1
|
Cao H, Li Z, Ye J, Lv Y, Zhang C, Liang T, Wang Y. Emerging roles of exosomes in the diagnosis and treatment of kidney diseases. Front Pharmacol 2025; 16:1525314. [PMID: 40308771 PMCID: PMC12041035 DOI: 10.3389/fphar.2025.1525314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
The complex etiology and spectrum of kidney diseases necessitate vigilant attention; the focus on early diagnosis and intervention in kidney diseases remains a critical issue in medical research. Recently, with the expanding studies on extracellular vesicles, exosomes have garnered increasing interest as a promising tool for the diagnosis and treatment of kidney diseases. Exosomes are nano-sized extracellular vesicles that transport a diverse array of bioactive substances, which can influence various pathological processes associated with kidney diseases and exhibit detrimental or beneficial effects. Within the kidney, exosomes derived from the glomeruli and renal tubules possess the ability to enter systemic circulation or urine. The biomarkers they carry can reflect alterations in the pathological state of the kidneys, thereby offering novel avenues for early diagnosis. Furthermore, research studies have confirmed that exosomes originating from multiple cell types exhibit therapeutic potential in treating kidney disease; notably, those derived from mesenchymal stem cells (MSCs) have shown significant treatment efficacy. This comprehensive review summarizes the contributions of exosomes from different cell types within the kidneys while exploring their physiological and pathological roles therein. Additionally, we emphasize recent advancements in exosome applications for the diagnosis and treatment of various forms of kidney diseases over the past decades. We not only introduce the urinary and blood biomarkers linked to kidney diseases found within exosomes but also explore their therapeutic effects. Finally, we discuss existing challenges and future directions concerning the clinical applications of exosomes for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Huanhuan Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixi Li
- Department of Clinical Laboratory, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lv
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Vural A, Lanier SM. Properties of biomolecular condensates defined by Activator of G-protein Signaling 3. J Cell Sci 2024; 137:jcs261326. [PMID: 38264908 PMCID: PMC10911133 DOI: 10.1242/jcs.261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Activator of G-protein signaling 3 (AGS3; also known as GPSM1), a receptor-independent activator of G-protein signaling, oscillates among defined subcellular compartments and biomolecular condensates (BMCs) in a regulated manner that is likely related to the functional diversity of the protein. We determined the influence of cell stress on the cellular distribution of AGS3 and core material properties of AGS3 BMCs. Cellular stress (oxidative, pHi and thermal) induced the formation of AGS3 BMCs in HeLa and COS-7 cells, as determined by fluorescent microscopy. Oxidative stress-induced AGS3 BMCs were distinct from G3BP1 stress granules and from RNA processing BMCs defined by the P-body protein Dcp1a. Immunoblots indicated that cellular stress shifted AGS3, but not the stress granule protein G3BP1 to a membrane pellet fraction following cell lysis. The stress-induced generation of AGS3 BMCs was reduced by co-expression of the signaling protein Gαi3, but not the AGS3-binding partner DVL2. Fluorescent recovery following photobleaching of individual AGS3 BMCs indicated that there are distinct diffusion kinetics and restricted fluidity for AGS3 BMCs. These data suggest that AGS3 BMCs represent a distinct class of stress granules that serve as a previously unrecognized signal processing node.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M. Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. Int J Biochem Cell Biol 2022; 149:106262. [PMID: 35787447 DOI: 10.1016/j.biocel.2022.106262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Exosomes are the self-packed nanoscale vesicles (nanovesicles) derived from late endosomes and released from the cells to the extracellular milieu. Exosomal biogenesis is based on endosomal pathway to form the nanovesicles surrounded by membrane originated from plasma membranes of the parental cells. During biogenesis, exosomes selectively encapsulate an array of biomolecules (proteins, nucleic acids, lipids, metabolites, etc.), thereby conveying diverse messages for cell-cell communications. Once released, these exosomal contents trigger signaling and trafficking that play roles in cell growth, development, immune responses, homeostasis, remodeling, etc. Recent advances in exosomal research have provided a wealth of useful information that enhances our knowledge on the roles for exosomes in pathogenic mechanisms of human diseases involving a wide variety of organ systems. In the kidney, exosomes play divergent roles, ranging from pathogenesis to therapeutics, based on their original sources and type of interventions. Herein, we summarize and update the current knowledge on the divergent roles of exosomes involving the pathogenesis, diagnostics, prognostics, and therapeutics in various groups of kidney diseases, including acute kidney injury, immune-mediated kidney diseases (e.g., IgA nephropathy, lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis), chronic kidney disease (caused by diabetic nephropathy and others), renal cell carcinoma, nephrolithiasis, kidney transplantation and related complications, and polycystic kidney disease. Finally, the future perspectives on research in this area are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Li X, Yang L. Urinary exosomes: Emerging therapy delivery tools and biomarkers for urinary system diseases. Biomed Pharmacother 2022; 150:113055. [PMID: 35658226 DOI: 10.1016/j.biopha.2022.113055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary exosomes (UE) are small circular membranous vesicles with a lipid bilayer with a diameter of 40-160 nm secreted by epithelial cells of the kidney and genitourinary system, which can reflect the physiological and functional status of secretory cells. Protein and RNA in exosomes can be used as markers for diseases diagnosis. Urine specimens are available and non-invasive. The protein and RNA in UE are more stable than the soluble protein and RNA in urine, which have broad application prospects in the diagnosis of urinary system diseases. This article reviews the recent advances in the application of protein or RNA in UE as markers to the diagnosis of urinary system diseases.
Collapse
Affiliation(s)
- Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Exosomes: Emerging Therapy Delivery Tools and Biomarkers for Kidney Diseases. Stem Cells Int 2021; 2021:7844455. [PMID: 34471412 PMCID: PMC8405320 DOI: 10.1155/2021/7844455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nanometer-sized small EVs coated with bilayer structure, which are released by prokaryotic and eukaryotic cells. Exosomes are rich in a variety of biologically active substances, such as proteins, nucleotides, and lipids. Exosomes are widely present in various body fluids and cell culture supernatants, and it mediates the physiological and pathological processes of the body through the shuttle of these active ingredients to target cells. In recent years, studies have shown that exosomes from a variety of cell sources can play a beneficial role in acute and chronic kidney disease. In particular, exosomes derived from mesenchymal stem cells have significant curative effects on the prevention and treatment of kidney disease in preclinical trials. Besides, some encapsulated substances are demonstrated to exert beneficial effects on various diseases, so they have attracted much attention. In addition, exosomes have extensive sources, stable biological activity, and good biocompatibility and are easy to store and transport; these advantages endow exosomes with superior diagnostic value. With the rapid development of liquid biopsy technology related to exosomes, the application of exosomes in the rapid diagnosis of kidney disease has become more prominent. In this review, the latest development of exosomes, including the biosynthesis process, the isolation and identification methods of exosomes are systematically summarized. The utilization of exosomes in diagnosis and their positive effects in the repair of kidney dysfunction are discussed, along with the specific mechanisms. This review is expected to be helpful for relevant studies and to provide insight into future applications in clinical practice.
Collapse
|
7
|
Lee SA, Choi C, Yoo TH. Extracellular vesicles in kidneys and their clinical potential in renal diseases. Kidney Res Clin Pract 2021; 40:194-207. [PMID: 33866768 PMCID: PMC8237124 DOI: 10.23876/j.krcp.20.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are cell-derived lipid bilayer membrane particles, which deliver information from host cells to recipient cells. EVs are involved in various biological processes including the modulation of the immune response, cell-to-cell communications, thrombosis, and tissue regeneration. Different types of kidney cells are known to release EVs under physiologic as well as pathologic conditions, and recent studies have found that EVs have a pathophysiologic role in different renal diseases. Given the recent advancement in EV isolation and analysis techniques, many studies have shown the diagnostic and therapeutic potential of EVs in various renal diseases, such as acute kidney injury, polycystic kidney disease, chronic kidney disease, kidney transplantation, and renal cell carcinoma. This review updates recent clinical and experimental findings on the role of EVs in renal diseases and highlights the potential clinical applicability of EVs as novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sul A Lee
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Zhou B, Sun J, He Q, Zhao Y. Knockdown of GPSM1 Inhibits the Proliferation and Promotes the Apoptosis of B-Cell Acute Lymphoblastic Leukemia Cells by Suppressing the ADCY6-RAPGEF3-JNK Signaling Pathway. Pathol Oncol Res 2021; 27:643376. [PMID: 34257610 PMCID: PMC8262160 DOI: 10.3389/pore.2021.643376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the common type of blood cancer. Although the remission rate has increased, the current treatment options for B-ALL are usually related to adverse reactions and recurrence, so it is necessary to find other treatment options. G protein signaling modulator 1 (GPSM1) is one of several factors that affect the basic activity of the G protein signaling system, but its role in B-ALL has not yet been clarified. In this study, we analyzed the expression of GPSM1 in the Oncomine database and found that the GPSM1 levels were higher in B-ALL cells than in peripheral blood mononuclear cells (PBMCs). Analyses of the Gene Expression Profiling Interactive Analysis (GEPIA) demonstrated that patients with high GPSM1 levels had shorter survival times than those with low levels. Additionally, gene set enrichment analysis (GSEA) suggested that GPSM1 was positively correlated with proliferation, G protein-coupled receptor (GPCR) ligand binding, Gαs signaling and calcium signaling pathways. In further experiments, GPSM1 was found to be highly expressed in Acute lymphoblastic leukemia (ALL) cell lines, and downregulation of GPSM1 inhibited proliferation and promoted cell cycle arrest and apoptosis in BALL-1 and Reh cells. Moreover, knockdown of GPSM1 suppressed ADCY6 and RAPGEF3 expression in BALL-1 and Reh cells. Furthermore, we reported that GPSM1 regulated JNK expression via ADCY6-RAPGEF3. The present study demonstrates that GPSM1 promotes tumor growth in BALL-1 and Reh cells by modulating ADCY6-RAPGEF3-JNK signaling.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Bo Zhou
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Jingjing Sun
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Qun He
- Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Yujie Zhao
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Gang D, Yu CJ, Zhu S, Zhu P, Nasser MI. Application of mesenchymal stem cell-derived exosomes in kidney diseases. Cell Immunol 2021; 364:104358. [PMID: 33839596 DOI: 10.1016/j.cellimm.2021.104358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
Kidney injury (KI) has high morbidity and mortality; there has been no ideal practical treatment available in clinical practice until now. Exosomes are formed from fusing multisubunit body membranes and are secreted into the extracellular matrix, intercellular communication membracusses. As a cell-free treatment, it offers a new approach to the treatment of KI. Exosomes are spherical vesicles with or no separator cup that shapes proteins, and RNA acts on the target cells through various means to promote tissue damage and mitigate apoptosis, both inflammation and oxidative stress. Exosomes derived from mesenchymal stem cells (MSC) have a paracrine function in promoting tissue repair and immune regulation. The MSC-Exos provide specific benefits over the MSCs. The urinary exosomes closely follow the functions and diseases of the kidneys. Though much of the research in this field is only at the preliminary stages, previous research has demonstrated that MSC-Exos damaged tissues to offer proteins, mRNAs, and microRNAs as remedies for kidney injury. Although exosomes' role in tissue repair is currently is greatly debated, several key issues remain unaddressed. This is a summarization of the work done concerning MSC in the treatment of KI.
Collapse
Affiliation(s)
- Deng Gang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chang Jiang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
10
|
Sun IO, Kwon SH. Extracellular vesicles: a novel window into kidney function and disease. Curr Opin Nephrol Hypertens 2020; 29:613-619. [PMID: 32889979 DOI: 10.1097/mnh.0000000000000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW There has been an increasing interest in extracellular vesicles as potential diagnostic, prognostic or therapeutic biomarkers for various kidney diseases, as extracellular vesicles mediate cell-cell or intercellular communication. This review explores the current state of knowledge regarding extracellular vesicles as a tool for examining kidney physiology and disease. RECENT FINDINGS Urinary extracellular vesicles may be useful as biomarkers to detect abnormal function in renal endothelial and tubular cells as well as podocytes. Recent studies suggest that urinary extracellular vesicles may facilitate early diagnosis and/or monitoring in acute kidney injury, glomerular disease, autosomal dominanat polycyst kidney disease and urinary tract malignancies. Circulating extracellular vesicles may serve as biomarkers to assess cardiovascular disease. SUMMARY Urinary and circulating extracellular vesicles have gained significant interest as potential biomarkers of renal diseases. Analysis of extracellular vesicles may serve as a logical diagnostic approach for nephrologists as well as provide information about disease pathophysiology.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
11
|
Mattera VS, Pereyra Gerber P, Glisoni R, Ostrowski M, Verstraeten SV, Pasquini JM, Correale JD. Extracellular vesicles containing the transferrin receptor as nanocarriers of apotransferrin. J Neurochem 2020; 155:327-338. [PMID: 32248519 DOI: 10.1111/jnc.15019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Previous work by our group has shown the pro-differentiating effects of apotransferrin (aTf) on oligodendroglial cells in vivo and in vitro. Further studies showed the remyelinating effect of aTf in animal demyelination models such as hypoxia/ischemia, where the intranasal administration of human aTf provided brain neuroprotection and reduced white matter damage, neuronal loss, and astrogliosis in different brain regions. These data led us to search for a less invasive and controlled technique to deliver aTf to the CNS. To such end, we isolated extracellular vesicles (EVs) from human and mouse plasma and different neuron and glia conditioned media and characterized them based on their quality, quantity, identity, and structural integrity by western blot, dynamic light scattering, and scanning electron microscopy. All sources yielded highly pure vesicles whose size and structures were in keeping with previous literary evidence. Given that, remarkably, EVs from all sources analyzed contained Tf receptor 1 (TfR1) in their composition, we employed two passive cargo-loading strategies which rendered successful EV loading with aTf, specifically through binding to TfR1. These results unveil EVs as potential nanovehicles of aTf to be delivered into the CNS parenchyma, and pave the way for further studies into their possible clinical application in the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Vanesa S Mattera
- CONICET. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pehuén Pereyra Gerber
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica. Buenos Aires, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Glisoni
- Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Matias Ostrowski
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica. Buenos Aires, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra V Verstraeten
- CONICET. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Juana M Pasquini
- CONICET. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
13
|
Thongboonkerd V. Roles for Exosome in Various Kidney Diseases and Disorders. Front Pharmacol 2020; 10:1655. [PMID: 32082158 PMCID: PMC7005210 DOI: 10.3389/fphar.2019.01655] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by endocytic vesicles) with plasma membrane. Exosome plays several important roles in cellular homeostasis and intercellular communications. During the last two decades, exosome has acquired a wide attention to explore its additional roles in various aspects of cell biology and function in several organ systems. For the kidney, several lines of evidence have demonstrated 1that exosome is involved in the renal physiology and pathogenic mechanisms of various kidney diseases/disorders. This article summarizes roles of the exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic biologics that have been extensively investigated in many kidney diseases/disorders, including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease (CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation, and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome activation and inflammatory cascade frequently found in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Dehghani M, Lucas K, Flax J, McGrath J, Gaborski T. Tangential flow microfluidics for the capture and release of nanoparticles and extracellular vesicles on conventional and ultrathin membranes. ADVANCED MATERIALS TECHNOLOGIES 2019; 4:1900539. [PMID: 32395607 PMCID: PMC7212937 DOI: 10.1002/admt.201900539] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 05/04/2023]
Abstract
Membranes have been used extensively for the purification and separation of biological species. A persistent challenge is the purification of species from concentrated feed solutions such as extracellular vesicles (EVs) from biological fluids. We investigated a new method to isolate micro- and nano-scale species termed tangential flow for analyte capture (TFAC), which is an extension of traditional tangential flow filtration (TFF). Initially, EV purification from plasma on ultrathin nanomembranes was compared between both normal flow filtration (NFF) and TFAC. NFF resulted in rapid formation of a protein cake which completely obscured any captured EVs and also prevented further transport across the membrane. On the other hand, TFAC showed capture of CD63 positive small EVs (sEVs) with minimal contamination. We explored the use of TFAC to capture target species over membrane pores, wash and then release in a physical process that does not rely upon affinity or chemical interactions. This process of TFAC was studied with model particles on both ultrathin nanomembranes and conventional thickness membranes (polycarbonate track-etch). Successful capture and release of model particles was observed using both membranes. Ultrathin nanomembranes showed higher efficiency of capture and release with significantly lower pressures indicating that ultrathin nanomembranes are well-suited for TFAC of delicate nanoscale particles such as EVs.
Collapse
Affiliation(s)
- Mehdi Dehghani
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, United States
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Jonathan Flax
- Department of Urology, University of Rochester Medical School, Rochester, NY, United States
| | - James McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Thomas Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
15
|
Hoffman JF, Vechetti IJ, Alimov AP, Kalinich JF, McCarthy JJ, Peterson CA. Hydrophobic sand is a viable method of urine collection from the rat for extracellular vesicle biomarker analysis. Mol Genet Metab Rep 2019; 21:100505. [PMID: 31467851 PMCID: PMC6710715 DOI: 10.1016/j.ymgmr.2019.100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Previously we have shown in rats a new method of urine collection, hydrophobic sand, to be an acceptable alternate in place of the traditional method using metabolic cages. Hydrophobic sand is non-toxic, induces similar or lower levels of stress in the rat, and does not contaminate clinical urine markers nor metal concentrations in collected samples (Hoffman et al., 2017 and 2018). Urine is often used in humans and many animal models as a readily-attainable biosample which contains proteins and microRNAs (miRNAs) within extracellular vesicles (EVs) that can be isolated to indicate changes in health. In order to ensure hydrophobic sand did not in any way contaminate or disrupt the extraction and analysis of these EVs and miRNAs, we used urine samples from the same 8 rats in the within-subjects crossover experiment comparing hydrophobic sand and metabolic cage collection methods. We isolated EVs and miRNAs from the urine set and examined their quantity and quality between the urine collection methods. We found no significant differences in particle size, particle concentration, total RNA, or the type and abundance of miRNAs contained within the urine EVs due to urine collection method, suggesting hydrophobic sand represents an easy-to-use, non-invasive method to collect rodent urine for EVs and biomarker studies.
Collapse
Affiliation(s)
- Jessica F Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Ivan J Vechetti
- Department of Physiology, College of Medicine, University of Kentucky, 800 South Rose Street, Lexington, KY 40536, USA
| | - Alexander P Alimov
- Department of Physiology, College of Medicine, University of Kentucky, 800 South Rose Street, Lexington, KY 40536, USA
| | - John F Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, 800 South Rose Street, Lexington, KY 40536, USA
| | - Charlotte A Peterson
- College of Health Sciences, University of Kentucky, 800 South Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
16
|
The role of extracellular vesicles in renal fibrosis. Cell Death Dis 2019; 10:367. [PMID: 31068572 PMCID: PMC6506498 DOI: 10.1038/s41419-019-1605-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
As a particularly important mediator of intercellular communication, extracellular vesicles (EVs) have been proved to be extensively involved in various system diseases over the past two decades, including in renal diseases. As is well-known, renal fibrosis is the common pathological process of any ongoing renal disease or adaptive repair of kidney injury based on current knowledge. Although much work has been performed focusing on EVs in various renal diseases, the role of EVs in renal fibrosis has not been described in detail and summarized. In this review, we provide a brief overview of the definition, classification and biological process of EVs. Then, the potential mechanisms of EVs in renal fibrosis are illustrated. Lastly, recent advances in EVs and the implications of EVs for diagnosis and therapy in renal fibrosis disease are introduced. We look forward to a more comprehensive understanding of EVs in renal fibrosis, which could be a boon to patients with renal fibrosis disease.
Collapse
|
17
|
Li Y, Xu X, Tang X, Bian X, Shen B, Zhao H, Luo S, Chen Z, Zhang K. MicroRNA expression profile of urinary exosomes in Type IV lupus nephritis complicated by cellular crescent. ACTA ACUST UNITED AC 2018; 25:16. [PMID: 30306067 PMCID: PMC6172751 DOI: 10.1186/s40709-018-0088-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/20/2018] [Indexed: 01/03/2023]
Abstract
Background Type IV lupus nephritis (LNIV) is a severe disease characterized by diffuse proliferative lesions, and its prognosis is worse with cellular crescent (LNIV-CC) involvement. Urinary exosomes have been shown to reflect the degree of kidney injury. This study was aimed to identify non-invasive diagnostic markers for LNIV-CC. We analysed the expression profile of microRNAs (miRNAs) isolated from urinary exosomes in patients with LNIV-CC and LNIV, and healthy individuals using high-throughput sequencing. Results A total of 66 differentially expressed miRNAs were identified, which were significantly enriched in 15 signalling pathways. Bioinformatic analysis revealed a co-expression network of miRNAs, predicted transcription factors and target mRNAs. Expression of three miRNAs including miR-3135b, miR-654-5p, and miR-146a-5p were further analysed and validated by reverse transcription-quantitative polymerase chain reaction. ROC analysis suggested these as candidate biomarkers for LNIV-CC. Conclusions LNIV-CC has a unique miRNA expression profile of urinary exosome and complex regulatory network. miR-3135b, miR-654-5p and miR-146a-5p in urinary exosomes could be used as novel non-invasive diagnostic markers for LNIV-CC.
Collapse
Affiliation(s)
- Yi Li
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Xiaosong Xu
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Xiaopeng Tang
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Xiuwu Bian
- Department of Pathology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Bingbing Shen
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Hongwen Zhao
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Shiyuan Luo
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Zhiwen Chen
- Department of Urology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Keqin Zhang
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| |
Collapse
|