1
|
Yu Y, Liu T, Wang Y, Liu L, He X, Li J, Martin FM, Peng W, Tan H. Comparative analyses of Pleurotus pulmonarius mitochondrial genomes reveal two major lineages of mini oyster mushroom cultivars. Comput Struct Biotechnol J 2024; 23:905-917. [PMID: 38370975 PMCID: PMC10869244 DOI: 10.1016/j.csbj.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Pleurotus pulmonarius, commonly known as the mini oyster mushroom, is highly esteemed for its crisp texture and umami flavor. Limited genetic diversity among P. pulmonarius cultivars raises concerns regarding its sustainable industrial production. To delve into the maternal genetic diversity of the principal P. pulmonarius cultivars, 36 cultivars and five wild isolates were subjected to de novo sequencing and assembly to generate high-quality mitogenome sequences. The P. pulmonarius mitogenomes had lengths ranging from 69,096 to 72,905 base pairs. The mitogenome sizes of P. pulmonarius and those of other mushroom species in the Pleurotus genus showed a significant positive correlation with the counts of LAGLIDAG and GIY-YIG homing endonucleases encoded by intronic open reading frames. A comparison of gene arrangements revealed an inversion of a fragment containing atp9-nad3-nad2 between P. pulmonarius and P. ostreatus. The mitogenomes of P. pulmonarius were clustered into three distinct clades, two of which were crowded with commercial cultivars. Clade I, all of which possess an inserted dpo gene, shared a maternal origin linked to an ancestral cultivar from Taiwan. Primers were designed to target the dpo gene, potentially safeguarding intellectual property rights. The wild isolates in Clade III exhibited more divergent mitogenomes, rendering them valuable for breeding.
Collapse
Affiliation(s)
- Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Sichuan Agricultural University, Chengdu 610000, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Lixu Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xiaolan He
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Jianwei Li
- Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est, Nancy, Champenoux 54280, France
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Hao Tan
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Feng XL, Xie TC, Wang ZX, Lin C, Li ZC, Huo J, Li Y, Liu C, Gao JM, Qi J. Distinguishing Sanghuangporus from sanghuang-related fungi: a comparative and phylogenetic analysis based on mitogenomes. Appl Microbiol Biotechnol 2024; 108:423. [PMID: 39037499 PMCID: PMC11263249 DOI: 10.1007/s00253-024-13207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.
Collapse
Affiliation(s)
- Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Tian-Chen Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhao-Chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jinxi Huo
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| |
Collapse
|
3
|
Chowdhury LM, Pr D, Mandal S, Ravi C, Mohindra V, Sarkar UK. Complete mitochondrial genome of critically endangered catfish Hemibagrus punctatus (Jerdon, 1849) and comparative analysis for insights into the phylogeny of hemibagrids through mitogenomic approach. Mol Biol Rep 2024; 51:601. [PMID: 38693276 DOI: 10.1007/s11033-024-09490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Hemibagrus punctatus (Jerdon, 1849) is a critically endangered bagrid catfish endemic to the Western Ghats of India, whose population is declining due to anthropogenic activities. The current study aims to compare the mitogenome of H. punctatus with that of other Bagrid catfishes and provide insights into their evolutionary relationships. METHODS AND RESULTS Samples were collected from Hemmige Karnataka, India. In the present study, the mitogenome of H. punctatus was successfully assembled, and its phylogenetic relationships with other Bagridae species were studied. The total genomic DNA of samples was extracted following the phenol-chloroform isoamyl alcohol method. Samples were sequenced, and the Illumina paired-end reads were assembled to a contig length of 16,517 bp. The mitochondrial genome was annotated using MitoFish and MitoAnnotator (Iwasaki et al., 2013). A robust phylogenetic analysis employing NJ (Maximum composite likelihood) and ASAP methods supports the classification of H. punctatus within the Bagridae family, which validates the taxonomic status of this species. In conclusion, this research enriches our understanding of H. punctatus mitogenome, shedding light on its evolutionary dynamics within the Bagridae family and contributing to the broader knowledge of mitochondrial genes in the context of evolutionary biology. CONCLUSIONS The study's findings contribute to a better understanding of the mitogenome of H. punctatus and provide insights into the evolutionary relationships within other Hemibagrids.
Collapse
Affiliation(s)
| | - Divya Pr
- Principal Scientist, Centre for PAGR, ICAR NBFGR, Cochin, 682018, India.
| | - Sangeeta Mandal
- Principal Scientist, Centre for PAGR, ICAR NBFGR, Cochin, 682018, India
| | - Charan Ravi
- Principal Scientist, Centre for PAGR, ICAR NBFGR, Cochin, 682018, India
| | - Vindhya Mohindra
- Principal Scientist, Centre for PAGR, ICAR NBFGR, Cochin, 682018, India
| | - U K Sarkar
- Principal Scientist, Centre for PAGR, ICAR NBFGR, Cochin, 682018, India
| |
Collapse
|
4
|
Tan H, Yu Y, Fu Y, Liu T, Wang Y, Peng W, Wang B, Chen J. Comparative analyses of Flammulina filiformis mitochondrial genomes reveal high length polymorphism in intergenic regions and multiple intron gain/loss in cox1. Int J Biol Macromol 2022; 221:1593-1605. [PMID: 36116598 DOI: 10.1016/j.ijbiomac.2022.09.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
The golden-needle mushroom Flammulina filiformis is one of the bulk mushroom products in the world. This study obtained complete mitogenomes of 44 wild isolates collected from nine provinces and two artificially bred cultivars of F. filiformis, together with three Flammulina rossica isolates and one Flammulina fennae isolate for comparison. The mitogenome of F. filiformis ranged from 83,540 bp to 90,938 bp, consisting of 14 conserved protein-coding genes (PCGs), two rRNA genes, and 25 tRNA genes. To the best of our knowledge, it contained the highest proportion of intergenic regions compared to the other known Basidiomycota mitogenomes. Introns and intergenic regions were two major contributing factors to the total size of the F. filiformis mitogenome. The conserved PCG cox3 is located in an intron of another conserved PCG, nad5. This is a unique phenomenon in all known fungal mitogenomes. Gain/loss of introns was observed in cox1, nad5, and rnl. Length polymorphism was widely observed in intergenic regions. Accordingly, primers were designed as useful markers for rapid identification of F. filiformis isolates with differentiated mitogenomes. Our findings provide a basis for further studies related to variety identification and population genetics of this economically important mushroom.
Collapse
Affiliation(s)
- Hao Tan
- School of Bioengineering, Jiangnan University, Wuxi, China; Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yu Fu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China; College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Jian Chen
- School of Bioengineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Tao JM, Ashram SEI, Alouffi A, Zhang Y, Weng YB, Lin RQ. Population genetic structure of Neoschongastia gallinarum in South China based on mitochondrial DNA markers. Parasitol Res 2022; 121:2793-2802. [PMID: 35951118 DOI: 10.1007/s00436-022-07605-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
The genetic diversity and differentiation of four geographic populations of Neoschongastia gallinarum were evaluated using concatenated mitochondrial gene sequences (pCOI, pCOII, and pND5). Based on the results, the N. gallinarum populations had high genetic diversity and strong ecological adaptability. Genetic differentiation among paired populations calculated using concatenated mitochondrial gene sequences revealed that geographic isolation resulted in genetic differentiation among the populations of N. gallinarum, and gene flow between populations associated with human trade activities. Systematic development and molecular variance based on haplotypes revealed that genetic variation existed in different haplotypes; however, no clear rule related to geographic region was found. Further, genetic variation was mainly derived from individuals within the population. A neutral test based on concatenated mitochondrial gene sequences and nucleotide pair differences revealed that N. gallinarum did not experience an obvious population expansion in recent historical periods. Accordingly, the population size was relatively stable.
Collapse
Affiliation(s)
- Jia-Meng Tao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Saeed-E I Ashram
- Foshan Standard Bio-Tech Co. Ltd, Foshan, Guangdong Province, 528138, People's Republic of China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Ya-Biao Weng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Rui-Qing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
6
|
Martínez-García L, Ferrari G, Oosting T, Ballantyne R, van der Jagt I, Ystgaard I, Harland J, Nicholson R, Hamilton-Dyer S, Baalsrud HT, Brieuc MSO, Atmore LM, Burns F, Schmölcke U, Jakobsen KS, Jentoft S, Orton D, Hufthammer AK, Barrett JH, Star B. Historical Demographic Processes Dominate Genetic Variation in Ancient Atlantic Cod Mitogenomes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.671281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ancient DNA (aDNA) approaches have been successfully used to infer the long-term impacts of climate change, domestication, and human exploitation in a range of terrestrial species. Nonetheless, studies investigating such impacts using aDNA in marine species are rare. Atlantic cod (Gadus morhua), is an economically important species that has experienced dramatic census population declines during the last century. Here, we investigated 48 ancient mitogenomes from historical specimens obtained from a range of archeological excavations in northern Europe dated up to 6,500 BCE. We compare these mitogenomes to those of 496 modern conspecifics sampled across the North Atlantic Ocean and adjacent seas. Our results confirm earlier observations of high levels of mitogenomic variation and a lack of mutation-drift equilibrium—suggestive of population expansion. Furthermore, our temporal comparison yields no evidence of measurable mitogenomic changes through time. Instead, our results indicate that mitogenomic variation in Atlantic cod reflects past demographic processes driven by major historical events (such as oscillations in sea level) and subsequent gene flow rather than contemporary fluctuations in stock abundance. Our results indicate that historical and contemporaneous anthropogenic pressures such as commercial fisheries have had little impact on mitogenomic diversity in a wide-spread marine species with high gene flow such as Atlantic cod. These observations do not contradict evidence that overfishing has had negative consequences for the abundance of Atlantic cod and the importance of genetic variation in implementing conservation strategies. Instead, these observations imply that any measures toward the demographic recovery of Atlantic cod in the eastern Atlantic, will not be constrained by recent loss of historical mitogenomic variation.
Collapse
|
7
|
Dubin A, Jørgensen TE, Jakt LM, Johansen SD. The mitochondrial transcriptome of the anglerfish Lophius piscatorius. BMC Res Notes 2019; 12:800. [PMID: 31823814 PMCID: PMC6905026 DOI: 10.1186/s13104-019-4835-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/29/2019] [Indexed: 01/22/2023] Open
Abstract
Objective Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing. Results We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of a humanin-like peptide within the large subunit ribosomal RNA.
Collapse
Affiliation(s)
- Arseny Dubin
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Lars Martin Jakt
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Steinar Daae Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.
| |
Collapse
|
8
|
Jørgensen TE, Karlsen BO, Emblem Å, Jakt LM, Nordeide JT, Moum T, Johansen SD. A mitochondrial long noncoding RNA in atlantic cod harbors complex heteroplasmic tandem repeat motifs. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:307-311. [PMID: 30198386 DOI: 10.1080/24701394.2018.1502281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A heteroplasmic tandem repeat (HTR) array occupies 100 to 300 bp of the mitochondrial DNA control region in the Atlantic cod, and recently we noted that the repeat appeared integrated in a polyadenylated mitochondrial long noncoding RNA. Here we provide a more detailed analysis of the mitochondrial HTR in the mitochondrial genome of 134 Atlantic cod specimens. We report all specimens to harbor mitochondrial HTRs in the control region, and identified 26 distinct variants among the 402 repeat motifs assessed. Whereas most specimens contained HTR profiles of 2-5 copies consisting of the same 40-bp motif, 22 specimens showed compound HTR arrays of at least two types of motifs present in the same mitochondrial DNA molecule. We found HTR profiles to be highly conserved between different tissue types of a single individual, and strictly maternally inherited in a mating experiment between parental Atlantic cod expressing different HTR profiles and array motifs. We conclude that mitochondrial heteroplasmy in the control region is very common in Atlantic cod, and results in length heterogenity of the long noncoding RNA lncCR-H.
Collapse
Affiliation(s)
- Tor Erik Jørgensen
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Bård Ove Karlsen
- b Research Laboratory and Department of Laboratory Medicine , Nordland Hospital , Bodø , Norway
| | - Åse Emblem
- c Department of Medical Biology Faculty of Health Sciences , UiT - Arctic University of Norway , Tromsø , Norway
| | - Lars Martin Jakt
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Jarle T Nordeide
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Truls Moum
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Steinar D Johansen
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway.,c Department of Medical Biology Faculty of Health Sciences , UiT - Arctic University of Norway , Tromsø , Norway
| |
Collapse
|