1
|
Zhou L, Feng T, Xu S, Gao F, Lam TT, Wang Q, Wu T, Huang H, Zhan L, Li L, Guan Y, Dai Z, Yu G. ggmsa: a visual exploration tool for multiple sequence alignment and associated data. Brief Bioinform 2022; 23:6603927. [PMID: 35671504 DOI: 10.1093/bib/bbac222] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
The identification of the conserved and variable regions in the multiple sequence alignment (MSA) is critical to accelerating the process of understanding the function of genes. MSA visualizations allow us to transform sequence features into understandable visual representations. As the sequence-structure-function relationship gains increasing attention in molecular biology studies, the simple display of nucleotide or protein sequence alignment is not satisfied. A more scalable visualization is required to broaden the scope of sequence investigation. Here we present ggmsa, an R package for mining comprehensive sequence features and integrating the associated data of MSA by a variety of display methods. To uncover sequence conservation patterns, variations and recombination at the site level, sequence bundles, sequence logos, stacked sequence alignment and comparative plots are implemented. ggmsa supports integrating the correlation of MSA sequences and their phenotypes, as well as other traits such as ancestral sequences, molecular structures, molecular functions and expression levels. We also design a new visualization method for genome alignments in multiple alignment format to explore the pattern of within and between species variation. Combining these visual representations with prime knowledge, ggmsa assists researchers in discovering MSA and making decisions. The ggmsa package is open-source software released under the Artistic-2.0 license, and it is freely available on Bioconductor (https://bioconductor.org/packages/ggmsa) and Github (https://github.com/YuLab-SMU/ggmsa).
Collapse
Affiliation(s)
- Lang Zhou
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingze Feng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fangluan Gao
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tommy T Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, China.,Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tianzhi Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huina Huang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Zhuhai International Travel Healthcare Center, Zhuhai, Guangdong, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, China.,Joint Institute of Virology (Shantou University - The University of Hong Kong), Shantou University, Shantou, China
| | - Zehan Dai
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Revisiting Orthotospovirus phylogeny using full-genome data and testing the contribution of selection, recombination and segment reassortment in the origin of members of new species. Arch Virol 2021; 166:491-499. [PMID: 33394171 DOI: 10.1007/s00705-020-04902-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
The family Tospoviridae of the order Bunyavirales is constituted of tri-segmented negative-sense single-stranded RNA viruses that infect plants and are also able to replicate in their insect vectors in a persistent manner. The family is composed of a single genus, Orthotospovirus, whose type species is Tomato spotted wilt orthotospovirus. Previous studies assessing the phylogenetic relationships within this genus were based on partial genomic sequences, resulting in unresolved clades and a poor assessment of the roles of recombination and segment reassortment during mixed infections. Full genome sequences of members of recognized Orthotospovirus species are now available at NCBI. In this study, we examined 67 complete genome sequences from members of 22 species. Our study confirms the existence of four phylogroups (A to D), grouped in two major clades (A-B and C-D) within the genus. We found strong evidence that within-segment recombination events and reassortment of segments during mixed infections have been involved in the origin of new orthotospoviruses. Also, selection pressures were analyzed for each gene, and evidence of positive selection was found in all genes.
Collapse
|
3
|
Terret-Welter Z, Bonnet G, Moury B, Gallois JL. Analysis of tomato spotted wilt virus RNA-dependent RNA polymerase adaptative evolution and constrained domains using homology protein structure modelling. J Gen Virol 2020; 101:334-346. [PMID: 31958051 DOI: 10.1099/jgv.0.001380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tomato spotted wilt virus (TSWV; genus Orthotospovirus, family Tospoviridae) has a huge impact on a large range of plants worldwide. In this study, we determined the sequence of the large (L) RNA segment that encodes the RNA-dependent RNA polymerase (RdRp) from a TSWV isolate (LYE51) collected in the south of France. Analysis of the phylogenetic relationships of TSWV-LYE51 with other TSWV isolates shows that it is closely related to other European isolates. A 3D model of TSWV-LYE51 RdRp was built by homology with the RdRp structure of the La Crosse virus (genus Orthobunyavirus, family Peribunyaviridae). Finally, an analysis of positive and negative selection was carried out on 30 TSWV full-length RNA L sequences and compared with the phylogeny and the protein structure data. We showed that the seven codons that are under positive selection are distributed all along the RdRp gene. By contrast, the codons associated with negative selection are especially concentrated in three highly constrained domains: the endonuclease in charge of the cap-snatching mechanism, the thumb domain and the mid domain. Those three domains could constitute good candidates to look for host targets on which genetic resistance by loss of susceptibility could be developed.
Collapse
Affiliation(s)
- Zoé Terret-Welter
- Syngeta Seeds SAS, 346 Route des Pasquiers - F84260 Sarrians, France
- GAFL, INRA, Montfavet, France
| | - Grégori Bonnet
- Syngeta Seeds SAS, 346 Route des Pasquiers - F84260 Sarrians, France
| | - Benoit Moury
- INRA, UR407 Pathologie Végétale, 84140, Montfavet, France
| | | |
Collapse
|
4
|
Coupeau D, Bayrou C, Baillieux P, Marichal A, Lenaerts AC, Caty C, Wiggers L, Kirschvink N, Desmecht D, Muylkens B. Host-dependence of in vitro reassortment dynamics among the Sathuperi and Shamonda Simbuviruses. Emerg Microbes Infect 2019; 8:381-395. [PMID: 30896304 PMCID: PMC6455117 DOI: 10.1080/22221751.2019.1586410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Orthobunyaviruses are arboviruses (Arthropod Borne Virus) and possess multipartite genomes made up of three negative RNAs corresponding to the small (S), medium (M) and large (L) segments. Reassortment and recombination are evolutionary driving forces of such segmented viruses and lead to the emergence of new strains and species. Retrospective studies based on phylogenetical analysis are able to evaluate these mechanisms at the end of the selection process but fail to address the dynamics of emergence. This issue was addressed using two Orthobunyaviruses infecting ruminants and belonging to the Simbu serogroup: the Sathuperi virus (SATV) and the Shamonda virus (SHAV). Both viruses were associated with abortion, stillbirth and congenital malformations occurring after transplacental transmission and were suspected to spread together in different ruminant and insect populations. This study showed that different viruses related to SHAV and SATV are spreading simultaneously in ruminants and equids of the Sub-Saharan region. Their reassortment and recombination potential was evaluated in mammalian and in insect contexts. A method was set up to determine the genomic background of any clonal progeny viruses isolated after in vitro coinfections assays. All the reassortment combinations were generated in both contexts while no recombinant virus was isolated. Progeny virus populations revealed a high level of reassortment in mammalian cells and a much lower level in insect cells. In vitro selection pressure that mimicked the host switching (insect-mammal) revealed that the best adapted reassortant virus was connected with an advantageous replicative fitness and with the presence of a specific segment.
Collapse
Affiliation(s)
- Damien Coupeau
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| | - Calixte Bayrou
- b Department of Morphology and Pathology, FARAH Research Center, Faculty of Veterinary Medicine , University of Liège Liège , Belgium
| | - Pierre Baillieux
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| | - Axel Marichal
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| | - Anne-Cécile Lenaerts
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| | - Céline Caty
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| | - Laetitia Wiggers
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| | - Nathalie Kirschvink
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| | - Daniel Desmecht
- b Department of Morphology and Pathology, FARAH Research Center, Faculty of Veterinary Medicine , University of Liège Liège , Belgium
| | - Benoît Muylkens
- a Veterinary Department, Faculty of Sciences , Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur) Namur , Belgium
| |
Collapse
|
5
|
Golnaraghi A, Shahraeen N, Nguyen HD. Characterization and Genetic Structure of a Tospovirus Causing Chlorotic Ring Spots and Chlorosis Disease on Peanut; Comparison with Iranian and Polish Populations of Tomato yellow fruit ring virus. PLANT DISEASE 2018; 102:1509-1519. [PMID: 30673421 DOI: 10.1094/pdis-09-17-1350-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A Tospovirus species was isolated from peanut plants showing chlorotic ring spots and chlorosis, and identified as Tomato yellow fruit ring virus (TYFRV) on the basis of its biological, serological, and molecular properties. In host range studies, a broad range of indicator plants was infected by the five isolates studied; all the isolates systemically infected Nicotiana tabacum cultivars and, thus, they were classified into the N-host-infecting type isolates of the virus. These isolates strongly reacted with TYFRV antibodies but not with the specific antibodies of other tospoviruses tested. Recombination analyses showed that the nucleoprotein gene of the peanut isolates and other isolates studied were nonrecombinant. In phylogenetic trees, the virus isolates were clustered in three genogroups: IRN-1, IRN-2, and a new group, POL; the peanut isolates fell into IRN-2 group. Multiple sequence alignments showed some genogroup-specific amino acid substitutions among the virus isolates studied. The results revealed the presence of negative selection in TYFRV populations. Also, the Iranian populations had higher nucleotide diversity compared with the Polish population. Genetic differentiation and gene flow analyses indicated that the populations from Iran and Poland and those belonging to different genogroups were partially differentiated populations. Our findings seem to suggest that there has been frequent gene flow between some populations of the virus in the mid-Eurasian region of Iran.
Collapse
Affiliation(s)
- A Golnaraghi
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran, Iran
| | - N Shahraeen
- Department of Plant Virus Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education & Extension Organization, P.O. Box 19395-1454, Tehran, Iran
| | - H D Nguyen
- Department of Plant Pathology, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| |
Collapse
|
6
|
Amroun A, Priet S, de Lamballerie X, Quérat G. Bunyaviridae RdRps: structure, motifs, and RNA synthesis machinery. Crit Rev Microbiol 2017; 43:753-778. [PMID: 28418734 DOI: 10.1080/1040841x.2017.1307805] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bunyaviridae family is the largest and most diverse family of RNA viruses. It has more than 350 members divided into five genera: Orthobunyavirus, Phlebovirus, Nairovirus, Hantavirus, and Tospovirus. They are present in the five continents, causing recurrent epidemics, epizootics, and considerable agricultural loss. The genome of bunyaviruses is divided into three segments of negative single-stranded RNA according to their relative size: L (Large), M (Medium) and S (Small) segment. Bunyaviridae RNA-dependent RNA polymerase (RdRp) is encoded by the L segment, and is in charge of the replication and transcription of the viral RNA in the cytoplasm of the infected cell. Viral RdRps share a characteristic right hand-like structure with three subdomains: finger, palm, and thumb subdomains that define the formation of the catalytic cavity. In addition to the N-terminal endonuclease domain, eight conserved motifs (A-H) have been identified in the RdRp of Bunyaviridae. In this review, we have summarized the recent insights from the structural and functional studies of RdRp to understand the roles of different motifs shared by RdRps, the mechanism of viral RNA replication, genome segment packaging by the nucleoprotein, cap-snatching, mRNA transcription, and other RNA mechanisms of bunyaviruses.
Collapse
Affiliation(s)
- Abdennour Amroun
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Stéphane Priet
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Xavier de Lamballerie
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Gilles Quérat
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| |
Collapse
|