (TIRs) (13-48 base pairs, bp). In contrast, GTs transposons were longer (2.0-5.8 kb), encoded a transposase protein of ~400 aa (range 140-592 aa), and were flanked by short TIRs (19-41 bp). Several conserved motifs, including two helix-turn-helix (HTH) motifs, a GRPR (GRKR) motif, a nuclear localization sequence, and a DDD domain, were also identified in maT and GT transposases. Phylogenetic analyses of the DDD domain showed that the maT and GT families each belong to a monophyletic clade and appear to be closely related to DD41D/VS and DD34D/mariner. In addition, maTs are mainly distributed in invertebrates (144 species), whereas GTs are mainly distributed in land plants through a small number of GTs are present in Chromista and animals. Sequence identity and phylogenetic analysis revealed that horizontal transfer (HT) events of maT and GT might occur between kingdoms and phyla of eukaryotes; however, pairwise distance comparisons between host genes and transposons indicated that HT events involving maTs might be less frequent between invertebrate species and HT events involving GTs may be less frequent between land plant species. Overall, the DD37D/maT and DD39D/GT families display significantly different distribution and tend to be identified in more ancient evolutionary families. The discovery of intact transposases, perfect TIRs, and target site duplications (TSD) of maTs and GTs illustrates that the DD37D/maT and DD39D/GT families may be active. Together, these findings improve our understanding of the diversity of Tc1/mariner transposons and their impact on eukaryotic genome evolution.
Collapse
Affiliation(s)
- Saisai Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mikhail Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia
| | - Numan Ullah
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Patrick Danley
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
16
|
Palazzo A, Marsano RM. Transposable elements: a jump toward the future of expression vectors. Crit Rev Biotechnol 2021; 41:792-808. [PMID: 33622117 DOI: 10.1080/07388551.2021.1888067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expression vectors (EVs) are artificial nucleic acid molecules with a modular structure that allows for the transcription of DNA sequences of interest in either cellular or cell-free environments. These vectors have emerged as cross-disciplinary tools with multiple applications in an expanding Life Sciences market. The cis-regulatory sequences (CRSs) that control the transcription in EVs are typically sourced from either viruses or from characterized genes. However, the recent advancement in transposable elements (TEs) technology provides attractive alternatives that may enable a significant improvement in the design of EVs. Commonly known as "jumping genes," due to their ability to move between genetic loci, TEs are constitutive components of both eukaryotic and prokaryotic genomes. TEs harbor native CRSs that allow the regulated transcription of transposition-related genes. However, some TE-related CRSs display striking characteristics, which provides the opportunity to reconsider TEs as lead actors in the design of EVs. In this article, we provide a synopsis of the transcriptional control elements commonly found in EVs together with an extensive discussion of their advantages and limitations. We also highlight the latest findings that may allow for the implementation of TE-derived sequences in the EVs feasible, possibly improving existing vectors. By introducing this new concept of TEs as a source of regulatory sequences, we aim to stimulate a profitable discussion of the potential advantages and benefits of developing a new generation of EVs based on the use of TE-derived control sequences.
Collapse
Affiliation(s)
- Antonio Palazzo
- Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S, Bari, Italy
| | | |
Collapse
|
17
|
Zong W, Gao B, Diaby M, Shen D, Wang S, Wang Y, Sang Y, Chen C, Wang X, Song C. Traveler, a New DD35E Family of Tc1/Mariner Transposons, Invaded Vertebrates Very Recently. Genome Biol Evol 2021; 12:66-76. [PMID: 32068835 PMCID: PMC7093834 DOI: 10.1093/gbe/evaa034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery of new members of the Tc1/mariner superfamily of transposons is expected based on the increasing availability of genome sequencing data. Here, we identified a new DD35E family termed Traveler (TR). Phylogenetic analyses of its DDE domain and full-length transposase showed that, although TR formed a monophyletic clade, it exhibited the highest sequence identity and closest phylogenetic relationship with DD34E/Tc1. This family displayed a very restricted taxonomic distribution in the animal kingdom and was only detected in ray-finned fish, anura, and squamata, including 91 vertebrate species. The structural organization of TRs was highly conserved across different classes of animals. Most intact TR transposons had a length of ∼1.5 kb (range 1,072-2,191 bp) and harbored a single open reading frame encoding a transposase of ∼340 aa (range 304-350 aa) flanked by two short-terminal inverted repeats (13-68 bp). Several conserved motifs, including two helix-turn-helix motifs, a GRPR motif, a nuclear localization sequence, and a DDE domain, were also identified in TR transposases. This study also demonstrated the presence of horizontal transfer events of TRs in vertebrates, whereas the average sequence identities and the evolutionary dynamics of TR elements across species and clusters strongly indicated that the TR family invaded the vertebrate lineage very recently and that some of these elements may be currently active, combining the intact TR copies in multiple lineages of vertebrates. These data will contribute to the understanding of the evolutionary history of Tc1/mariner transposons and that of their hosts.
Collapse
Affiliation(s)
- Wencheng Zong
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Dan Shen
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Saisai Wang
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Jiangsu, China
| |
Collapse
|
18
|
Palazzo A, Escuder E, D'Addabbo P, Lovero D, Marsano RM. A genomic survey of Tc1-mariner transposons in nematodes suggests extensive horizontal transposon transfer events. Mol Phylogenet Evol 2021; 158:107090. [PMID: 33545274 DOI: 10.1016/j.ympev.2021.107090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/24/2023]
Abstract
The number of reports concerning horizontal transposon transfers (HTT) in metazoan species is considerably increased, alongside with the exponential growth of genomic sequence data However, our understanding of the mechanisms of such phenomenon is still at an early stage. Nematodes constitute an animal phylum successfully adapted to almost every ecosystem and for this reason could potentially contribute to spreading the genetic information through horizontal transfer. To date, few studies describe HTT of nematode retrotransposons. This is due to the lack of annotation of transposable elements in the sequenced nematode genomes, especially DNA transposons, which are acknowledged as the best horizontal travelers among mobile sequences. We have therefore started a survey of DNA transposons and their possible involvement in HTT in sequenced nematode genomes. Here, we describe 83 new Tc1/mariner elements distributed in 17 nematode species. Among them, nine families were possibly horizontally transferred between nematodes and the most diverse animal species, including ants as preferred partner of HTT. The results obtained suggest that HTT events involving nematodes Tc1/mariner elements are not uncommon, and that nematodes could have a possible role as transposon reservoir that, in turn, can be redistributed among animal genomes. Overall, this could be relevant to understand how the inter-species genetic flows shape the landscape of genetic variation of organisms inhabiting specific environmental communities.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Elsa Escuder
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Domenica Lovero
- Dipartimento di Scienze Biomediche ed Oncologia Umana (DIMO), Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
19
|
Orozco-Arias S, Jaimes PA, Candamil MS, Jiménez-Varón CF, Tabares-Soto R, Isaza G, Guyot R. InpactorDB: A Classified Lineage-Level Plant LTR Retrotransposon Reference Library for Free-Alignment Methods Based on Machine Learning. Genes (Basel) 2021; 12:genes12020190. [PMID: 33525408 PMCID: PMC7910972 DOI: 10.3390/genes12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/04/2022] Open
Abstract
Long terminal repeat (LTR) retrotransposons are mobile elements that constitute the major fraction of most plant genomes. The identification and annotation of these elements via bioinformatics approaches represent a major challenge in the era of massive plant genome sequencing. In addition to their involvement in genome size variation, LTR retrotransposons are also associated with the function and structure of different chromosomal regions and can alter the function of coding regions, among others. Several sequence databases of plant LTR retrotransposons are available for public access, such as PGSB and RepetDB, or restricted access such as Repbase. Although these databases are useful to identify LTR-RTs in new genomes by similarity, the elements of these databases are not fully classified to the lineage (also called family) level. Here, we present InpactorDB, a semi-curated dataset composed of 130,439 elements from 195 plant genomes (belonging to 108 plant species) classified to the lineage level. This dataset has been used to train two deep neural networks (i.e., one fully connected and one convolutional) for the rapid classification of these elements. In lineage-level classification approaches, we obtain up to 98% performance, indicated by the F1-score, precision and recall scores.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, 170002 Manizales, Colombia; (P.A.J.); (M.S.C.)
- Department of Systems and Informatics, Universidad de Caldas, 170002 Manizales, Colombia;
- Correspondence: (S.O.-A.); (R.G.)
| | - Paula A. Jaimes
- Department of Computer Science, Universidad Autónoma de Manizales, 170002 Manizales, Colombia; (P.A.J.); (M.S.C.)
| | - Mariana S. Candamil
- Department of Computer Science, Universidad Autónoma de Manizales, 170002 Manizales, Colombia; (P.A.J.); (M.S.C.)
| | | | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, 170002 Manizales, Colombia;
| | - Gustavo Isaza
- Department of Systems and Informatics, Universidad de Caldas, 170002 Manizales, Colombia;
| | - Romain Guyot
- Department of Electronics and Automation, Universidad Autónoma de Manizales, 170002 Manizales, Colombia;
- Institut de Recherche pour le Développement, CIRAD, University of Montpellier, 34394 Montpellier, France
- Correspondence: (S.O.-A.); (R.G.)
| |
Collapse
|
20
|
Veschetti L, Sandri A, Patuzzo C, Melotti P, Malerba G, Lleò MM. Mobilome Analysis of Achromobacter spp. Isolates from Chronic and Occasional Lung Infection in Cystic Fibrosis Patients. Microorganisms 2021; 9:microorganisms9010130. [PMID: 33430044 PMCID: PMC7826576 DOI: 10.3390/microorganisms9010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Achromobacter spp. is an opportunistic pathogen that can cause lung infections in patients with cystic fibrosis (CF). Although a variety of mobile genetic elements (MGEs) carrying antimicrobial resistance genes have been identified in clinical isolates, little is known about the contribution of Achromobacter spp. mobilome to its pathogenicity. To provide new insights, we performed bioinformatic analyses of 54 whole genome sequences and investigated the presence of phages, insertion sequences (ISs), and integrative and conjugative elements (ICEs). Most of the detected phages were previously described in other pathogens and carried type II toxin-antitoxin systems as well as other pathogenic genes. Interestingly, the partial sequence of phage Bcep176 was found in all the analyzed Achromobacter xylosoxidans genome sequences, suggesting the integration of this phage in an ancestor strain. A wide variety of IS was also identified either inside of or in proximity to pathogenicity islands. Finally, ICEs carrying pathogenic genes were found to be widespread among our isolates and seemed to be involved in transfer events within the CF lung. These results highlight the contribution of MGEs to the pathogenicity of Achromobacter species, their potential to become antimicrobial targets, and the need for further studies to better elucidate their clinical impact.
Collapse
Affiliation(s)
- Laura Veschetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Angela Sandri
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy;
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy;
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Maria M. Lleò
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy;
- Correspondence:
| |
Collapse
|
21
|
Padeken J, Methot S, Zeller P, Delaney CE, Kalck V, Gasser SM. Argonaute NRDE-3 and MBT domain protein LIN-61 redundantly recruit an H3K9me3 HMT to prevent embryonic lethality and transposon expression. Genes Dev 2021; 35:82-101. [PMID: 33303642 PMCID: PMC7778263 DOI: 10.1101/gad.344234.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
The establishment and maintenance of chromatin domains shape the epigenetic memory of a cell, with the methylation of histone H3 lysine 9 (H3K9me) defining transcriptionally silent heterochromatin. We show here that the C. elegans SET-25 (SUV39/G9a) histone methyltransferase (HMT), which catalyzes H3K9me1, me2 and me3, can establish repressed chromatin domains de novo, unlike the SETDB1 homolog MET-2. Thus, SET-25 is needed to silence novel insertions of RNA or DNA transposons, and repress tissue-specific genes de novo during development. We identify two partially redundant pathways that recruit SET-25 to its targets. One pathway requires LIN-61 (L3MBTL2), which uses its four MBT domains to bind the H3K9me2 deposited by MET-2. The second pathway functions independently of MET-2 and involves the somatic Argonaute NRDE-3 and small RNAs. This pathway targets primarily highly conserved RNA and DNA transposons. These redundant SET-25 targeting pathways (MET-2-LIN-61-SET-25 and NRDE-3-SET-25) ensure repression of intact transposons and de novo insertions, while MET-2 can act alone to repress simple and satellite repeats. Removal of both pathways in the met-2;nrde-3 double mutant leads to the loss of somatic H3K9me2 and me3 and the synergistic derepression of transposons in embryos, strongly elevating embryonic lethality.
Collapse
Affiliation(s)
- Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Stephen Methot
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Veronique Kalck
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
22
|
Yushkova E. Involvement of DNA Repair Genes and System of Radiation-Induced Activation of Transposons in Formation of Transgenerational Effects. Front Genet 2020; 11:596947. [PMID: 33329741 PMCID: PMC7729008 DOI: 10.3389/fgene.2020.596947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
The study of the genetic basis of the manifestation of radiation-induced effects and their transgenerational inheritance makes it possible to identify the mechanisms of adaptation and possible effective strategies for the survival of organisms in response to chronic radioactive stress. One persistent hypothesis is that the activation of certain genes involved in cellular defense is a specific response of the cell to irradiation. There is also data indicating the important role of transposable elements in the formation of radiosensitivity/radioresistance of biological systems. In this work, we studied the interaction of the systems of hobo transposon activity and DNA repair in the cell under conditions of chronic low-dose irradiation and its participation in the inheritance of radiation-induced transgenerational instability in Drosophila. Our results showed a significant increase of sterility and locus-specific mutability, a decrease of survival, fertility and genome stability (an increase the frequency of dominant lethal mutations and DNA damage) in non-irradiated F1/F2 offspring of irradiated parents with dysfunction of the mus304 gene which is responsible for excision and post-replicative recombination repair and repair of double-stranded DNA breaks. The combined action of dysfunction of the mus309 gene and transpositional activity of hobo elements also led to the transgenerational effects of irradiation but only in the F1 offspring. Dysfunction of the genes of other DNA repair systems (mus101 and mus210) showed no visible effects inherited from irradiated parents subjected to hobo transpositions. The mei-41 gene showed specificity in this type of interaction, which consists in its higher efficiency in sensing events induced by transpositional activity rather than irradiation.
Collapse
Affiliation(s)
- Elena Yushkova
- Department of Radioecology, Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia
| |
Collapse
|
23
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
24
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
25
|
Courtier‐Orgogozo V, Danchin A, Gouyon P, Boëte C. Evaluating the probability of CRISPR-based gene drive contaminating another species. Evol Appl 2020; 13:1888-1905. [PMID: 32908593 PMCID: PMC7463340 DOI: 10.1111/eva.12939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The probability D that a given clustered regularly interspaced short palindromic repeats (CRISPR)-based gene drive element contaminates another, nontarget species can be estimated by the following Drive Risk Assessment Quantitative Estimate (DRAQUE) Equation: D = h y b + t r a n s f × e x p r e s s × c u t × f l a n k × i m m u n e × n o n e x t i n c t with hyb = probability of hybridization between the target species and a nontarget species; transf = probability of horizontal transfer of a piece of DNA containing the gene drive cassette from the target species to a nontarget species (with no hybridization); express = probability that the Cas9 and guide RNA genes are expressed; cut = probability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the new host; flank = probability that the gene drive cassette inserts at the cut site; immune = probability that the immune system does not reject Cas9-expressing cells; nonextinct = probability of invasion of the drive within the population. We discuss and estimate each of the seven parameters of the equation, with particular emphasis on possible transfers within insects, and between rodents and humans. We conclude from current data that the probability of a gene drive cassette to contaminate another species is not insignificant. We propose strategies to reduce this risk and call for more work on estimating all the parameters of the formula.
Collapse
Affiliation(s)
| | - Antoine Danchin
- Institut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris DescartesParisFrance
| | - Pierre‐Henri Gouyon
- Institut de Systématique, Évolution, BiodiversitéMuséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUAParisFrance
| | | |
Collapse
|
26
|
Gao B, Sang Y, Zong W, Diaby M, Shen D, Wang S, Wang Y, Chen C, Song C. Evolution and domestication of Tc1/mariner transposons in the genome of African coelacanth ( Latimeria chalumnae). Genome 2020; 63:375-386. [PMID: 32268072 DOI: 10.1139/gen-2019-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Here, we comprehensively analysed the abundance, diversity, and activity of Tc1/mariner transposons in African coelacanth (Latimeria chalumnae). Fifteen Tc1/mariner autonomous transposons were identified and grouped into six clades: DD34E/Tc1, DD34D/mariner, DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger, belonging to three known families: DD34E/Tc1, DD34D/mariner, and DD×D/pogo (DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger). Thirty-one miniature inverted-repeat transposable element (MITE) transposons of Tc1/mariner were also identified, and 20 of them display similarity to the identified autonomous transposons. The structural organization of these full Tc1/mariner elements includes a transposase gene flanked by terminal inverted repeats (TIRs) with TA dinucleotides. The transposases contain N-terminal DNA binding domain and a C-terminal catalytic domain characterized by the presence of a conservative D(Asp)DE(Glu)/D triad that is essential for transposase activity. The Tc1/mariner superfamily in coelacanth exhibited very low genome coverage (0.3%), but it experienced an extraordinary difference of proliferation dynamics among the six clades identified; moreover, most of them exhibited a very recent and current proliferation, suggesting that some copies of these transposons are putatively active. Additionally, at least four functional genes derived from Tc1/mariner transposons were found. We provide an up-to-date overview of Tc1/mariner in coelacanth, which may be helpful in determining genome and gene evolution in this living fossil.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yatong Sang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wencheng Zong
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mohamed Diaby
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
27
|
Zhang HH, Peccoud J, Xu MRX, Zhang XG, Gilbert C. Horizontal transfer and evolution of transposable elements in vertebrates. Nat Commun 2020; 11:1362. [PMID: 32170101 PMCID: PMC7070016 DOI: 10.1038/s41467-020-15149-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Horizontal transfer of transposable elements (HTT) is an important process shaping eukaryote genomes, yet very few studies have quantified this phenomenon on a large scale or have evaluated the selective constraints acting on transposable elements (TEs) during vertical and horizontal transmission. Here we screen 307 vertebrate genomes and infer a minimum of 975 independent HTT events between lineages that diverged more than 120 million years ago. HTT distribution greatly differs from null expectations, with 93.7% of these transfers involving ray-finned fishes and less than 3% involving mammals and birds. HTT incurs purifying selection (conserved protein evolution) on all TEs, confirming that producing functional transposition proteins is required for a TE to invade new genomes. In the absence of HTT, DNA transposons appear to evolve neutrally within genomes, unlike most retrotransposons, which evolve under purifying selection. This selection regime indicates that proteins of most retrotransposon families tend to process their own encoding RNA (cis-preference), which helps retrotransposons to persist within host lineages over long time periods. Horizontal transfer (HT) and evolution of transposable elements (TEs) has rarely been quantified on a large scale. Here, the authors screen 307 vertebrate genomes and infer 975 HT events (93% in ray-finned fishes); all TEs involved in HT evolve within genomes under purifying selection, as do most retrotransposons.
Collapse
Affiliation(s)
- Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, 332000, Jiujiang, China
| | - Jean Peccoud
- UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, 86073, Poitiers, France
| | - Min-Rui-Xuan Xu
- College of Pharmacy and Life Science, Jiujiang University, 332000, Jiujiang, China
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, 332000, Jiujiang, China.
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Écologie, UMR 9191 CNRS, UMR 247 IRD, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Moschetti R, Palazzo A, Lorusso P, Viggiano L, Massimiliano Marsano R. "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila. BIOLOGY 2020; 9:E25. [PMID: 32028630 PMCID: PMC7168160 DOI: 10.3390/biology9020025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Antonio Palazzo
- Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy;
| | - Patrizio Lorusso
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| |
Collapse
|
29
|
Vendrell-Mir P, López-Obando M, Nogué F, Casacuberta JM. Different Families of Retrotransposons and DNA Transposons Are Actively Transcribed and May Have Transposed Recently in Physcomitrium ( Physcomitrella) patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1274. [PMID: 32973835 PMCID: PMC7466625 DOI: 10.3389/fpls.2020.01274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/05/2020] [Indexed: 05/07/2023]
Abstract
Similarly to other plant genomes of similar size, more than half of the genome of P. patens is covered by Transposable Elements (TEs). However, the composition and distribution of P. patens TEs is quite peculiar, with Long Terminal Repeat (LTR)-retrotransposons, which form patches of TE-rich regions interleaved with gene-rich regions, accounting for the vast majority of the TE space. We have already shown that RLG1, the most abundant TE in P. patens, is expressed in non-stressed protonema tissue. Here we present a non-targeted analysis of the TE expression based on RNA-Seq data and confirmed by qRT-PCR analyses that shows that, at least four LTR-RTs (RLG1, RLG2, RLC4 and tRLC5) and one DNA transposon (PpTc2) are expressed in P. patens. These TEs are expressed during development or under stresses that P. patens frequently faces, such as dehydratation/rehydratation stresses, suggesting that TEs have ample possibilities to transpose during P. patens life cycle. Indeed, an analysis of the TE polymorphisms among four different P. patens accessions shows that different TE families have recently transposed in this species and have generated genetic variability that may have phenotypic consequences, as a fraction of the TE polymorphisms are within or close to genes. Among the transcribed and mobile TEs, tRLC5 is particularly interesting as it concentrates in a single position per chromosome that could coincide with the centromere, and its expression is specifically induced in young sporophyte, where meiosis takes place.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
| | - Mauricio López-Obando
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- *Correspondence: Fabien Nogué, ; Josep M. Casacuberta,
| | - Josep M. Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- *Correspondence: Fabien Nogué, ; Josep M. Casacuberta,
| |
Collapse
|
30
|
Igolkina AA, Zinkevich A, Karandasheva KO, Popov AA, Selifanova MV, Nikolaeva D, Tkachev V, Penzar D, Nikitin DM, Buzdin A. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks. Cells 2019; 8:E1034. [PMID: 31491936 PMCID: PMC6770625 DOI: 10.3390/cells8091034] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transposons are selfish genetic elements that self-reproduce in host DNA. They were active during evolutionary history and now occupy almost half of mammalian genomes. Close insertions of transposons reshaped structure and regulation of many genes considerably. Co-evolution of transposons and host DNA frequently results in the formation of new regulatory regions. Previously we published a concept that the proportion of functional features held by transposons positively correlates with the rate of regulatory evolution of the respective genes. METHODS We ranked human genes and molecular pathways according to their regulatory evolution rates based on high throughput genome-wide data on five histone modifications (H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K9me3) linked with transposons for five human cell lines. RESULTS Based on the total of approximately 1.5 million histone tags, we ranked regulatory evolution rates for 25075 human genes and 3121 molecular pathways and identified groups of molecular processes that showed signs of either fast or slow regulatory evolution. However, histone tags showed different regulatory patterns and formed two distinct clusters: promoter/active chromatin tags (H3K4me3, H3K9ac, H3K27ac) vs. heterochromatin tags (H3K27me3, H3K9me3). CONCLUSION In humans, transposon-linked histone marks evolved in a coordinated way depending on their functional roles.
Collapse
Affiliation(s)
- Anna A Igolkina
- Mathematical Biology & Bioinformatics Laboratory, Institute of Applied Mathematics and Mechanics, Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
- Laboratory of Microbiological Monitoring and Bioremediation of Soil, All-Russia Research Institute for Agricultural Microbiology, Podbel'skogo, 3, St. Petersburg 196608, Russia.
| | - Arsenii Zinkevich
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | | | - Aleksey A Popov
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | - Maria V Selifanova
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | - Daria Nikolaeva
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
| | | | - Dmitry Penzar
- Lomonosov Moscow State University, Vorobiovy Gory 1, Moscow 119991, Russia
- Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina 3, Moscow 119991, Russia
| | - Daniil M Nikitin
- Omicsway Corp., Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton Buzdin
- Omicsway Corp., Walnut, CA 91789, USA.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|